FEATURES - Specified Break-Before-Make Switching - Low ON-State Resistance (0.65 Ω Max) - Low Charge Injection - Excellent ON-State Resistance Matching - Low Total Harmonic Distortion (THD) - 1.65-V to 3.6-V Single-Supply Operation - Latch-Up Performance Exceeds 100 mA Per JESD 78. Class II - ESD Performance Tested Per JESD 22 - 2000-V Human-Body Model (A114-B, Class II) - 1000-V Charged-Device Model (C101) # RSE PACKAGE (TOP VIEW) V₊ NC1 1 1 10 9 COM1 NO1 2 8 IN1 NC2 3 7 IN2 NO2 4 5 6 COM2 ### **APPLICATIONS** - Cell Phones - PDAs - Portable Instrumentation - Audio and Video Signal Routing - Low-Voltage Data Acquisition Systems - Communication Circuits - Modems - Hard Drives - Computer Peripherals - Wireless Terminals and Peripherals #### DGS PACKAGE (TOP VIEW) ### **DESCRIPTION/ORDERING INFORMATION** The TS3A24157 is a dual single-pole double-throw (SPDT) analog switch that is designed to operate from 1.4 V to 3.6 V. The device offers low ON-state resistance and excellent ON-state resistance matching with the break-before-make feature, to prevent signal distortion during the transfer of a signal from one channel to another. The device has excellent total harmonic distortion (THD) performance and consumes very low power. These features make this device suitable for portable audio applications. #### **ORDERING INFORMATION** | T _A | PACKAGE ^{(*} | 1)(2) | ORDERABLE PART NUMBER | TOP-SIDE MARKING | |----------------|-----------------------|---------------|-----------------------|------------------| | –40°C to 85°C | QFN - RSE | Tape and reel | TS3A24157RSER | JZ0 | | -40 C to 65 C | VSSOP - DGS (MSOP) | Tape and reel | TS3A24157DGSR | JZ0 | (1) Package drawings, thermal data, and symbolization are available at www.ti.com/packaging. (2) For the most current package and ordering information, see the Package Option Addendum at the end of this document, or see the TI website at www.ti.com. #### **FUNCTION TABLE** | IN | NC TO COM,
COM TO NC | NO TO COM,
COM TO NO | |----|-------------------------|-------------------------| | L | ON | OFF | | Н | OFF | ON | Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet. #### SUMMARY OF CHARACTERISTICS $V_{+} = 3 V, T_{A} = 25^{\circ}C$ | Configuration | Dual 2:1 Multiplexer/
Demultiplexer
(2× SPDT) | | | | | |--|---|--|--|--|--| | Number of channels | 2 | | | | | | ON-state resistance (ron) | 0.65 Ω max | | | | | | ON-state resistance match (Δr _{on}) | 0.07 Ω max | | | | | | ON-state resistance flatness (r _{on(flat)}) | 0.04 Ω max | | | | | | Turn-on/turn-off time (t _{ON} /t _{OFF}) | 35 ns/25 ns | | | | | | Break-before-make time (t _{BBM}) | 25 ns | | | | | | Charge injection (Q _C) | 8.75 pC | | | | | | Bandwidth (BW) | 50 MHz | | | | | | OFF isolation (O _{ISO}) | −72 dB | | | | | | Crosstalk (X _{TALK}) | −72 dB | | | | | | Total harmonic distortion (THD) | 0.005% | | | | | | Power-supply current (I+) | 15 nA | | | | | | Package options | 10-pin QFN, 10-pin VSSOP | | | | | ## **Absolute Maximum Ratings**(1)(2) over operating free-air temperature range (unless otherwise noted) | | | | MIN | MAX | UNIT | |-------------------------------------|---|--|----------------------|-----|------| | V ₊ | Supply voltage range (3) | | -0.5 | 3.6 | V | | $V_{NC} \ V_{NO} \ V_{COM}$ | Analog voltage range (3)(4)(5) | -0.5 | V ₊ + 0.5 | V | | | I _{I/OK} | Analog port diode current | V_{NC} , V_{NO} , $V_{COM} < 0$ | -50 | 50 | mA | | I _{NC} | ON-state switch current | | -300 | 300 | | | I _{NO}
I _{COM} | ON-state peak switch current ⁽⁶⁾ | V_{NC} , V_{NO} , $V_{COM} = 0$ to V_{+} | -500 | 500 | mA | | VI | Digital input voltage range | | -0.5 | 3.6 | V | | I _{IK} | Digital input clamp current (3)(4) | V _I < 0 | -50 | | mA | | I ₊ | Continuous current through V ₊ | | 100 | mA | | | I _{GND} | Continuous current through GND | -100 | | mA | | | T _{stg} | Storage temperature range | | -65 | 150 | °C | - (1) Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability. - (2) The algebraic convention, whereby the most negative value is a minimum and the most positive value is a maximum. - (3) All voltages are with respect to ground, unless otherwise specified. - (4) The input and output voltage ratings may be exceeded if the input and output clamp-current ratings are observed. - (5) This value is limited to 5.5 V maximum. - (6) Pulse at 1-ms duration <10% duty cycle. ## Package Thermal Impedance over operating free-air temperature range (unless otherwise noted) | | | | TYP | UNIT | |---------------|-------------------------------|-------------|-----|-------| | 0 | Deckage thermal impedance (1) | DGS package | 165 | °C/W | | θ_{JA} | Package thermal impedance (1) | RSE package | 243 | -C/VV | (1) The package thermal impedance is calculated in accordance with JESD 51-7. # Electrical Characteristics for 3-V Supply⁽¹⁾ $V_{+} = 2.7 \text{ V}$ to 3.6 V, $T_{A} = -40^{\circ}\text{C}$ to 85°C (unless otherwise noted) | PARAMETER | SYMBOL | TEST CONDITION | IS | T _A | V ₊ | MIN | TYP | MAX | UNIT | |-----------------------------------|--|--|---|----------------|----------------|------|-------|----------------|------| | Analog Switch | | | | | | | | · | | | Analog signal range | V_{COM}, V_{NO}, V_{NC} | | | | | 0 | | V ₊ | V | | Peak ON | r . | $0 \le (V_{NO} \text{ or } V_{NC}) \le V_+,$ | Switch ON, | 25°C | 2.7 V | | 0.5 | 0.65 | Ω | | resistance | r _{peak} | $I_{COM} = -100 \text{ mA},$ | See Figure 10 | Full | 2.7 V | | | 0.75 | 12 | | ON-state | r _{on} | V_{NO} or $V_{NC} = 2 V$, | Switch ON, | 25°C | 2.7 V | | 0.45 | 0.6 | Ω | | resistance | on | $I_{COM} = -100 \text{ mA},$ | See Figure 10 | Full | Z.1 V | | | 0.65 | 22 | | ON-state | ۸ | V_{NO} or $V_{NC} = 2 \text{ V}, 0.8 \text{ V},$ | or $V_{NC} = 2 \text{ V}$, 0.8 V, Switch ON, | 25°C | 0.7.1/ | | 0.05 | 0.07 | | | resistance match between channels | Δr _{on} | $I_{COM} = -100 \text{ mA},$ | See Figure 10 | Full | 2.7 V | | | 0.08 | Ω | | ON-state | | $0 \le (V_{NO} \text{ or } V_{NC}) \le V_+,$
$I_{COM} = -100 \text{ mA},$ | Switch ON,
See Figure 10 | 25°C | | | 0.025 | | Ω | | resistance flatness | r _{on(flat)} | V_{NO} or $V_{NC} = 2 \text{ V}, 0.8 \text{ V},$ | | 25°C | 2.7 V | | 0.01 | 0.04 | | | | | 100 1 | Full | | | | 0.1 | | | | NC, NO | Lucione NO | 25°C | | -50 | | 50 | | | | | OFF leakage current | I _{NO(OFF)} | or V_{NC} or $V_{NO} = 3 \text{ V}$, $V_{COM} = 1 \text{ V}$, | See Figure 11 | Full | 3.6 V | -250 | | 250 | nA | | NC, NO | I _{NC(ON)} , | V_{NC} or $V_{NO} = 1 V$, $V_{COM} = Open$, | Switch ON. | 25°C | | -50 | | 50 | | | ON leakage current | I _{NO(ON)} | or V_{NC} or $V_{NO} = 3 \text{ V}$, $V_{COM} = \text{Open}$, | See Figure 12 | Full | 3.6 V | -400 | | 400 | nA | | COM | _ | V_{NC} or V_{NO} = Open, V_{COM} = 1 V, | Switch ON. | 25°C | | -50 | | 50 | | | ON leakage current | I _{COM(ON)} | or V_{NC} or V_{NO} = Open, V_{COM} = 3 V, | See Figure 12 | Full | 3.6 V | -400 | | 400 | nA | | Digital Control Inpu | uts (IN1, IN2) ⁽²⁾ |) | | | | | | | | | Input logic high | V _{IH} | | | Full | | 1.4 | | | V | | Input logic low | V _{IL} | | | Full | | | | 0.5 | V | | Input leakage | | | 25°C | 3.6 V | -50 | 5 | 50 | nA | | | current | | I_{IH}, I_{IL} $V_{I} = 3.6 \text{ V or } 0$ | | | Full | -150 | | 150 | IIA | The algebraic convention, whereby the most negative value is a minimum and the most positive value is a maximum All unused digital inputs of the device must be held at V_+ or GND to ensure proper device operation. Refer to the TI application report, Implications of Slow or Floating CMOS Inputs, literature number SCBA004. ## TS3A24157 0.65-Ω DUAL SPDT ANALOG SWITCH DUAL-CHANNEL 2:1 MULTIPLEXER/DEMULTIPLEXER # Electrical Characteristics for 3-V Supply⁽¹⁾ (Continued) $V_{+} = 2.7 \text{ V to } 3.6 \text{ V}, T_{A} = -40^{\circ}\text{C} \text{ to } 85^{\circ}\text{C} \text{ (unless otherwise noted)}$ | PARAMETER | SYMBOL | TEST CON | DITIONS | TA | V ₊ | MIN | TYP | MAX | UNIT | |---------------------------|-------------------------------|---|--|-------------------|-------------------|-----|-------------|-------------|------| | Dynamic | | | | <u> </u> | | | | • | | | | | N N | 0 25 - 5 | 25°C | 3 V | | 20 | 35 | | | Turn-on time | t _{ON} | $V_{COM} = V_+,$ $R_L = 50 \Omega,$ | C _L = 35 pF,
See Figure 14 | Full | 2.7 V to
3.6 V | | | 40 | ns | | | | F $R_L = 50 \Omega$, $C_L = 35 pF$, $R_L = 50 \Omega$, See Figure 14 | C = 35 pE | 25°C | 3 V | | 12 | 25 | | | Turn-off time | t _{OFF} | | Full | 2.7 V to
3.6 V | | | 30 | ns | | | Break-before- | | \ \ \ \ - \ \ - \ \ | $C_1 = 35 pF$, | 25°C | 3 V | 1 | 10 | 25 | | | make time | t _{BBM} | $V_{NC} = V_{NO} = V_+,$ $R_L = 50 \Omega,$ | See Figure 15 | Full | 2.7 V to
3.6 V | 0.5 | | 30 | ns | | Charge injection | $Q_{\mathbb{C}}$ | $V_{GEN} = 0,$
$R_{GEN} = 0,$ | C _L = 1 nF,
See Figure 19 | 25°C | 3 V | | 8.75 | | pC | | NC, NO
OFF capacitance | $C_{NC(OFF)}, \\ C_{NO(OFF)}$ | V_{NC} or $V_{NO} = V_{+}$ or GND,
Switch OFF, | See Figure 13 | 25°C | 3 V | | 50 | | pF | | NC, NO
ON capacitance | $C_{NC(ON)}, \ C_{NO(ON)}$ | V_{NC} or $V_{NO} = V_{+}$ or GND,
Switch ON, | See Figure 13 | 25°C | 3 V | | 140 | | pF | | COM
ON capacitance | C _{COM(ON)} | V _{COM} = V ₊ or GND,
Switch ON, | See Figure 13 | 25°C | 3 V | | 140 | | pF | | Digital input capacitance | C _I | $V_I = V_+ \text{ or GND},$ | See Figure 13 | 25°C | 3 V | | 2 | | pF | | Bandwidth | BW | $R_L = 50 \Omega$,
Switch ON, | See Figure 16 | 25°C | 3 V | | 50 | | MHz | | OFF isolation | O _{ISO} | $R_L = 50 \Omega$,
f = 1 MHz, | See Figure 17 | 25°C | 3 V | | - 72 | | dB | | Crosstalk | X _{TALK} | $R_L = 50 \Omega$,
f = 1 MHz, | See Figure 18 | 25°C | 3 V | | -72 | | dB | | Total harmonic distortion | THD | $R_L = 600 \Omega,$ $C_L = 50 \text{ pF},$ | f = 20 Hz to 20 kHz,
See Figure 20 | 25°C | 3 V | | 0.005 | | % | | Supply | • | | | • | | | | | | | Positive supply current | I ₊ | V _I = V ₊ or GND | | 25°C
Full | 3.6 V | | 15 | 200
1200 | nA | ⁽¹⁾ The algebraic convention, whereby the most negative value is a minimum and the most positive value is a maximum Submit Documentation Feedback Copyright © 2007, Texas Instruments Incorporated ## TS3A24157 $0.65-\Omega$ DUAL SPDT ANALOG SWITCH **DUAL-CHANNEL 2:1 MULTIPLEXER/DEMULTIPLEXER** SCDS208A-JUNE 2007-REVISED SEPTEMBER 2007 # Electrical Characteristics for 2.5-V Supply⁽¹⁾ V_{+} = 2.3 V to 2.7 V, T_{A} = -40°C to 85°C (unless otherwise noted) | PARAMETER | SYMBOL | TEST CONDITIONS | | T _A | V ₊ | MIN | TYP | MAX | UNIT | |-----------------------------------|--|--|-----------------------------|----------------|----------------|------|------|----------------|------| | Analog Switch | | | | | | | | · | | | Analog signal range | V_{COM}, V_{NO}, V_{NC} | | | | | 0 | | V ₊ | V | | Peak ON | r . | $0 \le (V_{NO} \text{ or } V_{NC}) \le V_+,$ | Switch ON, | 25°C | 2.3 V | | 0.55 | 0.75 | Ω | | resistance | nce $I_{COM} = -8 \text{ mA},$ | $I_{COM} = -8 \text{ mA},$ | See Figure 10 | Full | 2.5 V | | | 0.9 | 12 | | ON-state | r _{on} | V_{NO} or $V_{NC} = 1.8 \text{ V}$, | Switch ON, | 25°C | 2.3 V | | 0.56 | 0.75 | Ω | | resistance | on | $I_{COM} = -8 \text{ mA},$ | See Figure 10 | Full | 2.5 V | | | 0.85 | 32 | | ON-state | Δ., | 110 110 | Switch ON, | 25°C | 221/ | | 0.1 | 0.15 | | | resistance match between channels | Δr _{on} | $I_{COM} = -8 \text{ mA},$ | See Figure 10 | Full | 2.3 V | | | 0.15 | Ω | | ON-state | | $0 \le (V_{NO} \text{ or } V_{NC}) \le V_+,$
$I_{COM} = -8 \text{ mA},$ | Switch ON,
See Figure 10 | 25°C | | | 0.1 | 0.15 | | | resistance flatness | r _{on(flat)} | V_{NO} or $V_{NC} = 0.8 \text{ V}$, 1.8 V, Switch ON, | 25°C | 2.3 V | | | 0.17 | Ω | | | | | $I_{COM} = -8 \text{ mA},$ | See Figure 10 | Full | | | | 0.2 | | | NC, NO | INO THO THE TOTAL THE CONTRACT OF | 25°C | | -50 | | 50 | | | | | OFF leakage current | I _{NO(OFF)} | or V_{NC} or $V_{NO} = 2.2 \text{ V}$, $V_{COM} = 0.5 \text{ V}$, | See Figure 11 | Full | 2.7 V | -250 | | 250 | nA | | NC, NO | I _{NC(ON)} , | V_{NC} or $V_{NO} = 0.5 \text{ V}$, $V_{COM} = \text{Open}$, | Switch ON. | 25°C | | -50 | | 50 | nA | | ON leakage current | I _{NO(ON)} | or V_{NC} or $V_{NO} = 2.2 \text{ V}$, $V_{COM} = \text{Open}$, | See Figure 12 | Full | 2.7 V | -400 | | 400 | | | СОМ | _ | V_{NC} or V_{NO} = Open, V_{COM} = 0.5 V, | Switch ON. | 25°C | | -50 | | 50 | _ | | ON leakage current | I _{COM(ON)} | or V_{NC} or V_{NO} = Open, V_{COM} = 2.2 V, | See Figure 12 | Full | 2.7 V | -400 | | 400 | nA | | Digital Control Inpu | uts (IN1, IN2) ⁽²⁾ |) | | | | | | | | | Input logic high | V _{IH} | | | Full | | 1.25 | | | V | | Input logic low | V _{IL} | | | Full | | | | 0.5 | V | | Input leakage | las la | V = 2.7 V or 0 | | 25°C | 271/ | -50 | | 50 | nA | | current | 'IH, 'IL | I_{IH}, I_{IL} $V_{I} = 2.7 \text{ V or } 0$ | | Full | Full 2.7 V | -50 | | 50 | IIA | The algebraic convention, whereby the most negative value is a minimum and the most positive value is a maximum All unused digital inputs of the device must be held at V_+ or GND to ensure proper device operation. Refer to the TI application report, Implications of Slow or Floating CMOS Inputs, literature number SCBA004. ## TS3A24157 0.65-Ω DUAL SPDT ANALOG SWITCH DUAL-CHANNEL 2:1 MULTIPLEXER/DEMULTIPLEXER ## Electrical Characteristics for 2.5-V Supply⁽¹⁾ (Continued) $V_{+} = 2.3 \text{ V}$ to 2.7 V, $T_{A} = -40^{\circ}\text{C}$ to 85°C (unless otherwise noted) | PARAMETER | SYMBOL | TEST CON | IDITIONS | T _A | ٧, | MIN | TYP | MAX | UNIT | |---------------------------|--|---|--|----------------|-------------------|-----|-------|-----|------| | Dynamic | | | | | , | | | , | | | | | V V | C 25 pF | 25°C | 2.5 V | | 23 | 45 | | | Turn-on time | t _{ON} | $V_{COM} = V_+,$ $R_L = 50 \Omega,$ | C _L = 35 pF,
See Figure 14 | Full | 2.3 V to
2.7 V | | | 50 | ns | | | | \/ -\/ | C _L = 35 pF, | 25°C | 2.5 V | | 17 | 27 | | | Turn-off time | t _{OFF} | $V_{COM} = V_+,$ $R_L = 50 \Omega,$ | See Figure 14 | Full | 2.3 V to
2.7 V | | | 30 | ns | | Break-before- | | \ \ \ \ - \\ \ - \\ | $C_1 = 35 pF$, | 25°C | 2.5 V | 2 | 14 | 30 | | | make time | t _{BBM} | $V_{NC} = V_{NO} = V_+,$ $R_L = 50 \Omega,$ | See Figure 15 | Full | 2.3 V to
2.7 V | 1 | | 35 | ns | | Charge injection | Q _C | $V_{GEN} = 0,$
$R_{GEN} = 0,$ | C _L = 1 nF,
See Figure 19 | 25°C | 2.5 V | | 8 | | рС | | NC, NO
OFF capacitance | C _{NC(OFF)} ,
C _{NO(OFF)} | V_{NC} or $V_{NO} = V_{+}$ or GND,
Switch OFF, | See Figure 13 | 25°C | 2.5 V | | 50 | | pF | | NC, NO
ON capacitance | C _{NC(ON)} ,
C _{NO(ON)} | V_{NC} or $V_{NO} = V_{+}$ or GND,
Switch ON, | See Figure 13 | 25°C | 2.5 V | | 140 | | pF | | COM
ON capacitance | C _{COM(ON)} | V _{COM} = V ₊ or GND,
Switch ON, | See Figure 13 | 25°C | 2.5 V | | 140 | | pF | | Digital input capacitance | C _I | $V_I = V_+ \text{ or GND},$ | See Figure 13 | 25°C | 2.5 V | | 2 | | pF | | Bandwidth | BW | $R_L = 50 \Omega$,
Switch ON, | See Figure 16 | 25°C | 2.5 V | | 50 | | MHz | | OFF isolation | O _{ISO} | $R_L = 50 \Omega$,
f = 1 MHz, | See Figure 17 | 25°C | 2.5 V | | -72 | | dB | | Crosstalk | X _{TALK} | $R_L = 50 \Omega$,
f = 1 MHz, | See Figure 18 | 25°C | 2.5 V | | -72 | | dB | | Total harmonic distortion | THD | $R_L = 600 \Omega,$
$C_L = 50 pF,$ | f = 20 Hz to 20 kHz,
See Figure 20 | 25°C | 2.5 V | | 0.006 | | % | | Supply | • | | | | | | | | | | Positive supply | | V – V or CND | | 25°C | 2.7 V | | 10 | 150 | nΛ | | current | l ₊ | $V_I = V_+ \text{ or GND}$ | | Full | 2.1 V | | | 700 | nA | ⁽¹⁾ The algebraic convention, whereby the most negative value is a minimum and the most positive value is a maximum Submit Documentation Feedback Copyright © 2007, Texas Instruments Incorporated # Electrical Characteristics for 1.8-V Supply⁽¹⁾ V_{+} = 1.65 V to 1.95 V, T_{A} = -40°C to 85°C (unless otherwise noted) | PARAMETER | SYMBOL | TEST CONDITIONS | | T _A | V ₊ | MIN | TYP | MAX | UNIT | |---|---|--|-----------------------------|----------------|----------------|------|------|----------------|------| | Analog Switch | | | | | | • | | · | | | Analog signal range | V_{COM}, V_{NO}, V_{NC} | | | | | 0 | | V ₊ | V | | Peak ON | r . | $0 \le (V_{NO} \text{ or } V_{NC}) \le V_+,$ | Switch ON, | 25°C | 1.65 V | 8.0 | | 1.25 | Ω | | resistance | r _{peak} | $I_{COM} = -2 \text{ mA},$ | See Figure 10 | Full | 1.05 V | | | 1.4 | 32 | | ON-state | r _{on} | V_{NO} or $V_{NC} = 1.5 V$, | Switch ON, | 25°C | 1.65 V | 0.6 | | 0.95 | Ω | | resistance 'on | on | $I_{COM} = -2 \text{ mA},$ | See Figure 10 | Full | 1.05 V | | | 1 | | | ON-state | | | | 25°C | | 0.1 | | 0.15 | | | resistance match
between
channels | Δr_{on} | V_{NO} or $V_{NC} = 0.6 \text{ V}$, 1.5 V, $I_{COM} = -2 \text{ mA}$, | Switch ON,
See Figure 10 | Full | 1.65 V | | | 0.15 | Ω | | ON-state | | $0 \le (V_{NO} \text{ or } V_{NC}) \le V_+,$
$I_{COM} = -2 \text{ mA},$ | Switch ON,
See Figure 10 | 25°C | 1.65 V | | 0.35 | 0.13 | | | resistance
flatness | V_{NO} or $V_{NC} = 0.6 \text{ V}$, 1.5 V, | Switch ON, | 25°C | 1.65 V | | 0.05 | | Ω | | | namess | | I _{COM} = -8 mA, See Figure 10 | Full | | | | 0.2 | | | | NC, NO | $I_{NC(OFF)}$, V_{NC} or $V_{NO} = 0.3 \text{ V}$, $V_{COM} = 1.65 \text{ V}$, Switch OFF, | Switch OFF, | 25°C | | -50 | | 50 | | | | OFF leakage current | I _{NO(OFF)} | or V_{NC} or $V_{NO} = 1.65 \text{ V}$, $V_{COM} = 0.3 \text{ V}$, | See Figure 11 | Full | 1.65 | -250 | | 250 | nA | | NC, NO | I _{NC(ON)} , | V_{NC} or $V_{NO} = 0.3 \text{ V}$, $V_{COM} = \text{Open}$, | Switch ON. | 25°C | 4.05.1/ | -50 | | 50 | | | ON leakage current | I _{NO(ON)} | or V_{NC} or $V_{NO} = 1.65 \text{ V}$, $V_{COM} = \text{Open}$, | See Figure 12 | Full | 1.95 V | -400 | | 400 | nA | | COM | | V_{NC} or V_{NO} = Open, V_{COM} = 0.3 V, | Switch ON. | 25°C | | -50 | | 50 | | | ON leakage
current | I _{COM(ON)} | or V_{NC} or V_{NO} = Open, V_{COM} = 1.65 V, | See Figure 12 | Full | 1.95 V | -400 | | 400 | nA | | Digital Control In | puts (IN1, IN2) | (2) | | | | | | | | | Input logic high | V _{IH} | | | Full | | 1 | | | V | | Input logic low | V _{IL} | | | Full | | | | 0.4 | V | | Input leakage | ane | 25°C | 1.05.\/ | | 0 | 50 | nA | | | | current | IIH, IIL | $I_{ H}, I_{ L}$ $V_{I} = 1.95 \text{ V or } 0$ | | Full | 1.95 V | | | 150 | IIA | ⁽¹⁾ The algebraic convention, whereby the most negative value is a minimum and the most positive value is a maximum ⁽²⁾ All unused digital inputs of the device must be held at V₊ or GND to ensure proper device operation. Refer to the TI application report, Implications of Slow or Floating CMOS Inputs, literature number SCBA004. ## TS3A24157 0.65-Ω DUAL SPDT ANALOG SWITCH DUAL-CHANNEL 2:1 MULTIPLEXER/DEMULTIPLEXER SCDS208A-JUNE 2007-REVISED SEPTEMBER 2007 # Electrical Characteristics for 1.8-V Supply⁽¹⁾ (Continued) V_{+} = 1.65 V to 1.95 V, T_{A} = -40°C to 85°C (unless otherwise noted) | PARAMETER | SYMBOL | TEST CON | DITIONS | T _A | V ₊ | MIN | TYP | MAX | UNIT | |---------------------------|--|---|---|----------------|---------------------|-----|-----|-----|------| | Dynamic | | | | | , | | | | | | | | V V | $C_1 = 35 pF$, | 25°C | 1.8 V | | 33 | 75 | | | Turn-on time | t _{ON} | $V_{COM} = V_+,$ $R_L = 50 \Omega,$ | See Figure 14 | Full | 1.65 V to
1.95 V | | | 80 | ns | | | | V - V | $C_1 = 35 \text{ pF},$ | 25°C | 1.8 V | | 24 | 35 | | | | See Figure 14 | Full | 1.65 V to
1.95 V | | | 40 | ns | | | | Break-before- | | \ \ \ \ -\\ \ -\\ | $C_1 = 35 \text{ pF},$ | 25°C | 1.8 V | 2 | 20 | 40 | | | make time | t _{BBM} | $V_{NC} = V_{NO} = V_+,$ $R_L = 50 \Omega,$ | See Figure 15 | Full | 1.65 V to
1.95 V | 1 | | 50 | ns | | Charge injection | Q _C | V _{GEN} = 0,
R _{GEN} = 0, | C _L = 1 nF,
See Figure 19 | 25°C | 1.8 V | | 4 | | рС | | NC, NO
OFF capacitance | C _{NC(OFF)} ,
C _{NO(OFF)} | V_{NC} or $V_{NO} = V_{+}$ or GND,
Switch OFF, | See Figure 13 | 25°C | 1.8 V | | 50 | | pF | | NC, NO
ON capacitance | C _{NC(ON)} ,
C _{NO(ON)} | V_{NC} or $V_{NO} = V_{+}$ or GND,
Switch ON, | See Figure 13 | 25°C | 1.8 V | | 140 | | pF | | COM
ON capacitance | C _{COM(ON)} | V _{COM} = V ₊ or GND,
Switch ON, | See Figure 13 | 25°C | 1.8 V | | 140 | | pF | | Digital input capacitance | C _I | $V_1 = V_+ \text{ or GND},$ | See Figure 13 | 25°C | 1.8 V | | 2 | | pF | | Bandwidth | BW | $R_L = 50 \Omega$,
Switch ON, | See Figure 16 | 25°C | 1.8 V | | 48 | | MHz | | OFF isolation | O _{ISO} | $R_L = 50 \Omega$,
f = 1 MHz, | See Figure 17 | 25°C | 1.8 V | | -73 | | dB | | Crosstalk | X _{TALK} | $R_L = 50 \Omega$,
f = 1 MHz, | See Figure 18 | 25°C | 1.8 V | | -72 | | dB | | Total harmonic distortion | THD | $R_L = 600 \Omega,$
$C_L = 50 pF,$ | f = 20 Hz to 20 kHz,
See Figure 20 | 25°C | 1.8 V | | | | % | | Supply | | | | | | | | | | | Positive supply | I ₊ | $V_1 = V_+$ or GND | | 25°C | 1.05.V | | 10 | 100 | nΛ | | current | 1+ | VI = V+ OI GIND | | Full | 1.95 V | | | 600 | nA | ⁽¹⁾ The algebraic convention, whereby the most negative value is a minimum and the most positive value is a maximum Submit Documentation Feedback Copyright © 2007, Texas Instruments Incorporated ## **TYPICAL PERFORMANCE (continued)** Figure 7. OFF Isolation and Crosstalk Figure 8. Total Harmonic Distortion vs Frequency Figure 9. Power-Supply Current vs V₊ Submit Documentation Feedback ## TS3A24157 0.65-Ω DUAL SPDT ANALOG SWITCH DUAL-CHANNEL 2:1 MULTIPLEXER/DEMULTIPLEXER SCDS208A-JUNE 2007-REVISED SEPTEMBER 2007 ### **PIN DESCRIPTION** | NO. | NAME | DESCRIPTION | |-----|------|---| | 1 | NC1 | Normally closed | | 2 | NO1 | Normally open | | 3 | NC2 | Normally closed | | 4 | NO2 | Normally open | | 5 | GND | Ground | | 6 | COM2 | Common | | 7 | IN2 | Digital control to connect COM2 to NO2 or NC2 | | 8 | IN1 | Digital control to connect COM1 to NO1 or NC1 | | 9 | COM1 | Common | | 10 | ٧, | Power supply | ### PARAMETER DESCRIPTION | SYMBOL | DESCRIPTION | |-----------------------------------|---| | V _{COM} | Voltage at COM | | V _{NC} | Voltage at NC | | V_{NO} | Voltage at NO | | r _{on} | Resistance between COM and NC or COM and NO ports when the channel is ON | | r _{peak} | Peak on-state resistance over a specified voltage range | | Δr _{on} | Difference of r _{on} between channels in a specific device | | r _{on(flat)} | Difference between the maximum and minimum value of ron in a channel over the specified range of conditions | | I _{NC(OFF)} | Leakage current measured at the NC port, with the corresponding channel (NC to COM) in the OFF state under worst-case input and output conditions | | I _{NC(PWROFF)} | Leakage current measured at the NC port during the power-down condition, $V_{+} = 0$ | | I _{NO(OFF)} | Leakage current measured at the NO port, with the corresponding channel (NO to COM) in the OFF state under worst-case input and output conditions | | I _{NO(PWROFF)} | Leakage current measured at the NO port during the power-down condition, $V_{+} = 0$ | | I _{NC(ON)} | Leakage current measured at the NC port, with the corresponding channel (NC to COM) in the ON state and the output (COM) open | | I _{NO(ON)} | Leakage current measured at the NO port, with the corresponding channel (NO to COM) in the ON state and the output (COM) open | | I _{COM(ON)} | Leakage current measured at the COM port, with the corresponding channel (COM to NO or COM to NC) in the ON state and the output (NC or NO) open | | I _{COM(PWROFF)} | Leakage current measured at the COM port during the power-down condition, $V_{+} = 0$ | | V_{IH} | Minimum input voltage for logic high for the control input (IN) | | V_{IL} | Maximum input voltage for logic low for the control input (IN) | | VI | Voltage at the control input (IN) | | I _{IH} , I _{IL} | Leakage current measured at the control input (IN) | | t _{ON} | Turn-on time for the switch. This parameter is measured under the specified range of conditions and by the propagation delay between the digital control (IN) signal and analog output (COM, NC, or NO) signal when the switch is turning ON. | | t _{OFF} | Turn-off time for the switch. This parameter is measured under the specified range of conditions and by the propagation delay between the digital control (IN) signal and analog output (COM, NC, or NO) signal when the switch is turning OFF. | | t _{BBM} | Break-before-make time. This parameter is measured under the specified range of conditions and by the propagation delay between the output of two adjacent analog channels (NC and NO) when the control signal changes state. | | Q_C | Charge injection is a measurement of unwanted signal coupling from the control (IN) input to the analog (NC, NO, or COM) output. This is measured in coulomb (C) and measured by the total charge induced due to switching of the control input. Charge injection, $Q_C = C_L \times \Delta V_{COM}$, C_L is the load capacitance and ΔV_{COM} is the change in analog output voltage. | | C _{NC(OFF)} | Capacitance at the NC port when the corresponding channel (NC to COM) is OFF | | C _{NO(OFF)} | Capacitance at the NO port when the corresponding channel (NO to COM) is OFF | | C _{NC(ON)} | Capacitance at the NC port when the corresponding channel (NC to COM) is ON | | C _{NO(ON)} | Capacitance at the NO port when the corresponding channel (NO to COM) is ON | | C _{COM(ON)} | Capacitance at the COM port when the corresponding channel (COM to NC or COM to NO) is ON | | C _I | Capacitance of control input (IN) | | O _{ISO} | OFF isolation of the switch is a measurement of OFF-state switch impedance. This is measured in dB in a specific frequency, with the corresponding channel (NC to COM or NO to COM) in the OFF state. | | X _{TALK} | Crosstalk is a measurement of unwanted signal coupling from an ON channel to an OFF channel (NC to NO or NO to NC). This is measured in a specific frequency and in dB. | | BW | Bandwidth of the switch. This is the frequency in which the gain of an ON channel is -3 dB below the DC gain. | | THD | Total harmonic distortion describes the signal distortion caused by the analog switch. This is defined as the ratio of root mean square (RMS) value of the second, third, and higher harmonic to the absolute magnitude of the fundamental harmonic. | | I ₊ | Static power-supply current with the control (IN) pin at V ₊ or GND | | | | Submit Documentation Feedback ## PARAMETER MEASUREMENT INFORMATION Figure 10. ON-State Resistance (ron) Figure 11. OFF-State Leakage Current (I_{NC(OFF)}, I_{NO(PWROFF)}, I_{NO(PWROFF)}, I_{COM(PWROFF)}) Figure 12. ON-State Leakage Current ($I_{COM(ON)}$, $I_{NC(ON)}$, $I_{NO(ON)}$) Figure 13. Capacitance (C_I, $C_{COM(ON)}$, $C_{NC(OFF)}$, $C_{NO(OFF)}$, $C_{NC(ON)}$, $C_{NO(ON)}$) - A. All input pulses are supplied by generators having the following characteristics: PRR \leq 10 MHz, $Z_O = 50 \Omega$, $t_f < 5 \text{ ns}$, $t_f < 5 \text{ ns}$. - B. C_L includes probe and jig capacitance. Figure 14. Turn-On (t_{ON}) and Turn-Off Time (t_{OFF}) - A. All input pulses are supplied by generators having the following characteristics: PRR \leq 10 MHz, $Z_O = 50 \Omega$, $t_f < 5 \text{ ns}$, $t_f < 5 \text{ ns}$. - B. C_L includes probe and jig capacitance. Figure 15. Break-Before-Make Time (t_{BBM}) Figure 16. Bandwidth (BW) Figure 17. OFF Isolation (O_{ISO}) Figure 18. Crosstalk (X_{TALK}) Submit Documentation Feedback - A. All input pulses are supplied by generators having the following characteristics: PRR \leq 10 MHz, $Z_O = 50 \Omega$, $t_f < 5$ ns, $t_f < 5$ ns. - B. C_L includes probe and jig capacitance. Figure 19. Charge Injection (Q_C) A. C_L includes probe and jig capacitance. Figure 20. Total Harmonic Distortion (THD) #### PACKAGE OPTION ADDENDUM www.ti.com 8-Dec-2009 #### **PACKAGING INFORMATION** | Orderable Device | Status ⁽¹⁾ | Package
Type | Package
Drawing | Pins | Package
Qty | e Eco Plan ⁽²⁾ | Lead/Ball Finish | MSL Peak Temp ⁽³⁾ | |------------------|-----------------------|-----------------|--------------------|------|----------------|---------------------------|------------------|------------------------------| | TS3A24157DGSR | ACTIVE | MSOP | DGS | 10 | 2500 | Green (RoHS & no Sb/Br) | CU NIPDAU | Level-1-260C-UNLIM | | TS3A24157DGSRG4 | ACTIVE | MSOP | DGS | 10 | 2500 | Green (RoHS & no Sb/Br) | CU NIPDAU | Level-1-260C-UNLIM | | TS3A24157RSER | ACTIVE | UQFN | RSE | 10 | 3000 | Green (RoHS & no Sb/Br) | CU NIPDAU | Level-1-260C-UNLIM | | TS3A24157RSERG4 | ACTIVE | UQFN | RSE | 10 | 3000 | Green (RoHS & no Sb/Br) | CU NIPDAU | Level-1-260C-UNLIM | ⁽¹⁾ The marketing status values are defined as follows: ACTIVE: Product device recommended for new designs. LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect. **NRND:** Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design. PREVIEW: Device has been announced but is not in production. Samples may or may not be available. **OBSOLETE:** TI has discontinued the production of the device. (2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details. TBD: The Pb-Free/Green conversion plan has not been defined. **Pb-Free** (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes. **Pb-Free (RoHS Exempt):** This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above. Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material) (3) MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature. Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release. In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis. **PACKAGE MATERIALS INFORMATION** www.ti.com 31-Jul-2010 ## TAPE AND REEL INFORMATION | A0 | Dimension designed to accommodate the component width | |----|---| | B0 | Dimension designed to accommodate the component length | | K0 | Dimension designed to accommodate the component thickness | | W | Overall width of the carrier tape | | P1 | Pitch between successive cavity centers | QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE ### *All dimensions are nominal | Device | Package
Type | Package
Drawing | | | Reel
Diameter
(mm) | Reel
Width
W1 (mm) | A0
(mm) | B0
(mm) | K0
(mm) | P1
(mm) | W
(mm) | Pin1
Quadrant | |---------------|-----------------|--------------------|----|------|--------------------------|--------------------------|------------|------------|------------|------------|-----------|------------------| | TS3A24157DGSR | MSOP | DGS | 10 | 2500 | 330.0 | 12.4 | 5.3 | 3.3 | 1.3 | 8.0 | 12.0 | Q1 | **PACKAGE MATERIALS INFORMATION** www.ti.com 31-Jul-2010 #### *All dimensions are nominal | Device | Package Type | Package Drawing | Pins | SPQ | Length (mm) | Width (mm) | Height (mm) | |---------------|--------------|-----------------|------|------|-------------|------------|-------------| | TS3A24157DGSR | MSOP | DGS | 10 | 2500 | 346.0 | 346.0 | 35.0 | # DGS (S-PDSO-G10) # PLASTIC SMALL-OUTLINE PACKAGE NOTES: - A. All linear dimensions are in millimeters. - B. This drawing is subject to change without notice. - C. Body dimensions do not include mold flash or protrusion. - D. Falls within JEDEC MO-187 variation BA. NOTES: All linear dimensions are in millimeters. Dimensioning and tolerancing per ASME Y14.5M-1994. - B. This drawing is subject to change without notice. C. QFN (Quad Flatpack No-Lead) package configuration. D. This package complies to JEDEC MO-288 variation UEFD. # RSE (R-PQFP-N10) - NOTES: A. All linear dimensions are in millimeters. - B. This drawing is subject to change without notice. - C. Publication IPC-7351 is recommended for alternate designs. - D. Customers should contact their board fabrication site for minimum solder mask web tolerances between signal pads. - E. Maximum stencil thickness 0,127 mm (5 mils). All linear dimensions are in millimeters. - F. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC 7525 for stencil design considerations. - G. Side aperture dimensions over-print land for acceptable area ratio > 0.66. Customer may reduce side aperture dimensions if stencil manufacturing process allows for sufficient release at smaller opening. #### IMPORTANT NOTICE Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment. TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed. TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards. TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI. Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions. Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements. TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would reasonably be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products and any use of TI products in such safety-critical applications, notwithstanding any applications-related information or support that may be provided by TI. Further, Buyers must fully indemnify TI and its representatives against any damages arising out of the use of TI products in such safety-critical applications. TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use. TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products are designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated products in automotive applications, TI will not be responsible for any failure to meet such requirements. Following are URLs where you can obtain information on other Texas Instruments products and application solutions: | Products | | Applications | | | | |-----------------------------|------------------------|------------------------------|-----------------------------------|--|--| | Amplifiers | amplifier.ti.com | Audio | www.ti.com/audio | | | | Data Converters | dataconverter.ti.com | Automotive | www.ti.com/automotive | | | | DLP® Products | www.dlp.com | Communications and Telecom | www.ti.com/communications | | | | DSP | <u>dsp.ti.com</u> | Computers and
Peripherals | www.ti.com/computers | | | | Clocks and Timers | www.ti.com/clocks | Consumer Electronics | www.ti.com/consumer-apps | | | | Interface | interface.ti.com | Energy | www.ti.com/energy | | | | Logic | logic.ti.com | Industrial | www.ti.com/industrial | | | | Power Mgmt | power.ti.com | Medical | www.ti.com/medical | | | | Microcontrollers | microcontroller.ti.com | Security | www.ti.com/security | | | | RFID | www.ti-rfid.com | Space, Avionics & Defense | www.ti.com/space-avionics-defense | | | | RF/IF and ZigBee® Solutions | www.ti.com/lprf | Video and Imaging | www.ti.com/video | | | | | | Wireless | www.ti.com/wireless-apps | | |