

ACD0900

VHF/UHF CATV/TV Tuner

Downconverter

Data Sheet - Rev 2.2

FEATURES

- Integrated Monolithic Downconverter
- 8 dB Noise Figure
- 10 dB Conversion Gain
- High Linearity
- Small Size
- Low Cost
- High Reliability
- RoHS-Compliant Package Option

PRODUCT DESCRIPTION

The ACD0900 MMIC is a high performance downconverter fabricated entirely in GaAs. It is designed for use as the second conversion stage in double-conversion tuners and cable modems, downconverting 900 -1200 MHz RF inputs to a fixed IF of 35 - 150 MHz (depending on LO frequency).

The IC incorporates a low noise amplifier, high linearity double balanced mixer, phase splitter and oscillator in a modified SOIC 16 lead surface mount package. The high degree of functionality allows tuner manufactures to reduce size and cost by lowering the component count and decreasing the amount of production alignment steps, while significantly improving performance and reliability.

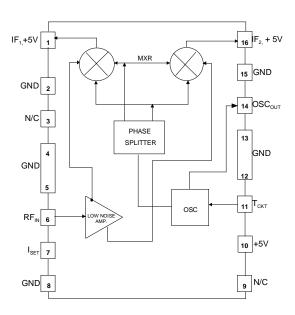


Figure 1: Functional Block Diagram

Table 1: Pin Description

PIN	DESCRIPTION	PIN	DESCRIPTION		
1	IF ₁ , V _{DDIF}	9	NC*		
2	GND	10	$V_{\scriptscriptstyle DDLO}$		
3	NC	11	T _{CKT}		
4	GND	12	GND		
5	GND	13	GND		
6	RF_{IN}	14	OSC OUT		
7	I _{SET}	15	GND		
8	GND	16	$\operatorname{IF}_{2},\operatorname{V}_{\operatorname{DDIF}}$		

^{*} Do not connect pin 9 to GND

ELECTRICAL CHARACTERISTICS

Table 2: Absolute Minimum and Maximum Ratings

PARAMETER	MIN	MAX	UNIT
$V_{\text{DDIF}}, V_{\text{DDLO}}, V_{\text{OSC}}$	-	9	Volts
V _{RF} , V _{TCKT} ⁽¹⁾	1	0	Volts
Storage Temperature	- 55	200	°C
Soldering Temperature	-	260	°C
Soldering Time	-	5	Sec.
RF Input Power	-	+ 10	dBm
LO Input Power	-	+ 17	dBm
Thermal Resistance	-	25	°C/W

Stresses in excess of the absolute ratings may cause permanent damage. Functional operation is not implied under these conditions. Exposure to absolute ratings for extended periods of time may adversely affect reliability.

Note:

(1) V_{TCKT} : Maximum voltage that may be applied to pin 11 of the device without damaging the IC. DC blocking capacitor (1500 pF) between pin 11 and the external tuning circuit is mandatory.

Table 3: Operating Ranges

PARAMETER	MIN	TYP	MAX	UNIT
Frequency RF LO IF	900 935 35	1 1 1	1200 1350 150	MHz
V _{DDIF} , V _{DDLO}	4.75	5.0	5.25	VDC
Case Temperature	- 55	-	85	°C

The device may be operated safely over these conditions; however, parametric performance is guaranteed only over the conditions defined in the electrical specifications.

Table 4: Electrical Specifications ($TA = +25^{\circ}C; V_{DDIF}, V_{DDLO} = +5V$)

DDIF DDLO					
PARAMETER	MIN	TYP	MAX	UNIT	COMMENTS
Frequencies RF LO IF	- - -	1170 1245 75	- - -	MHz	
Phase Noise @ 10 KHz Offset	-	- 89	- 85.5	dBc/Hz	
Noise Figure	-	8.0	9.5	dB	
Gain (200_{Ω} Load) ⁽¹⁾	7.8	9.5	-	dB	
3rd Order IMD (200 Ω Load) ⁽²⁾	-	- 59	- 54	dBc	
3rd Order Input IP (200ΩLoad)(2)	+ 12	-	-	dBm	
Cross Modulation @ 15 KHz, (2) 99% AM Modulation	-	- 56	,	dBc	
Current Consumption	-	80	110	mA	
Power Consumption @ 5.0V	-	400	-	mW	

Notes:

⁽¹⁾ Combined output ($IF_1 + IF_2$) using a balun. NOTE: Gain at either port (uncombined), with unused port terminated in 50 W, is 3 dB lower

⁽²⁾ Two tones @ -15 dBm per tone

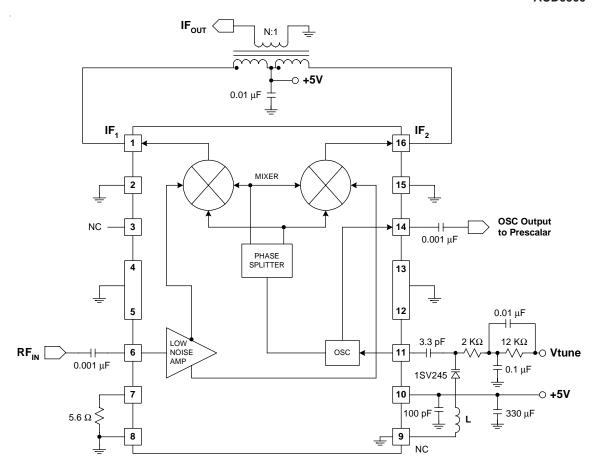
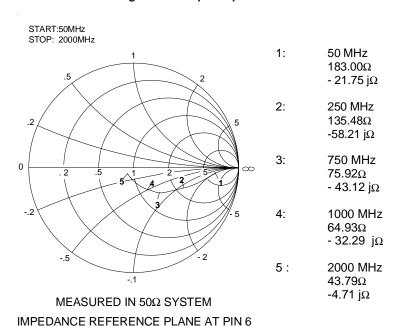
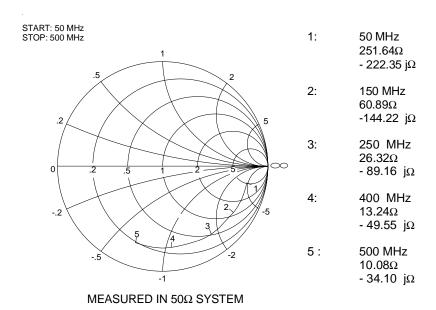
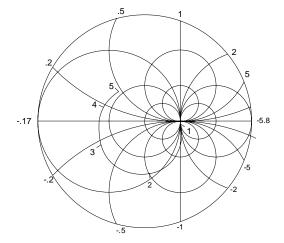


Figure 2: Test Circuit Schematic

PERFORMANCE DATA

Figure 3: RF Input Impedance


Figure 4: IF Output Impedance

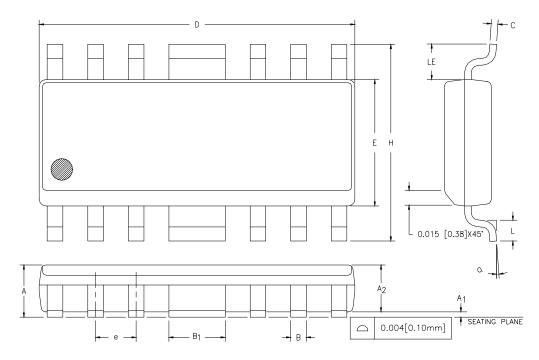
IMPEDANCE REFERENCE PLANE AT PIN 16

Figure 5: LO Impedance

START: 50 MHz STOP: 2000 MHz

MEASURED IN 50Ω SYSTEM IMPEDANCE REFERENCE PLANE AT PIN 11

1: 50 MHz 259.67Ω - 1200 jΩ


2: 612 MHz $-20.97\Omega \\ -50.63 \; j\Omega$

3: 1000 MHz - 9.28Ω - 14.88 jΩ

4: 1500 MHz $-5.36\Omega \\ 7.99 \; j\Omega$

5 : 2000 MHz 0.64Ω 27.12 $j\Omega$

PACKAGE OUTLINE

SYMBOL	INCHES		MILLIM	NOTE	
OL.	MIN.	MAX.	MIN.	MAX.	
Α	0.058	0.068	1.47	1.73	
A1	0.004	0.010	0.10	0.25	
A ₂	0.055	0.065	1.40	1.65	
В	0.013	0.020	0.33	0.50	
B ₁	0.062	0.070	1.58	1.78	
С	0.008	0.010	0.20	0.25	4
D	0.380	0.400	9.66	10.16	2
Ε	0.150	0.160	3.81	4.06	3
е	0.050	0.050 BSC		BSC	
Н	0.226	0.244	5.74	6.20	
L	0.016	0.040	0.41	1.02	
LE	0.030		0.76	-	
a	0°	8.	0,	8°	

NOTES:

- 1. CONTROLLING DIMENSION: INCHES
- 2. DIMENSION "D" DOES NOT INCLUDE MOLD FLASH, PROTRUSIONS OR GATE BURRS. MOLD FLASH, PROTRUSIONS AND GATE BURRS SHALL NOT EXCEED 0.006 [0.15mm] PER SIDE.
- 3. DIMENSION "E" DOES NOT INCLUDE INTER-LEAD FLASH OR PROTRUSIONS. INTER-LEAD FLASH AND PROTRUSIONS SHALL NOT EXCEED 0.010 [0.25mm] PER SIDE.
- 4. MAXIMUM LEAD TWIST/SKEW TO BE ±0.005 [0.13mm].
- LEAD THICKNESS AFTER PLATING TO BE 0.013 [0.33mm] MAXIMUM.

Figure 6: S3 Package Outline - Modified 16 Pin SOIC

NOTES

ACD0900

NOTES

NOTES

ACD0900

ORDERING INFORMATION

ORDER NUMBER TEMPERATURE RANGE		PACKAGE DESCRIPTION	COMPONENT PACKAGING	
ACD0900S3CTR	-55°C to +85°C	Modified 16 Pin SOIC	Tape & Reel, 3500 pieces per reel	
ACD0900RS3P1	-55°C to +85°C	RoHS Compliant Modified 16 Pin SOIC	Tape & Reel, 3500 pieces per reel	

ANADIGICS, Inc.

141 Mount Bethel Road Warren, New Jersey 07059, U.S.A.

Tel: +1 (908) 668-5000 Fax: +1 (908) 668-5132

URL: http://www.anadigics.com E-mail: Mktg@anadigics.com

IMPORTANT NOTICE

ANADIGICS, Inc. reserves the right to make changes to its products or to discontinue any product at any time without notice. The product specifications contained in Advanced Product Information sheets and Preliminary Data Sheets are subject to change prior to a product's formal introduction. Information in Data Sheets have been carefully checked and are assumed to be reliable; however, ANADIGICS assumes no responsibilities for inaccuracies. ANADIGICS strongly urges customers to verify that the information they are using is current before placing orders.

WARNING

ANADIGICS products are not intended for use in life support appliances, devices or systems. Use of an ANADIGICS product in any such application without written consent is prohibited.

