

TS514 / TS514A

Precision Quad Operational Amplifier

- Low input offset voltage: 500µV max.
- Low power consumption.
- Short circuit protection.
- Low distortion, low noise.
- High gain-bandwidth product.
- High channel separation.
- ESD protection 2kV.
- Macromodel included in this specification.

Description

The TS514 is a high-performance quad operational amplifier with frequency and phase compensation built into the chip. The internal phase compensation allows stable operation as a voltage follower in spite of its high gain-bandwidth product.

The circuit presents very stable electrical characteristics over the entire supply voltage range, and is particularly intended for professional and telecom applications (active filter, etc.).

Pin Connections (top view)

Order Codes

Part Number	Temperature Range	Package	Packing	Marking	
TS514IN		DIP14	Tube	514IN	
TS514AIN		DIF 14	Tube	514AIN	
TS514ID/IDT	40 . 105%	60.14	T 1	514l	
TS514AID/AIDT	– -40, + 125°C	SO-14	Tube or Tape & Reel	514AI	
TS514IYD/IYDT		SO14 (automotive grade		514IY	
TS514AIYD/AIYDT		level)	Tape & neer	514AIY	

1 Absolute Maximum Ratings

Symbol	Parameter	Value	Unit
V _{CC}	Supply Voltage	±18	V
V _i	Input Voltage Positive Negative	+V _{CC} -Vcc - 0.5	v
V _{id} ⁽¹⁾	Differential Input Voltage	±(V _{CC} - 1)	V
p _{tot}	Power Dissipation at $T_{amb} = 70^{\circ}C^{(2)}$	400	mW
T _{stg}	Storage Temperature Range	-65 to +150	°C
R _{thja}	Thermal Resistance Junction to Ambient SO14 DIP14	103 66	°C/W
	HBM: Human Body Model ⁽³⁾	2	kV
ESD	MM: Machine Model ⁽⁴⁾	<200	V
	CDM: Charged Device Model	1.5	kV

Table 1.	Key parameters and their absolute maximum ratings
	noy parametere and more abounded maximum radinge

1. Differential voltages are with respect to the midpoint between Vcc+ and Vcc-.

2. Power dissipation must be considered to ensure maximum junction temperature (Tj) is not exceeded.

3. Human body model, 100pF discharged through a $1.5k\Omega$ resistor into pin of device.

4. Machine model ESD, a 200pF cap is charged to the specified voltage, then discharged directly into the IC with no external series resistor (internal resistor < 5Ω), into pin to pin of device.

Table 2. Operating conditions	Table 2.	Operating conditions	s
-------------------------------	----------	----------------------	---

Symbol	Parameter	Min	Max	Unit
V_{CC}^+	Supply voltage	+3	+15	V
V _{CC} ⁻	Supply voltage	-3	-15	v
T _{oper}	Operating Free Air Temperature Range	-40	+125	°C

2 Schematic Diagram

Electrical Characteristics 3

Table 3.	V _{CC} = ±15V, T _{amb} = 25°C (unless otherwise specified)				
Symbol	Parameter	Min.	Тур.	Max.	Unit
I _{cc}	Supply Current		1.4	2.4	mA
I _{ib}	Input Bias Current – at 25°C – at T _{min} ≤T _{op} ≤T _{max}		50	150 300	nA
R _i	Input Resistance, f = 1kHz		1		MΩ
V _{io}	Input Offset Voltage - at 25°C: TS514 TS514A - at $T_{min} \leq T_{op} \leq T_{max}$ TS514 TS514A		0.5	2.5 0.5 4 1.5	mV
ΔV_{io}	Input Offset Voltage Drift at T _{min} ≤T _{op} ≤T _{max}		5		μV/°C
I _{io}	Input Offset Current at 25°C at T _{min} ≤T _{op} ≤T _{max}		5	20 40	nA
ΔI_{i0}	Input Offset Current Drift T _{min} ≤T _{op} ≤T _{max}		0.08		<u>nA</u> ° C
I _{os}	Output Short Circuit Current		23		mA
A _{vd}	Large Signal Voltage Gain, $R_L = 2k\Omega$ $V_{cc} = \pm 15V$ $V_{cc} = \pm 4V$	90	100 95		dB
GBP	Gain-bandwidth Product, f = 100kHz	1.8	3		MHz
e _n	Equivalent Input Noise Voltage, f = 1kHz Rs = 50Ω Rs = $1k\Omega$ Rs = $10k\Omega$		8 10 18	15	<u>nV</u> √Hz
THD	Total Harmonic Distortion $A_v = 20$ dB, $R_L = 2k\Omega$, $V_o = 2V_{pp}$, f = 1kHz		0.03	0.1	%
±V _{opp}	Output Voltage Swing, $R_L = 2k\Omega$ $V_{cc} = \pm 15V$ $V_{cc} = \pm 4V$	±13	±3		V
V _{opp}	Large Signal Voltage Swing, $R_L = 10k\Omega$, f = 10kHz		28		V _{pp}
SR	Slew Rate, unity gain, $R_L = 2k\Omega$	0.8	1.5		V/µs
CMR	Common Mode Rejection Ratio, $V_{ic} = 10V$	90			dB
SVR	Supply Voltage Rejection Ratio, $dV_{ic} = 10V$, f = 100Hz	90			dB

v DEOC / lifiad) ~ 4 C) / T . .

dB

120

 V_{01}/V_{02}

Channel Separation, f = 1kHz

4 Macromodels

4.1 Important note concerning this macromodel

Please consider following remarks before using this macromodel.

- All models are a trade-off between accuracy and complexity (i.e. simulation time).
- Macromodels are not a substitute to breadboarding; rather, they confirm the validity of a design approach and help to select surrounding component values.
- A macromodel emulates the NOMINAL performance of a TYPICAL device within SPECIFIED OPERATING CONDITIONS (i.e. temperature, supply voltage, etc.). Thus the macromodel is often not as exhaustive as the datasheet, its goal is to illustrate the main parameters of the product.
- Data issued from macromodels used outside of its specified conditions (Vcc, Temperature, etc.) or even worse: outside of the device operating conditions (Vcc, Vicm, etc.) are not reliable in any way.

In *Section 4.2*, the electrical characteristics resulting from the use of this macromodel are presented.

4.2 Electrical characteristics from macromodelization

Symbol	Conditions	Value	Unit
V _{io}		0	mV
A _{vd}	$R_L = 2k\Omega$	94	V/mV
I _{cc}	No load, per operator	325	μA
V _{icm}		-13.5 to 13.5	V
V _{OH}	$R_L = 2k\Omega$	+13	V
V _{OL}	$R_L = 2k\Omega$	-13	V
I _{sink}	V _o = 0V	24	mA
I _{source}	V _o = 0V	24	mA
GBP	$R_L = 2k\Omega$, $C_L = 100pF$	3	MHz
SR	$R_L = 2k\Omega$, $C_L = 100pF$	1.4	V/µs
Øm	$R_L = 2k\Omega$, $C_L = 100pF$	55	Degrees

Table 4.Electrical characteristics resulting from macromodel simulation at $V_{cc} = \pm 15V$,
 $T_{amb} = 25^{\circ}C$ (unless otherwise specified)

4.3 Macromodel code

```
** Standard Linear Ics Macromodels, 1993.
** CONNECTIONS :
* 1 INVERTING INPUT
* 2 NON-INVERTING INPUT
* 3 OUTPUT
* 4 POSITIVE POWER SUPPLY
* 5 NEGATIVE POWER SUPPLY
.SUBCKT TS514 1 3 2 4 5 (analog)
.MODEL MDTH D IS=1E-8 KF=6.647807E-16 CJO=10F
* INPUT STAGE
CIP 2 5 1.00000E-12
CIN 1 5 1.00000E-12
EIP 10 5 2 5 1
EIN 16 5 1 5 1
RIP 10 11 1.300000E+01
RIN 15 16 1.300000E+01
RIS 11 15 6.437882E+01
DIP 11 12 MDTH 400E-12
DIN 15 14 MDTH 400E-12
VOFP 12 13 DC 0
VOFN 13 14 DC 0
IPOL 13 5 2.000000E-05
CPS 11 15 9.75E-10
DINN 17 13 MDTH 400E-12
VIN 17 5 0.000000e+00
DINR 15 18 MDTH 400E-12
VIP 4 18 1.500000E+00
FCP 4 5 VOFP 1.525000E+01
FCN 5 4 VOFN 1.525000E+01
FIBP 2 5 VOFN 5.00000E-03
FIBN 5 1 VOFP 5.000000E-03
* AMPLIFYING STAGE
FIP 5 19 VOFP 1.125000E+03
FIN 5 19 VOFN 1.125000E+03
RG1 19 5 6.512062E+05
RG2 19 4 6.512062E+05
CC 19 29 1.500000E-08
HZTP 30 29 VOFP 8.944787E+02
HZTN 5 30 VOFN 8.944787E+02
DOPM 19 22 MDTH 400E-12
DONM 21 19 MDTH 400E-12
HOPM 22 28 VOUT 6.521739E+03
VIPM 28 4 1.500000E+02
HONM 21 27 VOUT 6.521739E+03
VINM 5 27 1.500000E+02
GCOMP 5 4 4 5 7.485029E-04
RPM1 5 80 1E+09
RPM2 4 80 1E+09
```


5 Package Mechanical Data

In order to meet environmental requirements, ST offers these devices in ECOPACK[®] packages. These packages have a Lead-free second level interconnect. The category of second level interconnect is marked on the package and on the inner box label, in compliance with JEDEC Standard JESD97. The maximum ratings related to soldering conditions are also marked on the inner box label. ECOPACK is an ST trademark. ECOPACK specifications are available at: <u>www.st.com</u>.

5.1 DIP14 Package

5.2 SO-14 Package

SO-14 MECHANICAL DATA						
DIM.		mm.			inch	
DIN.	MIN.	TYP	MAX.	MIN.	TYP.	MAX.
А			1.75			0.068
a1	0.1		0.2	0.003		0.007
a2			1.65			0.064
b	0.35		0.46	0.013		0.018
b1	0.19		0.25	0.007		0.010
С		0.5			0.019	
c1		•	45°	(typ.)	•	•
D	8.55		8.75	0.336		0.344
E	5.8		6.2	0.228		0.244
е		1.27			0.050	
e3		7.62			0.300	
F	3.8		4.0	0.149		0.157
G	4.6		5.3	0.181		0.208
L	0.5		1.27	0.019		0.050
М			0.68			0.026

6 Revision History

Date	Revision	Changes	
March 2001	1	Initial release	
June 2005	2	Automotive grade part references inserted in the datasheet (see <i>Codes on page 1</i>).	
Sept. 2005	3	 The following changes were made in this revision: An error in the device description was corrected on page 1. Order Codes on page 1 updated with complete list of markings. Addition of supplementary data in Table 1: Key parameters and their absolute maximum ratings on page 2. Addition of Table 2: Operating conditions on page 2. Reorganization of Chapter 4: Macromodels on page 5. Minor grammatical and formatting changes throughout. 	

Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.

The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners

© 2005 STMicroelectronics - All rights reserved

STMicroelectronics group of companies

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan -Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America

www.st.com

