

TSV629x, TSV629xA

Micropower, wide bandwidth CMOS operational amplifiers

Features

- Rail-to-rail input and output
- Low power consumption: 29 µA typ, 36 µA max
- Low supply voltage: 1.5 5.5 V
- High gain bandwidth product: 1.3 MHz typ
- Stable when used in gain configuration
- Low power shutdown mode: 5 nA typ
- Good accuracy: 800 µV max (A version)
- Low input bias current: 1 pA typ
- Micropackages: MiniSO-8, SOT23-8, MiniSO-10, TSSOP14, TSSOP16
- EMI hardened operational amplifiers
- High tolerance to ESD: 4 kV HBM
- Extended temperature range: -40 to +125° C

Applications

- Battery-powered applications
- Portable devices
- Signal conditioning
- Active filtering
- Medical instrumentation

Description

The TSV6292, TSV6293, TSV6294 and TSV6295 dual and quad operational amplifiers offer a high bandwidth of 1.3 MHz while consuming only 29 μ A. They must be used in a gain configuration (equal or above +4 or -3).

The TSV629x series features low voltage, low power operation and rail-to-rail input and output. The devices also offer an ultra-low input bias current and low input offset voltage.

The TSV6293 (dual) and TSV6295 (quad) have two shutdown pins for reduced power consumption.

These features make the TSV629x family ideal for sensor interfaces, battery supplied and portable applications, as well as active filtering.

Table 1.Device summary

	Dual version		Quad version		
Reference	Without standby	With standby	Without standby	With standby	
TSV629x	TSV6292	TSV6293	TSV6294	TSV6295	
TSV629xA	TSV6292A	TSV6293A	TSV6294A	TSV6295A	

Contents

1	Packa	age pin connections	. 3				
2	Absol	lute maximum ratings and operating conditions	. 4				
3	Electrical characteristics						
4	Applie	cation information	13				
	4.1	Operating voltages	13				
	4.2	Rail-to-rail input	13				
	4.3	Rail-to-rail output	13				
	4.4	Optimization of DC and AC parameters	14				
	4.5	Shutdown function (TSV6293, TSV6295)	14				
	4.6	Driving resistive and capacitive loads	15				
	4.7	PCB layouts	15				
	4.8	Macromodel	15				
5	Packa	age information	16				
	5.1	SOT23-8 package information	17				
	5.2	SO-8 package information	18				
	5.3	MiniSO-8 package information	19				
	5.4	MiniSO-10 package information	20				
	5.5	TSSOP14 package information	21				
	5.6	TSSOP16 package information	22				
6	Order	ing information	23				
7	Revis	ion history	24				

1

Package pin connections

Figure 1. Pin connections for each package (top view)

2 Absolute maximum ratings and operating conditions

Symbol	Parameter	Value	Unit
V _{CC}	Supply voltage ⁽¹⁾	6	V
V _{id}	Differential input voltage ⁽²⁾	±V _{CC}	V
V _{in}	Input voltage ⁽³⁾	V _{CC-} - 0.2 to V _{CC+} + 0.2	V
l _{in}	Input current ⁽⁴⁾	10	mA
SHDN	Shutdown voltage ⁽³⁾	V _{CC-} - 0.2 to V _{CC+} + 0.2	V
T _{stg}	Storage temperature	-65 to +150	°C
R _{thja}	Thermal resistance junction to ambient ⁽⁵⁾⁽⁶⁾ SOT23-8 MiniSO-8 SO-8 Mini-SO10 TSSOP14 TSSOP16	105 190 125 113 100 95	°C/W
Тj	Maximum junction temperature	150	°C
	HBM: human body model ⁽⁷⁾	4	kV
ESD	MM: machine model ⁽⁸⁾	200	V
	CDM: charged device model ⁽⁹⁾	1.5	kV
	Latch-up immunity	200	mA

Table 2. Absolute maximum ratings (AMR)

1. All voltage values, except differential voltages are with respect to network ground terminal.

- 2. Differential voltages are the non-inverting input terminal with respect to the inverting input terminal.
- 3. V_{CC} - V_{in} must not exceed 6 V, V_{in} must not exceed 6V.
- 4. Input current must be limited by a resistor in series with the inputs.
- 5. Short-circuits can cause excessive heating and destructive dissipation.
- 6. Rth are typical values.
- 7. Human body model: 100 pF discharged through a 1.5 k Ω resistor between two pins of the device, done for all couples of pin combinations with other pins floating.
- 8. Machine model: a 200 pF capacitor is charged to the specified voltage, then discharged directly between two pins of the device with no external series resistor (internal resistor < 5 Ω), done for all couples of pin combinations with other pins floating.
- 9. Charged device model: all pins plus package are charged together to the specified voltage and then discharged directly to ground.

Table 3.Operating conditions

Symbol	Parameter	Value	Unit
V _{CC}	Supply voltage	1.5 to 5.5	V
V _{icm}	Common mode input voltage range	$V_{CC-} - 0.1$ to $V_{CC+} + 0.1$	V
T _{oper}	Operating free air temperature range	-40 to +125	°C

3 Electrical characteristics

Table 4.Electrical characteristics at $V_{CC+} = +1.8 V$ with $V_{CC-} = 0 V$, $V_{icm} = V_{CC}/2$, $T_{amb} = 25^{\circ} C$,and R_L connected to $V_{CC}/2$ (unless otherwise specified)

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
DC perfor	rmance					
V	Offect voltage	TSV629x TSV629xA TSV6293AIST - MiniSO-10			4 0.8 1	mV
V _{io}	Offset voltage	TSV629x -T _{min} < T _{op} < T _{max} TSV629xA - T _{min} < T _{op} < T _{max} TSV6293AIST - T _{min} < T _{op} < T _{max}			6 2 2.2	
DVio	Input offset voltage drift			2		μV/°C
	Input offset current			1	10 ⁽¹⁾	pА
I _{io}	$(V_{out} = V_{CC}/2)$	T _{min} < T _{op} < T _{max}		1	100	pА
	Input bias current			1	10 ⁽¹⁾	pА
I _{ib}	$(V_{out} = V_{CC}/2)$	T _{min} < T _{op} < T _{max}		1	100	pА
CMR	Common mode rejection	0 V to 1.8 V, $V_{out} = 0.9 V$	53	74		dB
CIMIN	ratio 20 log ($\Delta V_{ic}/\Delta V_{io}$)	T _{min} < T _{op} < T _{max}	51			dB
٨	Large signal voltage gain	R_{L} = 10 kΩ, V_{out} = 0.5 V to 1.3 V	78	95		dB
A _{vd}	Large signal voltage gain	T _{min} < T _{op} < T _{max}	73			dB
V _{OH}	High level output voltage	$R_{L} = 10 \text{ k}\Omega$ $T_{min} < T_{op} < T_{max}$	35 50	5		mV
V _{OL}	Low level output voltage	$R_L = 10 \text{ k}\Omega$ $T_{min} < T_{op} < T_{max}$		4	35 50	mV
		V _{out} = 1.8 V	6	12		
	Isink	T _{min} < T _{op} < T _{max}	4			mA
l _{out}	lagurag	V _{out} = 0 V	6	10		
	Isource	$T_{min} < T_{op} < T_{max}$	4			
	Supply autrant (par aparator)	No load, V _{out} =V _{CC} /2		25	31	μA
I _{CC}	Supply current (per operator)	T _{min} < T _{op} < T _{max}			33	μA
AC perfor	mance					
GBP	Gain bandwidth product	$R_L = 10 \text{ k}\Omega, C_L = 100 \text{ pF}$		1.1		MHz
Gain	Minimum gain for stability	Phase margin = 60°, $R_f = 10k\Omega$, $R_L = 10 k\Omega$, $C_L = 20 \text{ pF}$, $T_{op} = 25^{\circ} \text{ C}$		+4 -3		V/V
SR	Slew rate	$R_L = 10 \text{ kΩ}, C_L = 100 \text{ pF}, V_{out} = 0.5 \text{ V}$ to 1.3V		0.33		V/µs

1. Guaranteed by design.

Table 5.	Chataewin characteris	$105 V_{CC} = 1.6 V (15V0293, 15V02)$,			
Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
DC perfor	rmance					
		SHDN = V _{CC-}		2.5	50	nA
I _{CC}	Supply current in shutdown mode (all operators)	$T_{min} < T_{op} < 85^{\circ} C$			200	nA
		$T_{min} < T_{op} < 125^{\circ} C$			1.5	μA
t _{on}	Amplifier turn-on time	R_L = 5 k, Vout = V_{CC^-} to V_{CC^-} + 0.2 V		200		ns
t _{off}	Amplifier turn-off time	R_L = 5 k, Vout = V_{CC+} - 0.5 V to V_{CC+} - 0.7 V		20		ns
V _{IH}	SHDN logic high		1.35			V
V _{IL}	SHDN logic low				0.6	V
I _{IH}	SHDN current high	SHDN = V _{CC+}		10		pА
Ι _{ΙL}	SHDN current low	SHDN = V _{CC-}		10		pА
	Output leakage in shutdown	SHDN = V _{CC-}		50		pА
I _{OLeak}	mode	$T_{min} < T_{op} < 125^{\circ} C$		1		nA

Table 5. Shutdown characteristics $V_{CC} = 1.8 V$ (TSV6293, TSV6295)

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
DC perfo	rmance			1		
		TSV629x TSV629xA TSV6293AIST - MiniSO-10			4 0.8 1	
V _{io}	Offset voltage	$TSV629x - T_{min} < T_{op} < T_{max}$ TSV629xA - T_{min} < T_{op} < T_{max} TSV6293AIST - T_{min} < T_{op} < T_{max}			6 2 2.2	mV
DVio	Input offset voltage drift			2		μV/°C
	Input offset current			1	10 ⁽¹⁾	pА
I _{io}		$T_{min} < T_{op} < T_{max}$		1	100	pА
				1	10 ⁽¹⁾	pА
I _{ib}	Input bias current	T _{min} < T _{op} < T _{max}		1	100	pА
CMP	Common mode rejection	0 V to 3.3 V, V _{out} = 1.65 V	57	79		dB
CMR	ratio 20 log ($\Delta V_{ic}/\Delta V_{io}$)	T _{min} < T _{op} < T _{max}	53			dB
٨		R_L =10 k Ω , V_{out} = 0.5 V to 2.8 V	81	98		dB
A _{vd}	Large signal voltage gain	$T_{min} < T_{op} < T_{max}$	76			dB
V _{OH}	High level output voltage	$R_L = 10 k\Omega$ $T_{min} < T_{op} < T_{max}$	35 50	5		mV
V _{OL}	Low level output voltage	$\begin{aligned} R_L &= 10 \text{ k}\Omega \\ T_{\text{min}} &< T_{\text{op}} < T_{\text{max}} \end{aligned}$		4	35 50	mV
	leint.	$V_o = 5 V$	23	45		
	Isink	T _{min} < T _{op} < T _{max}	20			mA
I _{out}	leeuwee	$V_0 = 0 V$	23	38		
	Isource	$T_{min} < T_{op} < T_{max}$	20			mA
1	Supply ourrant (per operator)	No load, V _{out} = 2.5 V		26	33	μA
I _{CC}	Supply current (per operator)	T _{min} < T _{op} < T _{max}			35	μA
AC perfo	rmance					
GBP	Gain bandwidth product	$R_{L} = 10 \text{ k}\Omega, C_{L} = 100 \text{ pF}$		1.2		MHz
Gain	Minimum gain for stability	Phase margin = 60°, $R_f = 10k\Omega$, $R_L = 10 k\Omega$, $C_L = 20 pF$, $T_{op} = 25^{\circ} C$		+4 -3		V/V
SR	Slew rate	R_L = 10 kΩ, C_L = 100 pF, V_{out} = 0.5 V to 2.8 V		0.4		V/µs

Table 6. $V_{CC+} = +3.3 \text{ V}$, $V_{CC-} = 0 \text{ V}$, $V_{icm} = V_{CC}/2$, $T_{amb} = 25^{\circ} \text{ C}$, R_L connected to $V_{CC}/2$ (unless otherwise specified)

1. Guaranteed by design.

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
DC perfo	rmance	L				
M	Offect veltage	TSV629x TSV629xA TSV6293AIST - MiniSO-10			4 0.8 1	m)/
V _{io}	Offset voltage	$\begin{split} TSV629x &- T_{\min} < T_{op} < T_{\max} \\ TSV629xA &- T_{\min} < T_{op} < T_{\max} \\ TSV629xA &- T_{\min} < T_{op} < T_{\max} \end{split}$			6 2 2.2	mV
DVio	Input offset voltage drift			2		μV/°C
I.	Input offset current			1	10 ⁽¹⁾	pА
l _{io}	input onset current	T _{min} < T _{op} < T _{max}		1	100	pА
la.	Input bias current			1	10 ⁽¹⁾	pА
l _{ib}	input bias current	T _{min} < T _{op} < T _{max}		1	100	pА
CMR	Common mode rejection	0 V to 5 V, $V_{out} = 2.5 V$	60	80		dB
OWIT	ratio 20 log ($\Delta V_{ic}/\Delta V_{io}$)	T _{min} < T _{op} < T _{max}	55			
Δ.	Large signal voltage gain	R_L =10 k Ω , V_{out} = 0.5 V to 4.5 V	85	98		dB
A _{vd}	Large signal voltage gain	T _{min} < T _{op} < T _{max}	80			
SVR	Supply voltage rejection ratio	V _{CC} = 1.8 to 5 V	75	102		dB
0011	20 log ($\Delta V_{CC} / \Delta V_{io}$)	T _{min} < T _{op} < T _{max}	73			
		V_{RF} = 100 m V_{rms} , f = 400 MHz		61		
EMIRR	EMI rejection ratio	V_{RF} = 100 m V_{rms} , f = 900 MHz		85		dB
	$EMIRR = -20 \log \left(V_{RFpeak} / \Delta V_{io} \right)$	V _{RF} = 100 mV _{rms} , f = 1800 MHz		92		uВ
		V_{RF} = 100 m V_{rms} , f = 2400 MHz		83		
V _{OH}	High level output voltage	$R_L = 10 \ k\Omega$	35	7		mV
V OH	nigh level output voltage	T _{min} < T _{op} < T _{max}	50			ni v
M.	Low level output voltage	$R_L = 10 \ k\Omega$		6	35	mV
V _{OL}	Low level output voltage	T _{min} < T _{op} < T _{max}			50	niv
	1	$V_0 = 5 V$	40	69		mA
Ι.	l _{sink}	T _{min} < T _{op} < T _{max}	35			
I _{out}		$V_0 = 0 V$	40	74		mA
	Isource	T _{min} < T _{op} < T _{max}	35			IIIA
	Supply current (per operator)	No load, V _{out} = 2.5 V		29	36	μA
I _{CC}	Supply current (per operator)	T _{min} < T _{op} < T _{max}			38	μA

Table 7. $V_{CC+} = +5 V$, $V_{CC-} = 0 V$, $V_{icm} = V_{CC}/2$, $T_{amb} = 25^{\circ} C$, R_L connected to $V_{CC}/2$ (unless otherwise specified)

Table 7. $V_{CC+} = +5 V$, $V_{CC-} = 0 V$, $V_{icm} = V_{CC}/2$, $T_{amb} = 25^{\circ} C$, R_L connected to $V_{CC}/2$
(unless otherwise specified) (continued)

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
AC perfo	rmance					
GBP	Gain bandwidth product	$R_{L} = 10 \text{ k}\Omega, C_{L} = 100 \text{ pF}$		1.3		MHz
Gain	Minimum gain for stability	Phase margin = 60°, $R_f = 10k\Omega$ $R_L = 10 k\Omega$ $C_L = 20 pF$, $T_{op} = 25^{\circ} C$		+4 -3		V/V
SR	Slew rate	R_L = 10 kΩ, C_L = 100 pF, V_{out} = 0.5 V to 4.5 V		0.5		V/µs
e _n	Equivalent input noise voltage	f = 1 kHz		77		$\frac{nV}{\sqrt{Hz}}$
THD+N	Total harmonic distortion + noise			0.03		%

1. Guaranteed by design.

Table 8.Shutdown characteristics at V_{CC} = 5 V (TSV6293, TSV6295)

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
DC perfo	rmance					
-		SHDN = V _{IL}		5	50	nA
I _{CC}	Supply current in shutdown mode (all operators)	T _{min} < T _{op} < 85° C			200	nA
		T _{min} < T _{op} < 125° C			1.5	μΑ
t _{on}	Amplifier turn-on time	$R_L = 5 \text{ k}\Omega, V_{out} = V_{CC-} \text{ to } V_{CC-} + 0.2 \text{ V}$		200		ns
t _{off}	Amplifier turn-off time	$R_L = 5 k\Omega$, $V_{out} = V_{CC+} - 0.5 V$ to $V_{CC+} - 0.7 V$		20		ns
V _{IH}	SHDN logic high		2			V
V _{IL}	SHDN logic low				0.8	V
I _{IH}	SHDN current high	SHDN = V _{CC+}		10		pА
۱ _{IL}	SHDN current low	SHDN = V _{CC-}		10		pА
	Output leakage in shutdown	SHDN = V _{CC-}		50		pА
lOLeak	mode	T _{min} < T _{op} < 125° C		1		nA

Figure 4. Output current vs. output voltage at Figure 5. $V_{CC} = 5 V$

Closed loop frequency response,

gain = -3, V_{CC} = 5 V

Figure 7.

Figure 6. Closed loop frequency response, gain = -3, V_{CC} = 1.5 V

Figure 9. Negative slew rate vs. supply voltage in closed loop

Figure 10. Slew rate vs. supply voltage in open Figure 11. Slew rate timing in open loop loop

THD + N (%)

Figure 14. Distortion + noise vs. output voltage at V_{CC} = 1.8 V

Figure 16. Distortion + noise vs. frequency at Figure 17. Distortion + noise vs. frequency at $V_{CC} = 1.8 V$ $V_{CC} = 5 V$

Figure 18. EMIRR vs. frequency at Vcc = 5 V, T = 25° C

4 Application information

4.1 Operating voltages

The TSV629x can operate from 1.5 to 5.5 V. The devices' parameters are fully specified for 1.8, 3.3 and 5 V power supplies. However, the parameters are very stable in the full V_{CC} range and several characterization curves show the TSV629x characteristics at 1.5 V. Additionally, the main specifications are guaranteed in extended temperature ranges from -40° C to +125° C.

4.2 Rail-to-rail input

The TSV629x are built with two complementary PMOS and NMOS input differential pairs. The devices have a rail-to-rail input, and the input common mode range is extended from V_{CC-} - 0.1 V to V_{CC+} + 0.1 V. The transition between the two pairs appears at V_{CC+} - 0.7 V. In the transition region, the performance of CMR, SVR, V_{io} (*Figure 19* and *Figure 20*) and THD is slightly degraded.

The devices are guaranteed without phase reversal.

4.3 Rail-to-rail output

The operational amplifiers' output level can go close to the rails: 35 mV maximum above and below the rail when connected to a 10 k Ω resistive load to V_{CC}/2.

4.4 Optimization of DC and AC parameters

These devices use an innovative approach to reduce the spread of the main DC and AC parameters. An internal adjustment achieves a very narrow spread of current consumption (29 μ A typical, min/max at ±17%). Parameters linked to the current consumption value, such as GBP, SR and A_{vd} benefit from this narrow dispersion.

4.5 Shutdown function (TSV6293, TSV6295)

The operational amplifier is enabled when the \overline{SHDN} pin is pulled high. To disable the amplifier, the \overline{SHDN} must be pulled down to V_{CC-} . When in shutdown mode, the amplifier output is in a high impedance state. The \overline{SHDN} pin must never be left floating but tied to V_{CC+} or V_{CC-} . The turn-on and turn-off times are calculated for an output variation of ±200 mV (*Figure 21* and *Figure 22* show the test configurations).

Figure 21. Test configuration for turn-on time Figure 22. Test configuration for turn-off time (Vout pulled down) (Vout pulled down)

Figure 24. Turn-off time, $V_{CC} = 5 V$, Vout pulled down, $T = 25^{\circ} C$

4.6 Driving resistive and capacitive loads

These products are micropower, low-voltage operational amplifiers optimized to drive rather large resistive loads, above 5 k Ω For lower resistive loads, the THD level may significantly increase.

The amplifiers have a relatively low internal compensation capacitor, making them very fast while consuming very little. They are ideal when used in a non-inverting configuration or in an inverting configuration in the following conditions:

- IGainl \geq 3 in an inverting configuration (C_L = 20 pF, R_L = 100 k Ω) or Igainl \geq 10 (C_L = 100 pF, R_L = 100 k Ω)
- Gain \geq +4 in a non-inverting configuration (C_L = 20 pF, R_L = 100k Ω) or gain \geq +11 (C_L = 100 pF, R_L= 100 k Ω)

As these operational amplifiers are not unity gain stable, the TSV62x (29 μ A, 420 kHz) or TSV63x (60 μ A, 880 kHz) – which are unity gain stable – might be a solution for your application.

Part #	lcc (μA) at 5V	GBP (MHz)	SR (V/µs)	Minimum gain for stability (C _{Load} = 100 pF)
TSV622-3-4-5	29	0.42	0.14	1
TSV6292-3-4-5	29	1.3	0.5	+11
TSV632-3-4-5	60	0.88	0.34	1
TSV6392-3-4-5	60	2.4	1.1	+11

Table 9. Related products

4.7 PCB layouts

For correct operation, it is advised to add 10 nF decoupling capacitors as close as possible to the power supply pins.

4.8 Macromodel

Two accurate macromodels (with or without shutdown feature) of the TSV629x are available on STMicroelectronics' web site at www.st.com. This model is a trade-off between accuracy and complexity (that is, time simulation) of the TSV629x operational amplifiers. It emulates the nominal performances of a typical device within the specified operating conditions mentioned in the datasheet. It also helps to validate a design approach and to select the right operational amplifier, but it does not replace on-board measurements.

5 Package information

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK[®] packages, depending on their level of environmental compliance. ECOPACK[®] specifications, grade definitions and product status are available at: *www.st.com*. ECOPACK[®] is an ST trademark.

5.1 SOT23-8 package information

Figure 25. SOT23-8 package mechanical drawing

Table 10.	SOT23-8 package mechanical data
-----------	---------------------------------

	Dimensions						
Ref.		Millimeters			Inches		
	Min.	Тур.	Max.	Min.	Тур.	Max.	
А			1.45			0.057	
A1			0.15			0.006	
A2	0.90		1.30	0.035		0.051	
b	0.22		0.38	0.009		0.015	
С	0.08		0.22	0.003		0.009	
D	2.80		3	0.110		0.118	
Е	2.60		3	0.102		0.118	
E1	1.50		1.75	0.059		0.069	
е		0.65			0.026		
e1		1.95			0.077		
L	0.30		0.60	0.012		0.024	
<	0°		8°				

5.2 SO-8 package information

			Dime	nsions		
Ref.	Millimeters			Inches		
	Min.	Тур.	Max.	Min.	Тур.	Max.
А			1.75			0.069
A1	0.10		0.25	0.004		0.010
A2	1.25			0.049		
b	0.28		0.48	0.011		0.019
С	0.17		0.23	0.007		0.010
D	4.80	4.90	5.00	0.189	0.193	0.197
Е	5.80	6.00	6.20	0.228	0.236	0.244
E1	3.80	3.90	4.00	0.150	0.154	0.157
е		1.27			0.050	
h	0.25		0.50	0.010		0.020
L	0.40		1.27	0.016		0.050
L1		1.04			0.040	
k	0		8°	1°		8°
CCC			0.10			0.004

5.3 MiniSO-8 package information

Figure 27. MiniSO-8 package mechanical drawing

	Dimensions						
Ref.		Millimeters			Inches		
	Min.	Тур.	Max.	Min.	Тур.	Max.	
А			1.1			0.043	
A1	0		0.15	0		0.006	
A2	0.75	0.85	0.95	0.030	0.033	0.037	
b	0.22		0.40	0.009		0.016	
С	0.08		0.23	0.003		0.009	
D	2.80	3.00	3.20	0.11	0.118	0.126	
Е	4.65	4.90	5.15	0.183	0.193	0.203	
E1	2.80	3.00	3.10	0.11	0.118	0.122	
е		0.65			0.026		
L	0.40	0.60	0.80	0.016	0.024	0.031	
L1		0.95			0.037		
L2		0.25			0.010		
k	0°		8°	0°		8°	
CCC			0.10			0.004	

5.4 MiniSO-10 package information

Figure 28. MiniSO-10 package mechanical drawing

Table 13.	MiniSO-10	package	mechanical data
		paonago	In our date

			Dime	nsions		
Ref.		Millimeters			Inches	
	Min.	Тур.	Max.	Min.	Тур.	Max.
А			1.10			0.043
A1	0.05	0.10	0.15	0.002	0.004	0.006
A2	0.78	0.86	0.94	0.031	0.034	0.037
b	0.25	0.33	0.40	0.010	0.013	0.016
с	0.15	0.23	0.30	0.006	0.009	0.012
D	2.90	3.00	3.10	0.114	0.118	0.122
E	4.75	4.90	5.05	0.187	0.193	0.199
E1	2.90	3.00	3.10	0.114	0.118	0.122
е		0.50			0.020	
L	0.40	0.55	0.70	0.016	0.022	0.028
L1		0.95			0.037	
k	0°	3°	6°	0°	3°	6°
aaa			0.10			0.004

5.5 TSSOP14 package information

Figure 29. TSSOP14 package mechanical drawing

Table 14. TSSOP14 package mechanical data

		5	Dime	nsions		
Ref.		Millimeters			Inches	
	Min.	Тур.	Max.	Min.	Тур.	Max.
А			1.20			0.047
A1	0.05		0.15	0.002	0.004	0.006
A2	0.80	1.00	1.05	0.031	0.039	0.041
b	0.19		0.30	0.007		0.012
с	0.09		0.20	0.004		0.0089
D	4.90	5.00	5.10	0.193	0.197	0.201
E	6.20	6.40	6.60	0.244	0.252	0.260
E1	4.30	4.40	4.50	0.169	0.173	0.176
е		0.65			0.0256	
L	0.45	0.60	0.75	0.018	0.024	0.030
L1		1.00			0.039	
k	0°		8°	0°		8°
aaa			0.10			0.004

5.6 TSSOP16 package information

Figure 30. TSSOP16 package mechanical drawing

Table 15. TSSOP16 package mechanical data

			Dime	nsions		
Ref.		Millimeters			Inches	
	Min.	Тур.	Max.	Min.	Тур.	Max.
А			1.20			0.047
A1	0.05		0.15	0.002		0.006
A2	0.80	1.00	1.05	0.031	0.039	0.041
b	0.19		0.30	0.007		0.012
С	0.09		0.20	0.004		0.008
D	4.90	5.00	5.10	0.193	0.197	0.201
Е	6.20	6.40	6.60	0.244	0.252	0.260
E1	4.30	4.40	4.50	0.169	0.173	0.177
е		0.65			0.0256	
k	0°		8°	0°		8 °
L	0.45	0.60	0.75	0.018	0.024	0.030
L1		1.00			0.039	
aaa			0.10			0.004

6 Ordering information

Table 1	16.	Order	codes
---------	-----	-------	-------

Part number	Temperature range	Package	Packing	Marking
TSV6292ID/DT		SO-8	Tube and tape & reel	V6292I
TSV6292AID/DT		30-8	Tube and tape & reer	V6292AI
TSV6292IST		MiniSO-8		K114
TSV6292AIST		WIITIISO-6	Tape & reel	K144
TSV6292ILT	-40° C to +125° C	SOT23-8	Tape & reel	K114
TSV6293IST		Mini00 10	Tape & reel	K134
TSV6293AIST		MiniSO-10		K135
TSV6294IPT		T000D 14		V6294
TSV6294AIPT		TSSOP-14	Tape & reel	V6294A
TSV6295IPT	1	T000D 10		V6295
TSV6295AIPT		TSSOP-16	Tape & reel	V6295A

7 Revision history

Table 17.Document revision history

Date	Revision	Changes
14-Jan-2010	1	Initial release.
01-Mar-2010	2	Corrected error in <i>Table 16: Order codes</i> : TSV6295 offered in TSSOP-16 package.

Please Read Carefully:

Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice.

All ST products are sold pursuant to ST's terms and conditions of sale.

Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein.

UNLESS OTHERWISE SET FORTH IN ST'S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

UNLESS EXPRESSLY APPROVED IN WRITING BY AN AUTHORIZED ST REPRESENTATIVE, ST PRODUCTS ARE NOT RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY, DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER'S OWN RISK.

Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST.

ST and the ST logo are trademarks or registered trademarks of ST in various countries.

Information in this document supersedes and replaces all information previously supplied.

The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.

© 2010 STMicroelectronics - All rights reserved

STMicroelectronics group of companies

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan -Malaysia - Malta - Morocco - Philippines - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America

www.st.com

Doc ID 16882 Rev 2