

VN750PEP-E

High side driver

Features

Туре	R _{DS(on)}	I _{OUT}	V _{cc}
VN750PEP-E	60 mΩ	6 A	36 V

- ECOPACK[®] : lead free and RoHS compliant
- Automotive Grade: compliance with AEC guidelines
- CMOS compatible input
- On-state open-load detection
- Off-state open-load detection
- Shorted load protection
- Undervoltage and overvoltage shutdown
- Protection against loss of ground
- Very low standby current
- . a 2002/95/EC euro ce 2002/95/EC euro Obsolete Productis Obsolete Reverse battery protection (see Application
 - In compliance with the 2002/95/EC european

Description

The VN750PEP-E is a monolithic device designed in STMicroelectronics VIPower™ M0-3 Technology, intended fc driving any kind of load with one side connected to ground.

Active V_{CC} pin voltage clamp protects the device against inv onergy spikes (see ISO7637 transient company inty table). Active current limitation contained with thermal shutdown and automatic res.art help protect the device against overload.

The device detects open load condition in on and off-state. Output shorted to V_{CC} is detected in the off-state. Device automatically turns off in case of ground pin disconnection.

Table 1. **Device summary**

Package	Order codes		
Fackage	Tube	Tape and reel	
PowerSSO-12	VN750PEP-E	VN750PEPTR-E	

November 2009

Doc ID 10869 Rev 4

Contents

1	Block diagram and pin description5
2	Electrical specifications6
	2.1 Absolute maximum ratings 6
	2.2 Thermal data
	2.3 Electrical characteristics
	2.4 GND protection network against reverse battery
	2.4.1 Solution 1: resistor in the ground line (RGND only)
	2.4.2 Solution 2: diode (DGND) in the ground line
	2.5 Load dump protection
	2.6 Microcontroller I/Os protection
	2.7 Open-load detection in off-state
3	Package and PCB thermal data
	3.1 PowerSSO-12 thermal data
4	Package and packing information
	4.1 ECOPACK [®] packages
	4.2 PowerSSO-12 mechanical data 19
5	Revision history
Obso Obso	lete product

List of tables

Table 1.	Device summary	l
Table 2.	Suggested connections for unused and not connected pins	
Table 3.	Absolute maximum ratings	
Table 4.	Thermal data	
Table 5.	Power	7
Table 6.	Switching (V _{CC} =13 V)	3
Table 7.	Input pin	3
Table 8.	V _{CC} output diode	3
Table 9.	Status pin	
Table 10.	Protections	3
Table 11.		
Table 12.	Truth table	
Table 13.	Electrical transient requirements on V _{CC} pin (part 1/3)	
Table 14.	Electrical transient requirements on V _{CC} pin (part 2/3)	
Table 15.	Electrical transient requirements on V _{CC} pin (part 3/3)	
Table 16.	PowerSSO-12 thermal parameter	, ,
Table 17.	PowerSSO-12 mechanical data)
Table 18.		
	Document revision history	
	.(5)	
	ate Product(s) obsore	
	V .(5)	
10		
SU		
\sim		
U.		
-01		
5		
Obsol		

List of figures

. ..

Figure 1. Figure 2. Figure 3. Figure 4. Figure 5. Figure 6. Figure 7. Figure 8. Figure 8. Figure 9. Figure 10. Figure 11. Figure 12. Figure 13.	Block diagram 5 Configuration diagram (top view) 5 Current and voltage conventions 6 Status timings 9 Switching time waveforms 10 Waveforms 12 Application schematic 13 Open-load detection in off-state 15 PowerSSO-12 PC board 16 Rthj-amb vs PCB copper area in open box free air condition 16 P ² PAK thermal impedance junction ambient single pulse 17 PowerSSO-12 thermal fitting model of a single channel 17 PowerSSO-12 package dimensions 19
obsolf	PowerSSO-12 thermal fitting model of a single channel 17
obsolf	PowerSSO-12 package dimensions 19

Doc ID 10869 Rev 4

1 Block diagram and pin description

Figure 1. Block diagram

Connection/pin	Status	N.C.	Output	Input
Floating	Х	Х	Х	Х
To ground		Х		Through 10 K Ω resistor

2 Electrical specifications

Figure 3. Current and voltage conventions

2.1 Absolute maximum ratings

Stress values that exceed those listed in the "Absolute maximum ratings" table can cause permanent damage to the device. These are stress ratings only, and operation of the device at these, or any other conditions greater than those, indicated in the operating sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. Refer also to the STMicroelectronics sure program and other relevant quality documents.

	Symbol	Parameter	Value	Unit
	V _{CC}	DC supply voltage	41	V
	- V _{CC}	Reverse DC supply voltage	- 0.3	V
ole	- I _{gnd}	DC reverse ground pin current	- 200	mA
and Su	I _{OUT}	DC output current	Internally limited	А
00	- I _{OUT}	Reverse DC output current	- 6	А
	I _{IN}	DC input current	+/- 10	mA
SO'	I _{STAT}	DC status current	+/- 10	mA
0,02	V _{ESD}	Electrostatic discharge (human body model: R=1.5 KΩ; C=100pF) - Input - Status - Output - V _{CC}	4000 4000 5000 5000	> > > > >
	P _{tot}	Power dissipation T _C =25°C	74	W

Table 3.	Absolute	maximum	ratings
	710001010	maximani	raingo

Symbol	Parameter	Value	Unit
Тj	Junction operating temperature	Internally limited	°C
T _c	Case operating temperature	- 40 to 150	°C
T _{stg}	Storage temperature	- 55 to 150	°C

Table 3. Absolute maximum ratings (continued)

1C

2.2 Thermal data

Table 4. Thermal data

Symbol	Parameter	Max. value		Unit
R _{thj-case}	Thermal resistance junction-case	1.7		°C/W
R _{thj-amb}	Thermal resistance junction-ambient	61 ⁽¹⁾	50 ⁽²⁾	°C/W

1. When mounted on a standard single-sided FR-4 board with 1cm^2 of Cu (at least 35µm thick) connected to all V_{CC} pins.

 When mounted on a standard single-sided FR-4 board with 8cm² of Cu (at least 35µm thick) connected to all V_{CC} pins.

2.3 Electrical characteristics

Values specified in this section are for 8 V<V $_{CC}<$ 36 V; -40 °C< Tj <150 °C, unless otherwise stated.

1	able 5.	Power	151 60				
	Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
	V _{CC}	Operating supply voltage		5.5	13	36	V
	V _{USD}	Undervoltage shutdown	16	3	4	5.5	V
	V _{USDhyst}	Undervoltage shutdown hysteresis			0.5		V
	V _{OV}	Overvoltage shutdown		36			V
7	R _{ON}	On-state resistance	I _{OUT} =2 A; T _j =25 °C; V _{CC} > 8 V I _{OUT} =2 A; V _{CC} >8 V			60 120	mΩ mΩ
	0 ^{SIs} Olf	Supply current			10 10 2	25 20 3.5	μA μA mA
	I _{L(off1)}	Off-state output current	V _{IN} =V _{OUT} =0 V	0		50	μΑ
	I _{L(off2)}	Off-state output current	V _{IN} =0V; V _{OUT} =3.5 V	-75		0	μA
	I _{L(off3)}	Off-state output current	$V_{IN}=V_{OUT}=0$ V; Vcc=13 V; T _j =125 °C			5	μA
	I _{L(off4)}	Off-state output current	$V_{IN}=V_{OUT}=0$ V; Vcc=13 V; T _j =25 °C			3	μA

Table 5. Power

10

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
t _{d(on)}	Turn-on delay time	$\rm R_L=6.5~\Omega$ from $\rm V_{IN}$ rising edge to $\rm V_{OUT}=1.3~V$	-	40	-	μs
t _{d(off)}	Turn-off delay time	$\rm R_L{=}6.5~\Omega$ from $\rm V_{IN}$ falling edge to $\rm V_{OUT}{=}11.7~V$	-	30	-	μs
dV _{OUT} /dt _(on)	Turn-on voltage slope	$\rm R_L=6.5~\Omega$ from V_OUT=1.3 V to V_OUT=10.4 V	-	0.5	-	V/µs
dV _{OUT} /dt _(off)	Turn-off voltage slope	$\rm R_L=6.5~\Omega$ from V_OUT=11.7 V to V_OUT=1.3 V	-	0.2	-	V/µs

Switching (V_{CC}=13 V) Table 6.

Table 7.	Input pin				*(5	
Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
V _{IL}	Input low level			0.	1.25	V
I _{IL}	Low level input current	V _{IN} =1.25 V	\mathcal{D} 1		.15	μA
V _{IH}	Input high level	ר	3.25	(V
I _{IH}	High level input current	V _{IN} =3.25 V		90	10	μA
V _{hyst}	Input hysteresis voltage	- S O1	0.5			V
V _{ICL}	Input clamp voltage	I _{IN} =1 mA	6	6.8 -0.7	8	V V

Table 8.

					-0.7		v
Table 8.	V _{CC} output diode	(5)	ole				
Symbol	Parameter	Test conditio	ns	Min.	Тур.	Max.	Unit
V _F	Forward on voltage	-I _{OUT} =1.3 A; T _j =150 °C				0.6	V
Table 9.	Status pin	(6)					

Status pin Table 9.

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
V _{STAT}	Status low output voltage	I _{STAT} =1.6 mA			0.5	V
ILSTAT	Status leakage current	Normal operation; V _{STAT} =5 V			10	μA
C _{STAT}	Status pin input capacitance	Normal operation; V _{STAT} =5 V			100	pF
V _{SCL}	Status clamp voltage	I _{STAT} =1mA I _{STAT} =-1mA	6	6.8 -0.7	8	V V

Protections⁽¹⁾ Table 10.

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
T _{TSD}	Shutdown temperature		150	175	200	°C
Τ _R	Reset temperature		135			°C

Table 10.	Protections ⁽¹⁾	(continued)
-----------	----------------------------	-------------

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
T _{hyst}	Thermal hysteresis		7	15		°C
t _{SDL}	Status delay in overload condition	T _j >T _{jsh}			20	ms
l _{lim}	Current limitation	9 V <v<sub>CC<36 V 5 V<v<sub>CC<36 V</v<sub></v<sub>	6	9	15 15	A A
V _{demag}	Turn-off output clamp voltage	I _{OUT} =2 A; V _{IN} =0 V; L=6 mH	V _{CC} -41	V _{CC} -48	V _{CC} -55	V

1. To ensure long term reliability under heavy overload or short circuit conditions, protection and related diagnostic signals must be used together with a proper software strategy. If the device operates under abnormal conditions this software must limit the duration and number of activation cycles.

Table 11. Open-load detection

	open lead detection	1,10				
Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
I _{OL}	Open-load on-state detection threshold	V _{IN} = 5 V	50	100	200	mA
t _{DOL(on)}	Open-load on-state detection delay	I _{OUT} = 0 A		90,	200	μs
V _{OL}	Open-load off-state voltage detection threshold	V _{IN} = 0 V	1.5	2.5	3.5	v
t _{DOL(off)}	Open-load detection delay at turn-off	(5) $colet$			1000	μs

Figure 4. Status timings

Table 12. **Truth table**

	Table 12. Truth	table	. 0.	
	Conditions	Input	Output	Status
	Normal operatio	n L H	9 H P (н
	Current limitatio		X X	H (T _j < T _{TSD}) H (T _j > T _{TSD}) L
	Overtemperatur	₽ L H		H L
	Undervoltage	IS H	L	X X
10	Overvoltage	Г	L	H H
2/2	Output voltage > V	/oL L H	H H	L H
10	Output current <	OL L H	L	H L
,01	Table 13. Electr	ical transient requiren	nents on V _{CC} pin (part 1	/3)
	ISO T/R 7637/1		Test levels	

Electrical transient requirements on V_{CC} pin (part 1/3) Table 13.

ISO T/R 7637/1		Test levels							
test pulse	Ι	I		IV	Delays and impedance				
1	-25 V	-50 V	-75 V	-100 V	2 ms 10 Ω				
2	+25 V	+50 V	+75 V	+100 V	0.2 ms 10 Ω				
За	-25 V	-50 V	-100 V	-150 V	0.1 μs 50 Ω				

Table 13. Electrical transient requirements on v_{CC} pin (part 1/3) (continued)								
ISO T/R 7637/1 test pulse		Test levels						
	I	II	111	IV	Delays and impedance			
Зb	+25 V	+50 V	+75 V	+100 V	0.1 μs 50 Ω			
4	-4 V	-5 V	-6 V	-7 V	100 ms, 0.01 Ω			
5	+26.5 V	+46.5 V	+66.5 V	+86.5 V	400 ms, 2 Ω			

Table 13.Electrical transient requirements on V_{CC} pin (part 1/3) (continued)

Table 14.	Electrical transient requirements on V _{CC} pin (part 2/3)
-----------	---

ISO T/R 7637/1		Test levels results					
test pulse	I	II	III	IV.			
1	С	С	С	с			
2	С	С	c O	С			
3a	С	С	C	c			
Зb	С	С	C C	c			
4	С	С	С	С			
5	С	ES	E	E			
		0v	×0`				

Table 15. Electrical transient requirements on V_{CC} pin (part 3/3)

Class	Contents
C	All functions of the device are performed as designed after exposure to disturbance.
E	One or more functions of the device is not performed as designed after exposure to disturbance and cannot be returned to proper operation without replacing the device.
oleteP	oducils
Obstere P	
Obsol	

Figure 6. Waveforms

2.4 GND protection network against reverse battery

2.4.1 Solution 1: resistor in the ground line (R_{GND} only)

This can be used with any type of load.

The following is an indication on how to dimension the R_{GND} resistor.

- 1. $R_{GND} \leq 600 \text{mV} / (I_{S(on)max}).$
- 2. $R_{GND} \ge (-V_{CC}) / (-I_{GND})$

where $-I_{GND}$ is the DC reverse ground pin current and can be found in the absolute maximum rating section of the device datasheet.

Power Dissipation in R_{GND} (when V_{CC} <0: during reverse battery situations) is:

$P_{\rm D} = (-V_{\rm CC})^2 / R_{\rm GND}$

This resistor can be shared amongst several different HSDs. Please note that the value of this resistor should be calculated with formula (1) where $I_{S(on)max}$ becomes the sum of the maximum on-state currents of the different devices.

Please note that if the microprocessor ground is not shared by the device ground then the R_{GND} produces a shift ($I_{S(on)max} * R_{GND}$) in the input thresholds and the status output values. This shift varies depending on how many devices are ON in the case of several high side drivers sharing the same R_{GND} .

If the calculated power dissipation leads to a large resistor or several devices have to share the same resistor then ST suggests to utilize Solution 2 (see below).

, - **,** - **,**

2.4.2 Solution 2: diode (D_{GND}) in the ground line

A resistor (R_{GND}=1 k Ω) should be inserted in parallel to D_{GND} if the device drives an inductive load.

This small signal diode can be safely shared amongst several different HSDs. Also in this case, the presence of the ground network produces a shift (\approx 600mV) in the input threshold and in the status output values if the microprocessor ground is not common to the device ground. This shift not varies if more than one HSD shares the same diode/resistor network.

Series resistor in input and status lines are also required to prevent that, during battery voltage transient, the current exceeds the absolute maximum rating.

Safest configuration for unused input and status pin is to leave them unconnected.

2.5 Load dump protection

 D_{ld} is necessary (voltage transient suppressor) if the load dump peak voltage exceeds the V_{CC} max DC rating. The same applies if the device is subject to transients on the V_{CC} line that are greater than the ones shown in the ISO 7637-2: 2004(E) table.

2.6 Microcontroller I/Os protection

If a ground protection network is used and negative transient are present on the V_{CC} line, the control pins is pulled negative. ST suggests to insert a resistor (R_{prot}) in line to prevent the μ C I/Os pins to latch-up.

The value of these resistors is a compromise between the leakage current of μ C and the current required by the HSD I/Os (Input levels compatibility) with the latch-up limit of μ C I/Os.

 $-V_{CCpeak}/I_{latchup} \le R_{prot} \le (V_{OH\mu C}-V_{IH}-V_{GND}) / I_{IHmax}$

Calculation example:

For V_{CCpeak}= - 100 V and I_{latchup} \geq 20 mA; V_{OHµC} \geq 4.5 V

 $5 \text{ k}\Omega \le \text{R}_{\text{prot}} \le 65 \text{ k}\Omega.$

Recommended values: $R_{prot} = 10 \text{ k}\Omega$.

2.7

Open-load detection in off-state

Off-state open-load detection requires an external pull-up resistor (R_{PU}) connected between output pin and a positive supply voltage (V_{PU}) like the +5 V line used to supply the microprocessor.

The external resistor has to be selected according to the following requirements:

- 1. no false open-load indication when load is connected: in this case we have to avoid V_{OUT} to be higher than V_{Olmin} ; this results in the following condition $V_{OUT}=(V_{PU}/(R_L+R_{PU}))R_L<V_{Olmin}$.
- 2. no misdetection when load is disconnected: in this case the V_{OUT} has to be higher than V_{OLmax} ; this results in the following condition $R_{PU} < (V_{PU} V_{OLmax})/I_{L(off2)}$.

Because $I_{s(OFF)}$ may significantly increase if V_{out} is pulled high (up to several mA), the pullup resistor R_{PU} should be connected to a supply that is switched off when the module is in standby.

The values of $V_{OLmin},\,V_{OLmax}$ and $I_{L(off2)}$ are available in the electrical characteristics section.

Figure 8. Open-load detection in off-state

3 Package and PCB thermal data

3.1 PowerSSO-12 thermal data

Figure 9. PowerSSO-12 PC board

Note: Layout condition of R_{th} and Z_{th} measurements (PCB FR4 area = 78 mm x 78 mm, PCB thickness = 2 mm, Cu thickness=35 μ m, Copper areas: from minimum pad lay-out to 8 cm²).

Figure 10. R_{thj-amb} vs PCB copper area in open box free air condition

olei

Figure 11. P²PAK thermal impedance junction ambient single pulse

Equation 1: pulse calculation formula

 $Z_{TH\delta} = R_{TH} \cdot \delta + Z_{THtp}(1-\delta)$ where $\delta = t_P/T$

Table 16. PowerSSO-12 thermal parameter

Area/island (cm ²)	Footprint	8
R1 (°C/W)	0.1	
R2 (°C/W)	0.6	

	Footprint	8
R3 (°C/W)	1.5	
R4 (°C/W)	8	
R5 (°C/W)	28	18
R6 (°C/W)	30	22
C1 (W·s/°C)	0.001	
C2 (W·s/°C)	0.0035	
C3 (W·s/°C)	0.015	
C4 (W·s/°C)	0.1	16
C5 (W·s/°C)	0.15	0.017
C6 (W·s/°C)	3	5
e Product(s)	01050	
	C1 (W·s/°C) C2 (W·s/°C) C3 (W·s/°C) C4 (W·s/°C) C5 (W·s/°C) C6 (W·s/°C)	C1 (W·s/°C) 0.001 C2 (W·s/°C) 0.0035 C3 (W·s/°C) 0.015 C4 (W·s/°C) 0.1 C5 (W·s/°C) 0.15

Table 16. PowerSSO-12 thermal parameter (continued)

57

Package and packing information 4

ECOPACK[®] packages 4.1

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK® packages, depending on their level of environmental compliance. ECOPACK® specifications, grade definitions and product status are available at: www.st.com.

ECOPACK® is an ST trademark.

4.2 PowerSSO-12 mechanical data

Sympol	Millimeters		
Symbol	Min.	Тур.	Max.
A	1.25		1.62
A1	0		0.1
A2	1.10		1.65
В	0.23		0.41
С	0.19		0.25
D	4.8		5.0 C
E	3.8		4.0
е		0.8	dv ,
н	5.8	0(6.2
h	0.25		0.5
L	0.4	65	1.27
k	0°	6 01	8°
Х	1.9	.*0	2.5
Y	3.6	162	4.2
ddd	10	5	0.1
ddd Produk Diete Produk		50,	0.1

Table 17. PowerSSO-12 mechanical data

5 Revision history

Table 18.Document revision history

07-Oct-2004
24-Nov-2004
12-Dec-2004
23-Nov-2009
ie Pro

Please Read Carefully:

Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice.

All ST products are sold pursuant to ST's terms and conditions of sale.

Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein.

UNLESS OTHERWISE SET FORTH IN ST'S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

UNLESS EXPRESSLY APPROVED IN WRITING BY AN AUTHORIZED ST REPRESENTATIVE, ST PRODUCTS ARE NOT RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY, DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER'S OWN RISK.

Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST.

ST and the ST logo are trademarks or registered trademarks of ST in various countries.

Information in this document supersedes and replaces all information previously supplied.

The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.

© 2009 STMicroelectronics - All rights reserved

STMicroelectronics group of companies

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan -Malaysia - Malta - Morocco - Philippines - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America

www.st.com

Doc ID 10869 Rev 4

