

TSV6390, TSV6390A, TSV6391, TSV6391A

Micropower (60 µA), wide bandwidth (2.4 MHz) CMOS operational amplifiers

Datasheet - production data

Features

- Low offset voltage: 500 μV max (A version)
- Low power consumption: 60 µA typ at 5 V
- Low supply voltage: 1.5 V 5.5 V
- Gain bandwidth product: 2.4 MHz typical
- Stable in gain configuration (-3 or 4)
- Low power shutdown mode: 5 nA typical
- High output current: 63 mA at $V_{CC} = 5 V$
- Low input bias current: 1 pA typical
- Rail-to-rail input and output
- Extended temperature range: -40 °C to 125 °C
- 4 kV human body model

Applications

- Battery-powered applications
- Portable devices

- Signal conditioning
- Active filtering
- Medical instrumentation

Description

The TSV6390, TSV6391, and their "A" versions are single operational amplifiers (op amps) offering low voltage, low power operation, and rail-to-rail input and output.

With a very low input bias current and low offset voltage (500 μ V maximum for the A version), the TSV6390 and TSV6391 are ideal for applications requiring precision. The devices can operate at power supplies ranging from 1.5 to 5.5 V, and are therefore ideal for battery-powered devices, extending battery life.

When used with a gain (above -3 or 4), these products feature an excellent speed/power consumption ratio, offering a 2.4 MHz gain bandwidth product while consuming only 60 μ A at a 5 V supply voltage.

The TSV6390 comes with a shutdown function.

Both the TSV6390 and TSV6391 have a high tolerance to ESD, sustaining 4 kV for the human body model.

They are offered in micropackages, SC70-6 and SOT23-6 for the TSV6390 and SC70-5 and SOT23-5 for the TSV6391. They are guaranteed for industrial temperature ranges from -40 °C to 125 °C.

All these features combined make the TSV6390 and TSV6391 ideal for sensor interfaces, batterysupplied, and portable applications, as well as active filtering.

December 2015

DocID17118 Rev 2

This is information on a product in full production.

Contents

Absolut	e maximum ratings and operating conditions	3
Electric	al characteristics	4
Electric	al characteristics curves	9
Applica	tion information	11
4.1	Operating voltages	11
4.2	Rail-to-rail input	11
4.3	Rail-to-rail output	11
4.4	Shutdown function (TSV6390)	12
4.5	Optimization of DC and AC parameters	13
4.6	Driving resistive and capacitive loads	13
4.7	PCB layouts	13
4.8	Macromodel	13
Package	e information	14
5.1	SC70-6 (or SOT323-6) package information	15
5.2	SOT23-6 package information	17
5.3	SC70-5 (or SOT323-5) package information	18
5.4	SOT23-5 package information	19
Orderin	g information	20
Revisio	n history	21
	Electric Electric Applica 4.1 4.2 4.3 4.4 4.5 4.6 4.7 4.8 Package 5.1 5.2 5.3 5.4 Orderin	 4.2 Rail-to-rail input

1

Absolute maximum ratings and operating conditions

Symbol	Parameter		Value	Unit
Vcc	Supply voltage ⁽¹⁾		6	
V _{id}	Differential input voltage ⁽²⁾		±V _{CC}	V
Vin	Input voltage ⁽³⁾		(V_{CC-}) - 0.2 to (V_{CC+}) + 0.2	
l _{in}	Input current ⁽⁴⁾		10	mA
SHDN	Shutdown voltage ⁽³⁾		(V _{CC-}) - 0.2 to (V _{CC+}) + 0.2	V
T _{stg}	Storage temperature	-65 to 150	°C	
Tj	Maximum junction temperature	150		
		SC70-6	232	
Б	Thermal resistance junction to ambient ⁽⁵⁾⁽⁶⁾	SOT23-6	240	°C/W
R _{thja}		SC70-5	205	C/vv
	SOT23		250	
	HBM: human body model ⁽⁷⁾		4	kV
ESD	MM: machine model ⁽⁸⁾		300	V
	CDM: charged device model ⁽⁹⁾		1.5	kV
	Latch-up immunity		200	mA

Table 1: Absolute maximum ratings (AMR)

Notes:

⁽¹⁾All voltage values, except the differential voltage, are with respect to network ground terminal.

⁽²⁾The differential voltage is the non-inverting input terminal with respect to the inverting input terminal.

 $^{(3)}V_{CC}\text{-}$ V_{in} must not exceed 6 V, V_{in} must not exceed 6 V.

⁽⁴⁾Input current must be limited by a resistor in series with the inputs.

⁽⁵⁾R_{th} are typical values.

⁽⁶⁾Short-circuits can cause excessive heating and destructive dissipation.

⁽⁷⁾Human body model: 100 pF discharged through a 1.5 kΩ resistor between two pins of the device, done for all couples of pin combinations with other pins floating.

⁽⁸⁾Machine model: a 200 pF capacitor is charged to the specified voltage, then discharged directly between two pins of the device with no external series resistor (internal resistor < 5 Ω), done for all couples of pin combinations with other pins floating.

⁽⁹⁾Charged device model: all pins plus package are charged together to the specified voltage and then discharged directly to the ground.

Symbol	Parameter	Value	Unit
V _{cc}	Supply voltage	1.5 to 5.5	V
Vicm	Common mode input voltage range	(V _{CC-}) - 0.1 to (V _{CC+}) + 0.1	V
T _{oper}	Operating free air temperature range	-40 to 125	°C

Table 2: Operating conditions

2 Electrical characteristics

Table 3: Electrical characteristics at VCC+ = 1.8 V with VCC- = 0 V, Vicm = VCC/2, Tamb = 25 °C and RL connected to VCC/2 (unless otherwise specified)

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
DC perfo	rmance					
		TSV6390 and TSV6391			3	
		TSV6390A and TSV6391A			0.5	
Vio	Offset voltage	$T_{min} < T_{op} < T_{max,}$ TSV6390 and TSV6391			4.5	mV
		$T_{min} < T_{op} < T_{max,}$ TSV6390A and TSV6391A			2	
$\Delta V_{io}/\Delta T$	Input offset voltage drift			2		µV/°C
I	Input offset current, $V_{out} = V_{CC}/2^{(1)}$			1	10	
l _{io}	$mput onset current, v_{out} = v_{CC/Z}$	$T_{min} < T_{op} < T_{max}$		1	100	.
1	Input bias current, $(V_{out} = V_{CC}/2)^{(1)}$			1	10	рА
l _{ib}	input bias current, $(V_{out} = V_{CC/2})^{-1}$	$T_{min} < T_{op} < T_{max}$		1	100	
CMD	Common mode rejection ratio	0 V to 1.8 V, $V_{out} = 0.9 V$	53	74		
CMR	20 log (ΔV _{ic} /ΔV _{io})	$T_{min} < T_{op} < T_{max}$	51			dB
٨		$R_L\!\!=10~k\Omega,~V_{out}\!=0.5~V$ to $1.3~V$	85	95		uБ
A _{vd}	vd Large signal voltage gain	$T_{min} < T_{op} < T_{max}$	80			
V	High-level output voltage	$R_L = 10 \ k\Omega$		5	35	
V _{OH}		$T_{min} < T_{op} < T_{max}$			50	
M		$R_L = 10 \ k\Omega$		4	35	mV
V _{OL}	Low-level output voltage	$T_{min} < T_{op} < T_{max}$			50	
		V _{out} = 1.8 V	6	12		
	lsink	$T_{min} < T_{op} < T_{max}$	4			
l _{out}		V _{out} = 0 V	6	10		mA
	Isource	T _{min} < T _{op} < T _{max}	4			
1		No load, $V_{out} = V_{CC}/2$	40	50	60	۵
I _{CC}	Supply current, $\overline{SHDN} = V_{CC}$	T _{min} < T _{op} < T _{max}			62	μA
AC perfo	rmance					
GBP	Gain bandwidth product	$R_L = 10 \text{ k}\Omega, C_L = 100 \text{ pF}$		2		MHz
0 ·		Phase margin = 60°, $R_f = 10 k\Omega$,		4		
Gain	Minimum gain for stability	$R_L = 10 \text{ k}\Omega, C_L = 20 \text{ pF}$		-3		V/V
SR	Slew rate	$ \begin{array}{l} R_L = 10 \; k\Omega, \; C_L = 100 \; pF, \\ V_{out} = 0.5 \; V \; to \; 1.3 \; V \end{array} $		0.7		V/µs
0	Equivalent input noise voltage	f = 1 kHz		60		nV/√Hz
en	Equivalent input noise voitage	f = 10 kHz		33		IIV/NHZ

Notes:

⁽¹⁾Guaranteed by design.

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit				
DC perfo	DC performance									
		$\overline{\text{SHDN}} = V_{\text{CC}}$		2.5	50	nA				
I _{CC}	Supply current in shutdown mode (all operators)	$T_{min} < T_{op} < 85 \ ^{\circ}C$			200	ПА				
		$T_{min} < T_{op} < 125 \ ^{\circ}C$			1.5	μA				
t _{on}	Amplifier turn-on time	R_L = 2 k Ω , V_{out} = (V _{CC} -) to (V _{CC} -) + 0.2 V		300						
t _{off}	Amplifier turn-off time	R_L = 2 kΩ, Vout = (V_{CC+}) - 0.5 V to (V_{CC+}) - 0.7 V		20		ns				
VIH	SHDN logic high		1.3			v				
VIL	SHDN logic low				0.5	v				
I _{IH}	SHDN current high	$\overline{\text{SHDN}} = V_{CC+}$		10						
IIL	SHDN current low	$\overline{\text{SHDN}} = V_{\text{CC}}$		10		pА				
	Output leakage in shutdown	$\overline{\text{SHDN}} = V_{\text{CC}}$		50						
I _{OLeak}	mode	T _{min} < T _{op} < T _{max}		1		nA				

Table 4: Shutdown characteristics VCC = 1.8 V (TSV6390)

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit	
DC perfo	rmance						
		TSV6390 and TSV6391			3		
		TSV6390A and TSV6391A			0.5		
Vio	Offset voltage	$T_{min} < T_{op} < T_{max,}$ TSV6390 and TSV6391			4.5	mV	
		T _{min} < T _{op} < T _{max,} TSV6390A and TSV6391A			2		
ΔV _{io} /ΔT	Input offset voltage drift			2		µV/°C	
1	Input offset current ⁽¹⁾			1	10	µV/°C	
l _{io}	input onset current	$T_{min} < T_{op} < T_{max}$		1	100	~ ^	
1	Input bias current ⁽¹⁾	t bias current ⁽¹⁾	1	10	рА		
l _{ib}	input bias current	$T_{min} < T_{op} < T_{max}$		1	100		
	Common mode rejection ratio	0 V to 3.3 V, $V_{out} = 1.65$ V	57	79			
CMR	20 log ($\Delta V_{ic}/\Delta V_{io}$)	T _{min} < T _{op} < T _{max}	53			dB	
Δ.	Lorgo signal valtago goin	R_L = 10 kΩ, V_{out} = 0.5 V to 2.8 V	88	98			
A _{vd}	Large signal voltage gain	T _{min} < T _{op} < T _{max}	83				
N/	High lovel output veltage	$R_L = 10 \ k\Omega$		6	35		
V _{OH}	High-level output voltage	T _{min.} < T _{op} < T _{max}			50	mV	
V _{OL}	Low-level output voltage	$R_L = 10 \ k\Omega$		7	35	IIIV	
V OL	Low-level output voltage	$T_{min} < T_{op} < T_{max}$			50		
		$V_{out} = 3.3 V$	23	45			
Ι.	Isink	$T_{min} < T_{op} < T_{max}$	20	42		mA	
l _{out}		V _{out} = 0 V	23	38			
	Isource	$T_{min} < T_{op} < T_{max}$	20				
Icc	Supply current, $\overline{SHDN} = V_{CC}$	No load, V _{out} = V _{CC} /2	43	55	64	μA	
ICC		$T_{min} < T_{op} < T_{max}$			66	μΛ	
AC perfo	rmance						
GBP	Gain bandwidth product	$R_L = 10 \text{ k}\Omega, C_L = 100 \text{ pF}$		2.2		MHz	
Gain	Minimum gain for stability	Phase margin = 60°, $R_f = 10 \text{ k}\Omega$,		4		1///	
Galli	winning gain for stability	$R_L = 10 \text{ k}\Omega, C_L = 20 \text{ pF},$		-3		- V/V	
SR	Slew rate	$ \begin{array}{l} {\sf R}_{\sf L} = 10 \; {\sf k}\Omega, \; {\sf C}_{\sf L} = 100 \; {\sf pF}, \\ {\sf V}_{\sf out} = 0.5 \; {\sf V} \; to \; 2.8 \; {\sf V} \end{array} $		0.9		V/µs	
en	Equivalent input noise voltage	f = 1 kHz		65		nV/√H:	

Table 5: VCC+ = 3.3 V, VCC- = 0 V, Vicm = VCC/2, Tamb = 25 °C, RL connected to VCC/2 (unless otherwise specified)

Notes:

⁽¹⁾Guaranteed by design.

TSV6390, TSV6390A, TSV6391, TSV6391A

Table 6: Electrical characteristics at VCC+ = 5 V with VCC- = 0 V, Vicm = VCC/2, Tamb = 25 °C
and RL connected to VCC/2 (unless otherwise specified)

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
DC perfo	rmance					
		TSV6390 and TSV6391			3	
		TSV6390A and TSV6391A			0.5	
V _{io}	Offset voltage	$T_{min} < T_{op} < T_{max,}$ TSV6390 and TSV6391			4.5	mV
		$T_{min} < T_{op} < T_{max}$, TSV6390A and TSV6391A			2	
$\Delta V_{io}/\Delta T$	Input offset voltage drift			2		μV/°C
Ŀ	Input offset current, $V_{out} = V_{CC}/2^{(1)}$			1	10	
l _{io}	input onset current, v _{out} = v _{CC} /2	T _{min} < T _{op} < T _{max}		1	100	n A
L.	Input bias current, $V_{out} = V_{CC}/2^{(1)}$			1	10	pА
l _{ib}	input bias current, $v_{out} = v_{CC/2}$	T _{min} < T _{op} < T _{max}		1	100	
CMR	Common mode rejection ratio	0 V to 5 V, $V_{out} = 2.5$ V	60	80		
CIVIK	20 log ($\Delta V_{ic}/\Delta V_{io}$)	T _{min} < T _{op} < T _{max}	55			
SVR	Supply voltage rejection ratio 20 log ($\Delta V_{CC}/\Delta V_{io}$)	$V_{CC} = 1.8$ to 5 V	75	93		٩D
SVK		T _{min} < T _{op} < T _{max}	73			dB
٨		$R_L\!\!=10~k\Omega,~V_{out}\!=0.5~V$ to 4.5 V	89	98		
A _{vd}	Large signal voltage gain	T _{min} < T _{op} < T _{max}	84			
V	Lich lovel output voltogo	$R_L = 10 \text{ k}\Omega$		7	35	
V _{OH}	High-level output voltage	$T_{min} < T_{op} < T_{max}$			50	~~\/
N/		R _L = 10 kΩ		6	35	mV
V _{OL}	Low-level output voltage	T _{min} < T _{op} < T _{max}			50	
		$V_{out} = 5 V$	40	65		
	lsink	T _{min} < T _{op} < T _{max}	35			
lout		V _{out} = 0 V	40	72		mA
	Isource	T _{min} < T _{op} < T _{max}	35			
		No load, $V_{out} = V_{CC}/2$	50	60	69	
Icc	Supply current, $\overline{SHDN} = V_{CC}$	$T_{min} < T_{op} < T_{max}$			72	μA
AC perfo	rmance					
GBP	Gain bandwidth product	$R_{L} = 10 \text{ k}\Omega, C_{L} = 100 \text{ pF}$		2.4		MHz
Qui		Phase margin = 60°, $R_f = 10 k\Omega$,		4		\/ <u>^</u> /
Gain	Minimum gain for stability	$R_L = 10 \; k\Omega, C_L = 20 \; pF,$		-3		V/V
SR	Slew rate	$R_L = 10 \text{ k}\Omega, C_L = 100 \text{ pF}$		1.1		V/µs
	-	f = 1 kHz		60		
en	Equivalent input noise voltage	f = 10 kHz		33		nV/√Hz
THD+N	Total harmonic distortion + noise			0.11		%

Notes:

⁽¹⁾Guaranteed by design.

DocID17118 Rev 2

Symbol	Parameter	ameter Conditions				Unit		
DC perfo	DC performance							
		$\overline{\text{SHDN}} = V_{\text{CC}}$		5	50	nA		
I _{CC}	Supply current in shutdown mode (all operators)	T _{min} < T _{op} < 85 °C			200	ΠA		
		T _{min} < T _{op} < 125 °C			1.5	μA		
t _{on}	Amplifier turn-on time	R_L = 2 kΩ, V_{out} = (V_{CC} -) to (V_{CC} -) + 0.2 V		300				
t _{off}	Amplifier turn-off time	R_L = 2 kΩ, Vout = (V _{CC+}) - 0.5 V to (V _{CC+}) - 0.7 V		30		ns		
VIH	SHDN logic high		4.5			v		
VIL	SHDN logic low				0.5	V		
I _{IH}	SHDN current high	$\overline{\text{SHDN}} = V_{CC+}$		10				
IIL	SHDN current low	$\overline{\text{SHDN}} = V_{CC}$		10		pА		
	Output leakage in shutdown	$\overline{\text{SHDN}} = V_{\text{CC}}$ -		50				
I _{OLeak}	mode	$T_{min} < T_{op} < T_{max}$		1		nA		

Table 7: Shutdown characteristics VCC = 5 V (TSV6390)

3 Electri

57

DocID17118 Rev 2

Electrical characteristics curves

TSV6390, TSV6390A, TSV6391, TSV6391A

DocID17118 Rev 2

4 Application information

4.1 Operating voltages

The TSV6390 and TSV6391 can operate from 1.5 to 5.5 V. Their parameters are fully specified for 1.8, 3.3 and 5 V power supplies. However, the parameters are very stable in the full V_{CC} range and several characterization curves show the TSV639x characteristics at 1.5 V. Additionally, the main specifications are guaranteed in extended temperature ranges from -40 °C to 125 °C.

4.2 Rail-to-rail input

The TSV6390 and TSV6391 are built with two complementary PMOS and NMOS input differential pairs. The devices have a rail-to-rail input, and the input common mode range is extended from (V_{CC}.) - 0.1 V to (V_{CC+}) + 0.1 V. The transition between the two pairs appears at (V_{CC+}) - 0.7 V. In the transition region, the performance of CMRR, PSRR, V_{io}, and THD is slightly degraded (as shown in *Figure 13* and *Figure 14* for V_{io} vs. V_{icm}).

The devices are guaranteed without phase reversal.

4.3 Rail-to-rail output

The operational amplifiers' output levels can go close to the rails: 35 mV maximum above and below the rail when connected to a 10 k Ω resistive load to V_{CC}/2.

4.4 Shutdown function (TSV6390)

The operational amplifier is enabled when the \overline{SHDN} pin is pulled high. To disable the amplifier, the \overline{SHDN} must be pulled down to V_{CC}. When in shutdown mode, the amplifier's output is in a high impedance state. The \overline{SHDN} pin must never be left floating, but kept tied to V_{CC+} or V_{CC-}.

The turn-on and turn-off times are calculated for an output variation of $\pm 200 \text{ mV}$ (*Figure 15* and *Figure 16* show the test configurations).

4.5 **Optimization of DC and AC parameters**

These devices use an innovative approach to reduce the spread of the main DC and AC parameters. An internal adjustment achieves a very narrow spread of the current consumption (60 μ A typical, min/max at ±17 %). Parameters linked to the current consumption value, such as GBP, SR, and A_{Vd}, benefit from this narrow dispersion.

4.6 Driving resistive and capacitive loads

These products are micropower, low-voltage operational amplifiers optimized to drive rather large resistive loads, above 2 k Ω . For lower resistive loads, the THD level may significantly increase.

These operational amplifiers have a relatively low internal compensation capacitor, making them very fast while consuming very little. They are ideal when used in a non-inverting configuration or in an inverting configuration in the following conditions.

- IGainl ≥ 3 in an inverting configuration ($C_L = 20 \text{ pF}$, $R_L = 100 \text{ k}\Omega$) or Igainl ≥ 10, ($C_L = 100 \text{ pF}$, $R_L = 100 \text{ k}\Omega$)
- Gain \geq 4 in a non-inverting configuration (C_L = 20 pF, R_L = 100 kΩ) or gain \geq 11, (C_L = 100 pF, R_L= 100 kΩ)

As these operational amplifiers are not unity gain stable, for a low closed-loop gain it is recommended to use the TSV62x (29 μ A, 420 kHz) or TSV63x (60 μ A, 880 kHz) which are unity gain stable.

Part #	lcc (μA) at 5 V	GBP (MHz)	SR (V/µs)	Minimum gain for stability (C _{Load} = 100 pF)				
TSV620-1	29	0.42	0.14	1				
TSV6290-1	29	1.3	0.5	11				
TSV630-1	60	0.88	0.34	1				
TSV6390-1	60	2.4	1.1	11				

Table 8: Related products

4.7 PCB layouts

For correct operation, it is advised to add 10 nF decoupling capacitors as close as possible to the power supply pins.

4.8 Macromodel

An accurate macromodel of the TSV6390 and TSV6391 is available on STMicroelectronics' web site at: **www.st.com**. This model is a trade-off between accuracy and complexity (that is, time simulation) of the TSV639x operational amplifiers. It emulates the nominal performances of a typical device within the specified operating conditions mentioned in the datasheet. It also helps to validate a design approach and to select the right operational amplifier, *but it does not replace on-board measurements*.

5 Package information

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK[®] packages, depending on their level of environmental compliance. ECOPACK[®] specifications, grade definitions and product status are available at: *www.st.com*. ECOPACK[®] is an ST trademark.

5.1 SC70-6 (or SOT323-6) package information

Figure 19: SC70-6 (or SOT323-6) package outline

Table 9: SC70-6 (or SOT323-6) mechanical data

	Dimensions							
Ref		Millimeters		Inches				
	Min.	Тур.	Max.	Min.	Тур.	Max.		
А	0.80		1.10	0.031		0.043		
A1			0.10			0.004		
A2	0.80		1.00	0.031		0.039		
b	0.15		0.30	0.006		0.012		
С	0.10		0.18	0.004		0.007		
D	1.80		2.20	0.071		0.086		
E	1.15		1.35	0.045		0.053		
е		0.65			0.026			
HE	1.80		2.40	0.071		0.094		
L	0.10		0.40	0.004		0.016		
Q1	0.10		0.40	0.004		0.016		

DocID17118 Rev 2

15/22

Package information

Figure 20: SC70-6 (or SOT323-6) recommended footprint

5.2 SOT23-6 package information

Table 10: SOT23-6 mechanical data

Dimensions						
Ref.		Millimeters			Inches	
	Min.	Тур.	Max.	Min.	Тур.	Max.
А	0.90		1.45	0.035		0.057
A1			0.10			0.004
A2	0.90		1.30	0.035		0.051
b	0.35		0.50	0.013		0.019
С	0.09		0.20	0.003		0.008
D	2.80		3.05	0.110		0.120
E	1.50		1.75	0.060		0.069
е		0.95			0.037	
Н	2.60		3.00	0.102		0.118
L	0.10		0.60	0.004		0.024
θ	0 °		10 °	0 °		10 °

5.3 SC70-5 (or SOT323-5) package information

Figure 22: SC70-5 (or SOT323-5) package outline

Table 11: SC70-5 (or SOT323-5) mechanical data

	Dimensions						
Ref.	Millimeters			Inches			
	Min.	Тур.	Max.	Min.	Тур.	Max.	
А	0.80		1.10	0.315		0.043	
A1			0.10			0.004	
A2	0.80	0.90	1.00	0.315	0.035	0.039	
b	0.15		0.30	0.006		0.012	
С	0.10		0.22	0.004		0.009	
D	1.80	2.00	2.20	0.071	0.079	0.087	
E	1.80	2.10	2.40	0.071	0.083	0.094	
E1	1.15	1.25	1.35	0.045	0.049	0.053	
е		0.65			0.025		
e1		1.30			0.051		
L	0.26	0.36	0.46	0.010	0.014	0.018	
<	0°		8°	0°		8°	

5.4 SOT23-5 package information

Table 12: SOT23-5 mechanical data

	Dimensions						
Ref.	Millimeters			Inches			
	Min.	Тур.	Max.	Min.	Тур.	Max.	
А	0.90	1.20	1.45	0.035	0.047	0.057	
A1			0.15			0.006	
A2	0.90	1.05	1.30	0.035	0.041	0.051	
В	0.35	0.40	0.50	0.014	0.016	0.020	
С	0.09	0.15	0.20	0.004	0.006	0.008	
D	2.80	2.90	3.00	0.110	0.114	0.118	
D1		1.90			0.075		
е		0.95			0.037		
E	2.60	2.80	3.00	0.102	0.110	0.118	
F	1.50	1.60	1.75	0.059	0.063	0.069	
L	0.10	0.35	0.60	0.004	0.014	0.024	
К	0 degrees		10 degrees	0 degrees		10 degrees	

19/22

6 Ordering information

Part number	Temperature range	Package	Packing	Marking
TSV6390ILT	-40 °C to 125 °C	SOT23-6	Tape and reel	K109
TSV6390ICT		SC70-6		K19
TSV6390AILT		SOT23-6		K142
TSV6390AICT		SC70-6		K42
TSV6391ILT		SOT23-5		K108
TSV6391ICT		SC70-5		K20
TSV6391AILT		SOT23-5		K141
TSV6391AICT		SC70-5		K41

7 Revision history

Table 14: Document revision history

Date	Revision	Changes
09-Mar-2010	1	Initial release.
04-Dec-2015	2	Updated layout Section 2: "Electrical characteristics": replaced DV_{io} by $\Delta V_{io}/\Delta T$ and updated V_{OH} values. In <i>Table</i> 7, updated t _{off} conditions. Electrical characteristic curves: updated Y-axes of Figure 7 and Figure 8. Shutdown function (TSV6390): updated X-axes of Figure 17 and Figure 18. Table 10: replaced ° with θ

IMPORTANT NOTICE – PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST's terms and conditions of sale in place at the time of order acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers' products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2015 STMicroelectronics - All rights reserved

