

TS507

High precision rail-to-rail operational amplifier

Features

- Ultra low offset voltage: 25 µV typ, 100 µV max
- Rail-to-rail input/output voltage swing
- Operating from 2.7 V to 5.5 V
- High speed: 1.9 MHz
- 45° phase margin with 100 pF
- Low consumption: 0.8 mA at 2.7 V
- Very large signal voltage gain: 131 dB
- High power supply rejection ratio: 105 dB
- Very high ESD protection 5kV (HBM)
- Latch-up immunity
- Available in SOT23-5 micropackage

Applications

- Battery-powered applications
- Portable devices
- Signal conditioning
- Medical instrumentation

Description

The TS507 is a high performance rail-to-rail input and output amplifier with very low offset voltage. This amplifier uses a new trimming technique that yields ultra low offset voltages without any need for external zeroing.

The circuit offers very stable electrical characteristics over the entire supply voltage range, and is particularly intended for automotive and industrial applications.

The TS507 is housed in the space-saving 5-pin SOT23 package, making it well suited for batterypowered systems. This micropackage simplifies the PC board design because of its ability to be placed in tight spaces (external dimensions are 2.8 mm x 2.9 mm).

Contents

1	Abso	Absolute maximum ratings and operating conditions				
2	Elec	trical characteristics4				
3	App	lication note				
	3.1	Out-of-the-loop compensation technique 15				
	3.2	In-the-loop-compensation technique16				
4	Pack	age information				
	4.1	SOT23-5 package information 17				
	4.2	SO-8 package				
5	Orde	ering information				
6	Revi	sion history				

1 Absolute maximum ratings and operating conditions

Symbol	Parameter	Value	Unit
V _{CC}	Supply voltage ⁽¹⁾	6	V
V _{id}	Differential input voltage (2)	±2.5	V
V _{in}	Input voltage ⁽³⁾	V _{DD} -0.3 to V _{CC} +0.3	V
T _{stg}	Storage temperature	-65 to +150	°C
R _{thja}	Thermal resistance junction to ambient ^{(4) (5)} SOT23-5 SO-8	250 125	°C/W
R _{thjc}	Thermal resistance junction to case SOT23-5 SO-8	81 40	°C/W
Тj	Maximum junction temperature	150	°C
	HBM: human body model ⁽⁶⁾	5	kV
ESD	MM: machine model ⁽⁷⁾	300	V
	CDM: charged device model ⁽⁸⁾	2	kV
	Latch-up immunity	class A	

Table 1. Absolute maximum ratings (AMR)

1. Value with respect to V_{DD} pin.

- 2. Differential voltages are the non-inverting input terminal with respect to the inverting input terminal.
- 3. V_{CC} - V_{in} must not exceed 6V and V_{in} must not exceed 6V.
- 4. Short-circuits can cause excessive heating and destructive dissipation.
- 5. $R_{thja/c}$ are typical values.
- Human body model: A 100 pF capacitor is charged to the specified voltage, then discharged through a 1.5 kΩ resistor between two pins of the device. This is done for all couples of connected pin combinations while the other pins are floating.
- 7. Machine model: A 200 pF capacitor is charged to the specified voltage, then discharged directly between two pins of the device with no external series resistor (internal resistor < 5 Ω). This is done for all couples of connected pin combinations while the other pins are floating.
- 8. Charged device model: all pins and the package are charged together to the specified voltage and then discharged directly to the ground through only one pin. This is done for all pins.

Symbol	Parameter	Value	Unit
V _{CC}	Supply voltage ⁽¹⁾	2.7 to 5.5	V
V _{icm}	Common mode input voltage range	V_{DD} to V_{CC}	V
V _{id}	Differential input voltage ⁽²⁾	±2.5	V
T _{oper}	Operating free air temperature range TS507C TS507I	0 to +85 -40 to +125	°C

Table 2.Operating conditions

1. Value with respect to V_{DD} pin.

2. Differential voltages are the non-inverting input terminal with respect to the inverting input terminal.

2 Electrical characteristics

Table 3.Electrical characteristics at $V_{CC} = +5V$, $V_{DD} = 0V$, $V_{icm} = V_{CC}/2$, $T_{amb} = 25^{\circ}C$, R_L connected to $V_{CC}/2$ (unless otherwise specified)⁽¹⁾

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit	
DC performance							
V	Input offset voltage ⁽²⁾	V _{icm} = 0 to 3.8V, T=25°C TS507C full temp range TS507I full temp range		25	100 250 400	μV	
V _{io}	Input onset voltage	V _{icm} = 0V to 5V, T=25°C TS507C full temp range TS507I full temp range			450 550 750	μV	
$\Delta V_{io}/\Delta t$	V _{io} drift vs. temperature	T _{min} < T _{op} < T _{max}		1		µV/°C	
l _{ib}	Input bias current	T = 25°C TS507C full temp range TS507I full temp range		8	70 75 110	nA	
I _{io}	Input offset current	T = 25°C TS507C full temp range TS507I full temp range		2	25 35 50	nA	
CMRR	Common mode rejection ratio 20 log ($\Delta V_{icm}/\Delta V_{io}$)	V _{icm} from 0V to 3.8V, T=25°C TS507C full temp range TS507I full temp range	94 94 91	115		dB	
		V _{icm} from 0V to 5V		96			
PSRR	Power supply rejection ratio 20 log ($\Delta V_{CC}/\Delta V_{io}$)	V _{CC} from 2.7V to 5.5V, V _{icm} =v _{cc} /2, T=25°C TS507C full temp range TS507I full temp range	91 90 89	105		dB	
A _{vd}	Large signal voltage gain	$\label{eq:RL} \begin{split} \text{R}_{\text{L}} &= 10 \text{k} \Omega \text{ V}_{\text{out}} \text{=} 0.5 \text{V to } 4.5 \text{V} \\ \text{Full temp range} \end{split}$	99 98	131		dB	
V _{CC} -V _{OH}	High level output voltage drop	R _L = 600Ω, T=25°C TS507C full temp range TS507I full temp range		67	95 110 120	mV	
		R _L = 10kΩ, T=25°C Full Temp range		4	15 15		
V _{OL}	Low level output voltage	R _L = 600Ω, T=25°C TS507C full temp range TS507I full temp range		64	90 110 125	mV	
		R _L = 10kΩ, T=25°C Full temp range		4	15 15		

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
	l _{sink}	V _{out} = V _{CC,} V _{id} =-1V, T=25°C TS507C full temp range TS507I full temp range	74 60 53	104		
I _{out}	Isource	$V_{out} = V_{DD}, V_{id}=1V, T=25^{\circ}C$ TS507C full temp range TS507I full temp range	90 77 70	128		mA
I _{CC}	Supply current (per operator) ⁽²⁾	No load, V _{out} =V _{CC} /2, V _{icm} =0 to 5V, T=25°C Full temp range		0.85	1.15 1.25	mA
Dynamic	performance					
GBP	Gain bandwidth product	$R_{L} = 2k\Omega, C_{L} = 100pF,$ f = 100kHz		1.9		MHz
ф _т	Phase margin	$R_L = 2k\Omega, C_L = 100pF$		45		Degrees
G _m	Gain margin	R _L = 2kΩ, C _L =100pF		10		dB
SR	Slew rate	$R_L = 2k\Omega$, $C_L = 100pF$, $V_{out} = 1.25V$ to 3.75V, 10% to 90%		0.6		V/µs
e _N	Equivalent input noise voltage	f = 1kHz		12		nV/√Hz
i _N	Equivalent input noise current	f = 10kHz		1.2		pA/√Hz
THD+e _N	THD + noise	f=1kHz, G=1, R _L =2k Ω , V _{icm} =2V, V _{out} =3.5V _{pp}		0.0003		%

Table 3.Electrical characteristics at $V_{CC} = +5V$, $V_{DD} = 0V$, $V_{icm} = V_{CC}/2$, $T_{amb} = 25^{\circ}C$,
 R_L connected to $V_{CC}/2$ (unless otherwise specified)⁽¹⁾ (continued)

1. All parameter limits at temperatures different from 25° C are guaranteed by correlation.

2. Measurements done at 4 V_{icm} values: V_{icm}=0 V, V_{icm}=3.8 V, V_{icm}=4.2 V, V_{icm}=5 V.

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit	
DC performance							
		V _{icm} = 0 to 2.1V, T=25°C TS507C full temp range TS507I full temp range		25	100 250 400	μV	
V _{io}	Input offset voltage ⁽²⁾	V _{icm} = 0V to 3.3V, T=25°C TS507C full temp range TS507I full temp range			450 550 750	μV	
ΔV_{io}	V _{io} drift vs. temperature	$T_{min} < T_{op} < T_{max}$		1		µV/°C	
l _{ib}	Input bias current	T = 25°C TS507C full temp range TS507I full temp range		6	70 75 145	nA	
I _{io}	Input offset current	T = 25°C TS507C full temp range TS507I full temp range		2	25 40 45	nA	
CMRR	Common mode rejection ratio 20 log ($\Delta V_{icm}/\Delta V_{io}$)	V _{icm} from 0V to 2.1V		115		dB	
A_{vd}	Large signal voltage gain	$R_L = 10k\Omega$, $V_{out} = 0.5V$ to 2.8V		127		dB	
V _{CC} -V _{OH}	High level output voltage drop	R _L = 600Ω, T=25°C TS507C full temp range TS507I full temp range		59	85 100 110	mV	
		R _L = 10kΩ, T=25°C Full temp range		4	15 15		
V _{OL}	Low level output voltage	R _L = 600Ω, T=25°C TS507C full temp range TS507I full temp range		57	80 100 115	mV	
		R _L = 10kΩ, T=25°C Full temp range		4	15 15		
	I _{sink} I _{source}	V _{out} = V _{CC} , V _{id} =-1V, T=25°C TS507C full temp range TS507I full temp range	33 26 22	48		m ^	
I _{out}		$V_{out} = V_{DD}, V_{id}=1V, T=25^{\circ}C$ TS507C full temp range TS507I full temp range	37 32 29	56		mA	
I _{CC}	Supply current (per operator) ⁽²⁾	No load, V _{out} =V _{CC} /2, V _{icm} =0 to 3.3V, T=25°C Full temp range		0.81	1.1 1.2	mA	

Table 4.Electrical characteristics at $V_{CC} = +3.3V$, $V_{DD} = 0V$, $V_{icm} = V_{CC}/2$, $T_{amb} = 25^{\circ}C$,
 R_L connected to $V_{CC}/2$ (unless otherwise specified)⁽¹⁾

Table 4.Electrical characteristics at $V_{CC} = +3.3V$, $V_{DD} = 0V$, $V_{icm} = V_{CC}/2$, $T_{amb} = 25^{\circ}C$,
 R_L connected to $V_{CC}/2$ (unless otherwise specified)⁽¹⁾ (continued)

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit	
Dynamic	performance						
GBP	Gain bandwidth product	$R_{L} = 2k\Omega, C_{L} = 100pF,$ f = 100kHz		1.9		MHz	
φ _m	Phase margin	$R_L = 2k\Omega, C_L = 100pF$		45		Degrees	
G _m	Gain margin	$R_L = 2k\Omega, C_L = 100pF$		10		dB	
SR	Slew rate	$R_L = 2k\Omega$, $C_L = 100pF$, $V_{out} = 0.5V$ to 2.8V, 10% to 90%		0.6		V/µs	
e _N	Equivalent input noise voltage	f = 1kHz		12		nV/√Hz	
THD+e _N	THD + noise	f=1KHz, G=1, R _L =2kΩ V _{icm} =1.15V, V _{out} =1.8V _{pp}		0.0004		%	

1. All parameter limits at temperatures different from 25° C are guaranteed by correlation.

2. Measurements done at 4 V_{icm} values: V_{icm}=0 V, V_{icm}=2.1 V, V_{icm}=2.5 V, V_{icm}=3.3 V.

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
DC perfor	mance					
	Input offset voltage ⁽²⁾	V _{icm} = 0 to 1.9V, T=25°C TS507C full temp range TS507I full temp range		25	100 250 400	μV
V _{io}		V _{icm} = 0V to 2.7V, T=25°C TS507C full temp range TS507I full temp range			450 550 750	μV
ΔV_{io}	V _{io} drift vs. temperature	$T_{min} < T_{op} < T_{max}$		1		µV/°C
l _{ib}	Input bias current	T = 25°C TS507C full temp range TS507I full temp range		8	70 75 160	nA
I _{io}	Input offset current	T = 25°C TS507C full temp range TS507I full temp range		2	25 45 45	nA
CMRR	Common mode rejection ratio 20 log ($\Delta V_{icm}/\Delta V_{io}$)	V _{icm} from 0V to 1.5V		115		dB
A _{vd}	Large signal voltage gain	$R_L = 10k\Omega$, $V_{out} = 0.5V$ to 2.2V		126		dB
V _{CC} -V _{OH}	High level output voltage drop	R _L = 600Ω, T=25°C TS507C full temp range TS507I full temp range		57	85 100 105	mV
		R _L = 10kΩ, T=25°C Full temp range		4	15 15	
V _{OL}	Low level output voltage	R _L = 600Ω, T=25°C TS507C full temp range TS507I full temp range		57	80 100 115	mV
		R _L = 10kΩ, T=25°C Full temp range		4	15 15	
	I _{sink} I _{source}	V _{out} = V _{CC,} V _{id} =-1V, T=25°C TS507C full temp range TS507I full temp range	20 15 13	30		m^
I _{out}		V _{out} = V _{DD} , V _{id} =1V, T=25°C TS507C full temp range TS507I full temp range	22 19 17	35		mA
I _{CC}	Supply current (per operator) ⁽²⁾	No load, V _{out} =V _{CC} /2, V _{icm} =0 to 2.7V, T=25°C Full temp range		0.79	1.1 1.2	mA

Table 5.Electrical characteristics at $V_{CC} = +2.7V V_{DD} = 0V$, $V_{jcm} = V_{CC}/2$, $T_{amb} = 25^{\circ}C$,
 R_L connected to $V_{CC}/2$ (unless otherwise specified)⁽¹⁾

Table 5.Electrical characteristics at $V_{CC} = +2.7V V_{DD} = 0V$, $V_{icm} = V_{CC}/2$, $T_{amb} = 25^{\circ}C$,
 R_L connected to $V_{CC}/2$ (unless otherwise specified)⁽¹⁾ (continued)

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
Dynamic performance						
GBP	Gain bandwidth product	$R_{L} = 2k\Omega, C_{L} = 100pF,$ f = 100kHz		1.9		MHz
φ _m	Phase margin	$R_L = 2k\Omega, C_L = 100pF$		45		Degrees
G _m	Gain margin	$R_L = 2k\Omega, C_L = 100pF$		11		dB
SR	Slew rate	$R_L = 2k\Omega, C_L = 100pF,$ $V_{out} = 0.5V \text{ to } 2.2V, 10\% \text{ to } 90\%$		0.6		V/µs
e _N	Equivalent input noise voltage	f = 1kHz		12		nV/√Hz
THD+e _N	THD + noise	f=1KHz, G=1, R _L =2kΩ V _{icm} =0.85V, V _{out} =1.2V _{pp}		0.0005		%

1. All parameter limits at temperatures different from 25° C are guaranteed by correlation.

2. Measurements done at 4 V_{icm} values: V_{icm}=0 V, V_{icm}=1.5 V, V_{icm}=1.9 V, V_{icm}=2.7 V.

Figure 3. Input offset voltage distribution vs. Figure 4. temperature for V_{icm} \geq V_{CC}-0.8V

Figure 5. Input offset voltage distribution for Figure 6. $V_{icm} \le V_{CC}$ -1.2V at T=25°C after THB

Input offset voltage vs. input common mode voltage at T=25°C

57

10/20

Figure 7. Supply current vs. input common mode voltage in closed loop configuration at V_{CC}=5V

Figure 9. Supply current vs. input common mode voltage in follower configuration at V_{CC}=2.7V

Figure 10. Supply current vs. input common mode voltage in follower configuration at V_{CC}=5V

Figure 11. Output current vs. supply voltage at Figure 12. Output current vs. output voltage at $V_{icm}=V_{CC}/2$ $V_{CC}=2.7V$

50

40

30

20

10

0

-20

-30

-40

-50

10⁴

Gain -10

(qB)

Figure 13. Output current vs. output voltage at Figure 14. Positive and negative slew rate vs. V_{CC}=5V supply voltage

180

150

120

90

60

30

0 Phase i

-30

-60

-90

-120

-150

-180

Ĵ

Figure 15. Voltage gain and phase vs. frequency at V_{CC}=5V and V_{icm}=2.5V at T=25°C

Gain

RI=2kOhms, VrI=Vcc/2

10⁵

Tamb=25°C

Vcc=5V, Vicm=2.5V, G= -100

Phase

ИП

CI=100pF

CI=230pF

10

Figure 17. Voltage gain and phase vs. frequency at V_{CC}=5V and V_{icm}=2.5V at T=125°C

10⁶

Voltage gain and phase vs. frequency at V_{CC} =5V and V_{icm} =2.5V

Figure 19. Gain margin according the output load, at V_{CC} =5V and T=25°C

Figure 20. Phase margin according the output load, at V_{CC} =5V and T=25°C

Figure 21. Gain margin vs. output current, at V_{CC} =5V and T=25°C

5

3 Application note

An application note, based on the TS507, describes three compensation techniques for solving stability issues when driving large capacitive loads. Two of them are briefly explained here. For more details, refer to the application note on *www.st.com*. To find it, do a keyword search for **AN2653**.

3.1 Out-of-the-loop compensation technique

The first technique, named the **out-of-the-loop** compensation, uses an isolation resistor, R_{OL} , added in series between the output of the amplifier and its load (see *Figure 27*). The resistor isolates the op-amp feedback network from the capacitive load. This compensation method is effective, but the drawback is a limitation on the accuracy of V_{out} depending on the resistive load value.

To help implement the compensation, the abacus given in *Figure 28* to *Figure 29* provide the R_{OL} value to choose for a given C_L and phase/gain margins. These abacus are plotted in the case of a voltage follower configuration with a load resistor of 10 k Ω at 25°C.

Figure 28. Gain margin abacus : serial resistor Figure 29. Phase margin abacus : serial resistor to be added in a voltage follower configuration at 25°C follower configuration at 25°C

3.2 In-the-loop-compensation technique

The second technique is called the **in-the-loop-compensation** technique, because the additional components (a resistor and a capacitor) used to improve the stability are inserted in the feedback loop (see *Figure 30*).

This compensation method allows, by a good choice of compensation components, to compensate the original pole (caused by the capacitive load), and thus to improve stability.

The main drawback of this circuit is the reduction of the output swing, because the isolation resistor is in the signal path.

Table 6 helps you to choose the best compensation components for different ranges of load capacitors (and with $R_L = 10 \text{ k}\Omega$) in voltage follower configuration.

Table 6.Best compensation components for different load capacitor ranges in
voltage follower configuration for TS507 (with $R_L = 10 \text{ k}\Omega$)

Load capacitor range	R _{IL} (kΩ)	C _{IL} (pF)	Minimum gain margin (dB) ⁽¹⁾	Minimum phase margin (degree) ⁽¹⁾
10 pF to 100 pF	1	250	17	55
100 pF to 1 nF	1	250	16	42
1 nF to 10 nF	1	630	11	27

1. Parameter guaranteed by design at 25°C.

4 Package information

In order to meet environmental requirements, STMicroelectronics offers these devices in ECOPACK[®] packages. These packages have a lead-free second level interconnect. The category of second level interconnect is marked on the package and on the inner box label, in compliance with JEDEC Standard JESD97. The maximum ratings related to soldering conditions are also marked on the inner box label. ECOPACK is an STMicroelectronics trademark. ECOPACK specifications are available at: <u>www.st.com</u>.

4.1 SOT23-5 package information

Ref.	Dimensions						
	Millimeters			Mils			
	Min.	Тур.	Max.	Min.	Тур.	Max.	
А	0.90		1.45	35.4		57.1	
A1	0.00		0.15	0.00		5.9	
A2	0.90		1.30	35.4		51.2	
b	0.35		0.50	13.7		19.7	
С	0.09		0.20	3.5		7.8	
D	2.80		3.00	110.2		118.1	
E	2.60		3.00	102.3		118.1	
E1	1.50		1.75	59.0		68.8	
е		0.95			37.4		
e1		1.9			74.8		
L	0.35		0.55	13.7		21.6	

4.2 SO-8 package

Table 8.SO-8 package mechanical data

	Dimensions						
Ref.	Millimeters			Inches			
	Min.	Тур.	Max.	Min.	Тур.	Max.	
А			1.75			0.069	
A1	0.10		0.25	0.004		0.010	
A2	1.25			0.049			
b	0.28		0.48	0.011		0.019	
С	0.17		0.23	0.007		0.010	
D	4.80	4.90	5.00	0.189	0.193	0.197	
Е	5.80	6.00	6.20	0.228	0.236	0.244	
E1	3.80	3.90	4.00	0.150	0.154	0.157	
е		1.27			0.050		
h	0.25		0.50	0.010		0.020	
L	0.40		1.27	0.016		0.050	
k	1°		8°	1°		8°	
CCC			0.10			0.004	

5 Ordering information

Order code	Temperature range	Package	Packing	Marking
TS507ID TS507IDT	-40°C to 125°C	SO-8	Tube or	TS507I
TS507IYD ⁽¹⁾ TS507IYDT ⁽¹⁾	-40 C to 125 C	SO-8 (Automotive grade)	Tape & reel	TS507Y
TS507ILT		SOT23-5 ⁽²⁾	Tape & reel	K131
TS507IYLT ⁽¹⁾	-40°C to 125°C	SOT23-5 ⁽²⁾ (Automotive grade)	Tape & reel	K137
TS507CD TS507CDT	0°C to 85°C	SO-8	Tube or Tape & reel	TS507C
TS507CLT		SOT23-5 ⁽²⁾	Tape & reel	K136

1. Qualification and characterization according to AEC Q100 and Q003 or equivalent, advanced screening according to AEC Q001 & Q 002 or equivalent are on-going.

2. All information related to the SOT23-5 package is subject to change without notice.

6 Revision history

Date	Revision	Changes
01-Oct-2004	1	Preliminary data release for product in development.
02-May-2006	2	Update preliminary data release for product in development.
15-Dec-2006	3	First public release.
03-May-2007	4	Automotive grade products added.
08-Apr-2008	5	Electrical characteristics curves for Bode and AC stability added and updated. Application note section added.

Table 10. Document revision history

Please Read Carefully:

Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice.

All ST products are sold pursuant to ST's terms and conditions of sale.

Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein.

UNLESS OTHERWISE SET FORTH IN ST'S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

UNLESS EXPRESSLY APPROVED IN WRITING BY AN AUTHORIZED ST REPRESENTATIVE, ST PRODUCTS ARE NOT RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY, DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER'S OWN RISK.

Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST.

ST and the ST logo are trademarks or registered trademarks of ST in various countries.

Information in this document supersedes and replaces all information previously supplied.

The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.

© 2008 STMicroelectronics - All rights reserved

STMicroelectronics group of companies

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan -Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America

www.st.com

