SLVS237C-AUGUST 1999-REVISED JANUARY 2009 ## ULTRALOW QUIESCENT CURRENT 250-mA LOW DROPOUT VOLTAGE REGULATORS #### **FEATURES** - 250-mA Low Dropout Voltage Regulator - Available in 1.5 V, 1.8 V, 2.5 V, 2.7 V, 2.8 V, 3.0 V, 3.3 V, 5.0 V Fixed Output and Adjustable Versions - Dropout Voltage to 140 mV (Typ) at 250 mA (TPS76650) - Ultralow 35-μA Typical Quiescent Current - 3% Tolerance Over Specified Conditions for Fixed Output Versions - Open-Drain Power Good - 8-Pin SOIC Package - Thermal Shutdown Protection #### **DESCRIPTION** This device is designed to have an ultralow quiescent current and be stable with a $4.7-\mu F$ capacitor. This combination provides high performance at a reasonable cost. Because the PMOS device behaves as a low-value resistor, the dropout voltage is very low (typically 230 mV at an output current of 250 mA for the TPS76650) and is directly proportional to the output current. Additionally, since the PMOS pass element is a voltage-driven device, the quiescent current is very low and independent of output loading (typically 35 μA over the full range of output current, 0 mA to 250 mA). These two key specifications yield a significant improvement in operating life for battery-powered systems. This LDO family also features a sleep mode; applying a TTL high signal to $\overline{\text{EN}}$ (enable) shuts down the regulator, reducing the quiescent current to less than 1 μA (typ). Power good (PG) is an active high output that can be used to implement a power-on reset or a low-battery indicator. The TPS766xx is offered in 1.5 V, 1.8 V, 2.5 V, 2.7 V, 2.8 V, 3.0 V, 3.3 V and 5.0 V fixed voltage versions and in an adjustable version (programmable over the range of 1.25 V to 5.5 V). Output voltage tolerance is specified as a maximum of 3% over line, load, and temperature ranges. The TPS766xx family is available in an 8-pin SOIC package. Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet. All trademarks are the property of their respective owners. SLVS237C-AUGUST 1999-REVISED JANUARY 2009 Instruments www.ti.com This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage. ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications. #### ORDERING INFORMATION(1) | PRODUCT | V _{OUT} ⁽²⁾ | |---------------------------|---| | TPS766 xx<i>yz</i> | XX is nominal output voltage (for example, 28 = 2.8V, 01 = Adjustable). (3) Y is package designator. Z is package quantity. | - (1) For the most current package and ordering information see the Package Option Addendum at the end of this document, or see the TI website at www.ti.com. - (2) Output voltages from 1.5 V to 5.0 V in 50-mV increments are available through the use of innovative factory EEPROM programming; minimum order quantities may apply. Contact factory for details and availability. - (3) The TPS76601 is programmable using an external resistor divider (see Application Information). #### **ABSOLUTE MAXIMUM RATINGS** Over operating free-air temperature range (unless otherwise noted). (1) | PARAM | ETER | TPS766xx | UNIT | |------------------|--|-----------------------------|------| | VI | Input voltage range (2) | -0.3 to 13.5 | V | | | Voltage range at EN | -0.3 to 16.5 | V | | | Maximum PG voltage | 16.5 | V | | | Peak output current | Internally limited | | | | Continuous total power dissipation | See Dissipation Ratings Tab | le | | Vo | Output voltage (OUT, FB) | 7 | V | | T_{J} | Operating virtual junction temperature range | -40 to +125 | °C | | T _{stg} | Storage temperature range | -65 to +150 | °C | | | ESD rating, HBM | 2 | kV | ⁽¹⁾ Stresses above these ratings may cause permanent damage. Exposure to absolute maximum conditions for extended periods may degrade device reliability. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those specified is not implied. #### **DISSIPATION RATINGS** | PACKAGE | AIR FLOW
(CFM) | T _A < +25°C
POWER RATING | DERATING FACTOR
ABOVE T _A = +25°C | T _A = +70°C
POWER RATING | T _A = +85°C
POWER RATING | |---------|-------------------|--|---|--|--| | Б | 0 | 568 mW | 5.68 mW/°C | 312 mW | 227 mW | | U | 250 | 904 mW | 9.04 mW/°C | 497 mW | 361 mW | #### RECOMMENDED OPERATING CONDITIONS | | | MIN | MAX | UNIT | |----|---|-----|-----|------| | VI | Input voltage ⁽¹⁾ | 2.7 | 10 | V | | Vo | Output voltage range | 1.2 | 5.5 | V | | Io | Output current (2) | 0 | 250 | mA | | TJ | Operating virtual junction temperature ⁽²⁾ | -40 | 125 | °C | ⁽¹⁾ To calculate the minimum input voltage for your maximum output current, use the following equation: $V_{I(min)} = V_{O(max)} + V_{DO(max load)}$ ⁽²⁾ All voltage values are with respect to network terminal ground. ⁽²⁾ Continuous current and operating junction temperature are limited by internal protection circuitry, but it is not recommended that the device operate under conditions beyond those specified in this table for extended periods of time. ### **ELECTRICAL CHARACTERISTICS** Over recommended operating free-air temperature range, $V_i = V_{O(typ)} + 1 \text{ V}$, $I_O = 10 \mu\text{A}$, $\overline{\text{EN}} = 0 \text{ V}$, $C_O = 4.7 \mu\text{F}$ (unless otherwise noted). | PARAMETER | | TEST CON | IDITIONS | MIN | TYP | MAX | UNIT | | |---|------------------------|---|---|---------------------|------|---------------------|--------|--| | | TD070004 | 5.5 V ≥ V _O ≥ 1.25 V, | T _J = +25°C | | Vo | | | | | | TPS76601 | 5.5 V ≥ V _O ≥ 1.25 V, | $T_J = -40^{\circ}\text{C to } +125^{\circ}\text{C}$ | 0.97 V _O | | 1.03 V _O | | | | | TD070045 | T _J = +25°C, | 2.7 V < V _{IN} < 10 V | | 1.5 | | | | | | TPS76615 | $T_J = -40^{\circ}\text{C to } +125^{\circ}\text{C},$ | 2.7 V < V _{IN} < 10 V | 1.455 | | 1.545 | | | | | TD070040 | T _J = +25°C, | 2.8 V < V _{IN} < 10 V | | 1.8 | | | | | | TPS76618 | $T_J = -40^{\circ}\text{C to } +125^{\circ}\text{C},$ | 2.8 V < V _{IN} < 10 V | 1.746 | | 1.854 | | | | | TPS76625 | T _J = +25°C, | 3.5 V < V _{IN} < 10 V | | 2.5 | | | | | | 175/0025 | $T_J = -40^{\circ}\text{C to } +125^{\circ}\text{C},$ | 3.5 V < V _{IN} < 10 V | 2.425 | | 2.575 | | | | Output voltage | TPS76627 | $T_{J} = +25^{\circ}C,$ | $3.7 \text{ V} < \text{V}_{\text{IN}} < 10 \text{ V}$ | | 2.7 | | V | | | (10 μA to 250 mA load) ⁽¹⁾ | 175/002/ | $T_J = -40^{\circ}\text{C to } +125^{\circ}\text{C},$ | 3.7 V < V _{IN} < 10 V | 2.619 | | 2.781 | V | | | | TPS76628 | $T_J = +25^{\circ}C,$ | $3.8 \text{ V} < \text{V}_{\text{IN}} < 10 \text{ V}$ | | 2.8 | | | | | | 173/0020 | $T_J = -40^{\circ}\text{C to } +125^{\circ}\text{C},$ | $3.8 \text{ V} < \text{V}_{\text{IN}} < 10 \text{ V}$ | 2.716 | | 2.884 | | | | | TPS76630 | $T_J = +25^{\circ}C$, | $4.0 \text{ V} < \text{V}_{\text{IN}} < 10 \text{ V}$ | | 3.0 | | | | | | 17370030 | $T_J = -40^{\circ}\text{C to } +125^{\circ}\text{C},$ | $4.0 \text{ V} < \text{V}_{\text{IN}} < 10 \text{ V}$ | 2.910 | | 3.090 | | | | | TPS76633 | $T_{J} = +25^{\circ}C,$ | $4.3 \text{ V} < \text{V}_{\text{IN}} < 10 \text{ V}$ | | 3.3 | | | | | | | $T_J = -40^{\circ}\text{C to } +125^{\circ}\text{C},$ | $4.3 \text{ V} < \text{V}_{\text{IN}} < 10 \text{ V}$ | 3.201 | | 3.399 | | | | | | $T_J = +25^{\circ}C,$ | $6.0 \text{ V} < \text{V}_{\text{IN}} < 10 \text{ V}$ | | 5.0 | | | | | | | $T_J = -40^{\circ}\text{C to } +125^{\circ}\text{C},$ | $6.0 \text{ V} < \text{V}_{\text{IN}} < 10 \text{ V}$ | 4.850 | | 5.150 | | | | Quiescent current (GND current) | $\sqrt{1} = 0 V^{(1)}$ | $10 \mu A < I_O < 250 mA$, | $T_J = +25^{\circ}C$ | | 35 | | μΑ | | | Quescent current (OND current) E | N = 0 V | $I_0 = 250 \text{ mA},$ | $T_J = -40^{\circ}\text{C to } +125^{\circ}\text{C}$ | | | 50 | μΑ | | | Output voltage line regulation (ΔV_{O} | $(V_0)^{(1),(2)}$ | $V_{O} + 1 V < V_{I} \le 10 V$ | $T_J = +25$ °C | | 0.01 | | %/V | | | Load regulation | | $I_O = 10 \mu A$ to 250 mA | | | 0.5% | | | | | Output noise voltage | | BW = 300 Hz to 50 kHz, | | | 200 | | μVrms | | | Output hoise voltage | | $C_O = 4.7 \mu F$, | $T_J = +25$ °C | | 200 | | μνιιιο | | | Output current limit | | $V_O = 0 V$ | | | 8.0 | 1.2 | Α | | | Thermal shutdown junction tempera | ature | | | | 150 | | °C | | | Standby current | | $\overline{EN} = V_I,$ | $T_J = +25^{\circ}C$
2.7 V < V _I < 10 V | | 1 | | μΑ | | | Standby Current | | $\overline{EN} = V_I,$ | $T_J = -40^{\circ}\text{C to } +125^{\circ}\text{C}$
2.7 V < V _I < 10 V | | | 10 | μΑ | | | FB input current TPS76601 | | FB = 1.5 V | | | 2 | | nA | | | High level enable input voltage | | | | 2.0 | | | V | | | Low level enable input voltage | | | | | | 0.8 | V | | | Power-supply ripple rejection ⁽¹⁾ | | f = 1 kHz,
$I_O = 10 \mu\text{A},$ | C _O = 4.7 μF,
T _J = +25°C | | 63 | | dB | | (1) Minimum IN operating voltage is 2.7 V or $V_{O(typ)}$ + 1 V, whichever is greater. Maximum IN voltage 10 V. Over recommended operating free-air temperature range, $V_i = V_{O(typ)} + 1 \text{ V}$, $I_O = 10 \mu\text{A}$, $\overline{\text{EN}} = 0 \text{ V}$, $C_O = 4.7 \mu\text{F}$ (unless otherwise noted). | | PARAMETER | | TEST C | CONDITIONS | MIN | TYP | MAX | UNIT | | |---------|---------------------------|----------|----------------------------|--|-----|------|-----|------|--| | | Minimum input voltage for | valid PG | $I_{O(PG)} = 300 \mu A$ | | | 1.1 | | | | | | Trip threshold voltage | | V _O decreasing | | 92 | | 98 | %Vo | | | PG | Hysteresis voltage | | Measured at V _O | | | 0.5 | | %Vo | | | | Output low voltage | | $V_1 = 2.7 V$, | $I_{O(PG)} = 1 \text{ mA}$ | | 0.15 | 0.4 | V | | | | Leakage current | | V _(PG) = 5 V | | | | 1 | μΑ | | | lanut d | ourrent (ENI) | | EN = 0 V | | -1 | 0 | 1 | ^ | | | input | current (EN) | | $\overline{EN} = V_I$ | -1 | | 1 | μΑ | | | | | | TPS76628 | I _O = 250 mA, | T _J = +25°C | | 310 | | | | | | | 173/0020 | $I_O = 250 \text{ mA},$ | $T_J = -40^{\circ}\text{C to } +125^{\circ}\text{C}$ | | | 540 | | | | | | TDCZCC20 | I _O = 250 mA, | T _J = +25°C | | 270 | | | | | Drono | TPS76630 | | I _O = 250 mA, | $T_J = -40^{\circ}\text{C to } +125^{\circ}\text{C}$ | | | 470 | ~^\/ | | | ыоро | ut voltage ⁽³⁾ | TPS76633 | I _O = 250 mA, | T _J = +25°C | | 230 | | mV | | | | | 175/0033 | I _O = 250 mA, | $T_J = -40^{\circ}\text{C to } +125^{\circ}\text{C}$ | | | 400 | | | | | | TDCZCCCO | I _O = 250 mA, | T _J = +25°C | | 140 | | | | | | | TPS76650 | $I_O = 250 \text{ mA},$ | $T_J = -40^{\circ}\text{C to } +125^{\circ}\text{C}$ | | | 250 | | | ⁽³⁾ IN voltage equals V_{O(Typ)} – 100 mV; TPS76601 output voltage set to 3.3 V nominal with external resistor divider. TPS76615, TPS76618, TPS76625, and TPS76627 dropout voltage limited by input voltage range limitations (that is, TPS76630 input voltage must drop to 2.9 V for purpose of this test). (1) See Applications Information section for capacitor selection details. Figure 1. Typical Application Configuration for Fixed Output Options ## FUNCTIONAL BLOCK DIAGRAM—ADJUSTABLE VERSION FUNCTIONAL BLOCK DIAGRAM—FIXED-VOLTAGE VERSION #### **PIN DESCRIPTIONS** | TPS766xx | | | | | |----------|------|-----|---|--| | NAME | NO. | I/O | DESCRIPTION | | | EN | 4 | 1 | Enable input. | | | FB/NC | 1 | 1 | Feedback input voltage for adjustable device (not connected for fixed options). | | | GND | 3 | | Regulator ground. | | | IN | 5, 6 | I | Input voltage. | | | OUT | 7, 8 | 0 | Regulated output voltage. | | | PG | 2 | 0 | Power good output. | | ## **Table 1. Table of Graphs** | | | FIGURE | |------------------------------------|------------------------------|------------------------| | Output valtage | vs Load current | Figure 2, Figure 3 | | Output voltage | vs Free-air temperature | Figure 4, Figure 5 | | Ground current | vs Load current | Figure 6, Figure 7 | | Ground current | vs Free-air temperature | Figure 8, Figure 9 | | Power-supply ripple rejection | vs Frequency | Figure 10 | | Output spectral noise density | vs Frequency | Figure 11 | | Output impedance | vs Frequency | Figure 12 | | Dropout voltage | vs Free-air temperature | Figure 13, Figure 14 | | Line transient response | | Figure 15, Figure 17 | | Load transient response | | Figure 16, Figure 18 | | Output voltage | vs Time | Figure 19 | | Dropout voltage | vs Input voltage | Figure 20 | | Equivalent series resistance (ESR) | vs Output current | Figure 21 to Figure 24 | | Equivalent series resistance (ESR) | vs Added ceramic capacitance | Figure 25, Figure 26 | #### TYPICAL CHARACTERISTICS ⁽¹⁾ Equivalent series resistance (ESR) refers to the total series resistance, including the ESR of the capacitor, any series resistance added externally, and PWB trace resistance to C_0 . ⁽¹⁾ Equivalent series resistance (ESR) refers to the total series resistance, including the ESR of the capacitor, any series resistance added externally, and PWB trace resistance to C_0 . Figure 27. Test Circuit for Typical Regions of Stability (Figure 21 through Figure 24) (Fixed Output Options) SLVS237C-AUGUST 1999-REVISED JANUARY 2009 www.ti.com #### APPLICATION INFORMATION The TPS766xx family includes eight fixed-output voltage regulators (1.5 V, 1.8 V, 2.5 V, 2.7 V, 2.8 V, 3.0 V, 3.3 V, and 5.0 V), and an adjustable regulator, the TPS76601 (adjustable from 1.25 V to 5.5 V). #### **DEVICE OPERATION** The TPS766xx features very low quiescent current that remains virtually constant even with varying loads. Conventional LDO regulators use a pnp pass element, the base current of which is directly proportional to the load current through the regulator ($I_B = I_C/\beta$). The TPS766xx uses a PMOS transistor to pass current; because the gate of the PMOS is voltage driven, operating current is low and invariable over the full load range. Another pitfall associated with the pnp pass element is its tendency to saturate when the device goes into dropout. The resulting drop in β forces an increase in I_B to maintain the load. During power up, this increase in I_B translates to large start-up currents. Systems with limited supply current may fail to start up. In battery-powered systems, it means rapid battery discharge when the voltage decays below the minimum required for regulation. The TPS766xx quiescent current remains low even when the regulator drops out, eliminating both problems. The TPS766xx family also features a shutdown mode that places the output in the high-impedance state (essentially equal to the feedback-divider resistance) and reduces quiescent current to 1 μ A (typ). If the shutdown feature is not used, $\overline{\text{EN}}$ should be tied to ground. Response to an enable transition is quick; regulated output voltage is reestablished in typically 160 μ s. #### MINIMUM LOAD REQUIREMENTS The TPS766xx family is stable even at zero load; no minimum load is required for operation. #### FB—PIN CONNECTION (ADJUSTABLE VERSION ONLY) The FB pin is an input pin to sense the output voltage and close the loop for the adjustable option. The output voltage is sensed through a resistor divider network to close the loop as shown in Figure 29. Normally, this connection should be as short as possible; however, the connection can be made near a critical circuit to improve performance at that point. Internally, FB connects to a high-impedance, wide-bandwidth amplifier and noise pickup feeds through to the regulator output. Routing the FB connection to minimize or avoid noise pickup is essential. #### **EXTERNAL CAPACITOR REQUIREMENTS** An input capacitor is not usually required; however, a ceramic bypass capacitor (0.047 μ F or larger) improves load transient response and noise rejection if the TPS766xx is located more than a few inches from the power supply. A higher-capacitance electrolytic capacitor may be necessary if large (hundreds of milliamps) load transients with fast rise times are anticipated. Like most low dropout regulators, the TPS766xx requires an output capacitor connected between OUT and GND to stabilize the internal control loop. The minimum recommended capacitance value is 4.7 μ F and the ESR (equivalent series resistance) must be between 300 mW and 20 Ω . Capacitor values 4.7 μ F or larger are acceptable, provided the ESR is less than 20 Ω . Solid tantalum electrolytic and aluminum electrolytic capacitors are all suitable, provided they meet the requirements described previously. Ceramic capacitors, with series resistors that are sized to meet the previously described requirements, may also be used. Figure 28. Typical Application Circuit (Fixed Versions) #### PROGRAMMING THE TPS76601 ADJUSTABLE LDO REGULATOR The output voltage of the TPS76601 adjustable regulator is programmed using an external resistor divider as shown in Figure 29. The output voltage is calculated using: $$V_{O} = V_{ref} \times \left(1 + \frac{R1}{R2}\right) \tag{1}$$ Where: • V_{ref} = 1.224 V typ (the internal reference voltage) Resistors R1 and R2 should be chosen for approximately 7- μ A divider current. Lower value resistors can be used but offer no inherent advantage and waste more power. Higher values should be avoided because leakage currents at FB increase the output voltage error. The recommended design procedure is to choose R2 = 169 k Ω to set the divider current at 7 μ A, and then calculate R1 using: $$R1 = \left(\frac{V_{O}}{V_{ref}} - 1\right) \times R2$$ (2) # OUTPUT VOLTAGE PROGRAMMING GUIDE | OUTPUT
VOLTAGE | R1 | R2 | UNIT | |-------------------|-----|-----|------| | 2.5 V | 174 | 169 | kΩ | | 3.3 V | 287 | 169 | kΩ | | 3.6 V | 324 | 169 | kΩ | | 4.0 V | 383 | 169 | kΩ | | 5.0 V | 523 | 169 | kΩ | Figure 29. TPS76601 Adjustable LDO Regulator Programming www.ti.com #### **POWER-GOOD INDICATOR** The TPS766xx features a power-good (PG) output that can be used to monitor the status of the regulator. The internal comparator monitors the output voltage: when the output drops to between 92% and 98% of its nominal regulated value, the PG output transistor turns on, taking the signal low. The open-drain output requires a pullup resistor. If not used, it can be left floating. PG can be used to drive power-on reset circuitry or used as a low-battery indicator. #### **REGULATOR PROTECTION** The TPS766xx PMOS-pass transistor has a built-in back diode that conducts reverse currents when the input voltage drops below the output voltage (for example, during power down). Current is conducted from the output to the input and is not internally limited. When extended reverse voltage is anticipated, external limiting may be appropriate. The TPS766xx also features internal current limiting and thermal protection. During normal operation, the TPS766xx limits output current to approximately 0.8 A (typ). When current limiting engages, the output voltage scales back linearly until the overcurrent condition ends. While current limiting is designed to prevent gross device failure, care should be taken not to exceed the power dissipation ratings of the package. If the temperature of the device exceeds +150°C (typ), thermal-protection circuitry shuts it down. Once the device has cooled below +130°C (typ), regulator operation resumes. #### POWER DISSIPATION AND JUNCTION TEMPERATURE Specified regulator operation is assured to a junction temperature of +125°C; the maximum junction temperature should be restricted to +125°C under normal operating conditions. This restriction limits the power dissipation the regulator can handle in any given application. To ensure the junction temperature is within acceptable limits, calculate the maximum allowable dissipation, $P_{D(max)}$, and the actual dissipation, P_D , which must be less than or equal to $P_{D(max)}$. The maximum-power-dissipation limit is determined using the following equation: $$P_{D(max)} = \frac{T_{J}max - T_{A}}{R_{\theta JA}}$$ (3) Where: - T_Jmax is the maximum allowable junction temperature; - R_{eJA} is the thermal resistance junction-to-ambient for the package (that is, 176°C/W for the 8-terminal SOIC); - T_A is the ambient temperature. The regulator dissipation is calculated using: $$P_{D} = (V_{I} - V_{O}) \times I_{O}$$ (4) Power dissipation resulting from quiescent current is negligible. Excessive power dissipation triggers the thermal protection circuit. 11-Feb-2016 ## **PACKAGING INFORMATION** | Orderable Device | Status | Package Type | Package
Drawing | Pins | Package
Qty | Eco Plan | Lead/Ball Finish | MSL Peak Temp | Op Temp (°C) | Device Marking
(4/5) | Samples | |------------------|--------|--------------|--------------------|------|----------------|----------------------------|------------------|--------------------|--------------|-------------------------|---------| | TPS76601D | ACTIVE | SOIC | D | 8 | 75 | Green (RoHS
& no Sb/Br) | CU NIPDAU | Level-1-260C-UNLIM | | 76601 | Samples | | TPS76601DG4 | ACTIVE | SOIC | D | 8 | 75 | Green (RoHS
& no Sb/Br) | CU NIPDAU | Level-1-260C-UNLIM | | 76601 | Samples | | TPS76601DR | ACTIVE | SOIC | D | 8 | 2500 | Green (RoHS
& no Sb/Br) | CU NIPDAU | Level-1-260C-UNLIM | | 76601 | Samples | | TPS76601DRG4 | ACTIVE | SOIC | D | 8 | | TBD | Call TI | Call TI | | | Samples | | TPS76615D | ACTIVE | SOIC | D | 8 | 75 | Green (RoHS
& no Sb/Br) | CU NIPDAU | Level-1-260C-UNLIM | | 76615 | Samples | | TPS76615DG4 | ACTIVE | SOIC | D | 8 | 75 | Green (RoHS
& no Sb/Br) | CU NIPDAU | Level-1-260C-UNLIM | | 76615 | Samples | | TPS76615DR | ACTIVE | SOIC | D | 8 | 2500 | Green (RoHS
& no Sb/Br) | CU NIPDAU | Level-1-260C-UNLIM | | 76615 | Samples | | TPS76615DRG4 | ACTIVE | SOIC | D | 8 | 2500 | Green (RoHS
& no Sb/Br) | CU NIPDAU | Level-1-260C-UNLIM | | 76615 | Samples | | TPS76618D | ACTIVE | SOIC | D | 8 | 75 | Green (RoHS
& no Sb/Br) | CU NIPDAU | Level-1-260C-UNLIM | | 76618 | Samples | | TPS76618DG4 | ACTIVE | SOIC | D | 8 | 75 | Green (RoHS
& no Sb/Br) | CU NIPDAU | Level-1-260C-UNLIM | | 76618 | Samples | | TPS76618DR | ACTIVE | SOIC | D | 8 | 2500 | Green (RoHS
& no Sb/Br) | CU NIPDAU | Level-1-260C-UNLIM | | 76618 | Samples | | TPS76618DRG4 | ACTIVE | SOIC | D | 8 | 2500 | Green (RoHS
& no Sb/Br) | CU NIPDAU | Level-1-260C-UNLIM | | 76618 | Samples | | TPS76625D | ACTIVE | SOIC | D | 8 | 75 | Green (RoHS
& no Sb/Br) | CU NIPDAU | Level-1-260C-UNLIM | | 76625 | Samples | | TPS76625DG4 | ACTIVE | SOIC | D | 8 | 75 | Green (RoHS
& no Sb/Br) | CU NIPDAU | Level-1-260C-UNLIM | | 76625 | Samples | | TPS76625DR | ACTIVE | SOIC | D | 8 | 2500 | Green (RoHS
& no Sb/Br) | CU NIPDAU | Level-1-260C-UNLIM | | 76625 | Samples | | TPS76625DRG4 | ACTIVE | SOIC | D | 8 | 2500 | Green (RoHS
& no Sb/Br) | CU NIPDAU | Level-1-260C-UNLIM | | 76625 | Samples | | TPS76628D | ACTIVE | SOIC | D | 8 | 75 | Green (RoHS
& no Sb/Br) | CU NIPDAU | Level-1-260C-UNLIM | | 76628 | Samples | ## PACKAGE OPTION ADDENDUM www.ti.com 11-Feb-2016 | Orderable Device | Status | Package Type | Package
Drawing | Pins | Package
Qty | Eco Plan | Lead/Ball Finish | MSL Peak Temp | Op Temp (°C) | Device Marking (4/5) | Samples | |------------------|--------|--------------|--------------------|------|----------------|----------------------------|------------------|--------------------|--------------|----------------------|---------| | TPS76628DR | ACTIVE | SOIC | D | 8 | 2500 | Green (RoHS
& no Sb/Br) | CU NIPDAU | Level-1-260C-UNLIM | | 76628 | Samples | | TPS76630D | ACTIVE | SOIC | D | 8 | 75 | Green (RoHS
& no Sb/Br) | CU NIPDAU | Level-1-260C-UNLIM | | 76630 | Samples | | TPS76630DG4 | ACTIVE | SOIC | D | 8 | 75 | Green (RoHS
& no Sb/Br) | CU NIPDAU | Level-1-260C-UNLIM | | 76630 | Samples | | TPS76633D | ACTIVE | SOIC | D | 8 | 75 | Green (RoHS
& no Sb/Br) | CU NIPDAU | Level-1-260C-UNLIM | -40 to 125 | 76633 | Samples | | TPS76633DG4 | ACTIVE | SOIC | D | 8 | 75 | Green (RoHS
& no Sb/Br) | CU NIPDAU | Level-1-260C-UNLIM | -40 to 125 | 76633 | Samples | | TPS76633DR | ACTIVE | SOIC | D | 8 | 2500 | Green (RoHS
& no Sb/Br) | CU NIPDAU | Level-1-260C-UNLIM | -40 to 125 | 76633 | Samples | | TPS76633DRG4 | ACTIVE | SOIC | D | 8 | 2500 | Green (RoHS
& no Sb/Br) | CU NIPDAU | Level-1-260C-UNLIM | -40 to 125 | 76633 | Samples | | TPS76650D | ACTIVE | SOIC | D | 8 | 75 | Green (RoHS
& no Sb/Br) | CU NIPDAU | Level-1-260C-UNLIM | | 76650 | Samples | | TPS76650DG4 | ACTIVE | SOIC | D | 8 | | TBD | Call TI | Call TI | | | Samples | | TPS76650DR | ACTIVE | SOIC | D | 8 | 2500 | Green (RoHS
& no Sb/Br) | CU NIPDAU | Level-1-260C-UNLIM | | 76650 | Samples | | TPS76650DRG4 | ACTIVE | SOIC | D | 8 | 2500 | Green (RoHS
& no Sb/Br) | CU NIPDAU | Level-1-260C-UNLIM | | 76650 | Samples | (1) The marketing status values are defined as follows: ACTIVE: Product device recommended for new designs. LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect. NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design. PREVIEW: Device has been announced but is not in production. Samples may or may not be available. **OBSOLETE:** TI has discontinued the production of the device. TBD: The Pb-Free/Green conversion plan has not been defined. Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes. **Pb-Free (RoHS Exempt):** This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above. Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material) ⁽²⁾ Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details. ## PACKAGE OPTION ADDENDUM 11-Feb-2016 - (3) MSL, Peak Temp. The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature. - (4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device. - (5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device. - (6) Lead/Ball Finish Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the finish value exceeds the maximum column width. **Important Information and Disclaimer:** The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release. In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis. PACKAGE MATERIALS INFORMATION www.ti.com 13-Feb-2016 ## TAPE AND REEL INFORMATION | | Dimension designed to accommodate the component width | |----|---| | | Dimension designed to accommodate the component length | | K0 | Dimension designed to accommodate the component thickness | | W | Overall width of the carrier tape | | P1 | Pitch between successive cavity centers | QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE #### *All dimensions are nominal | Device | Package
Type | Package
Drawing | | SPQ | Reel
Diameter
(mm) | Reel
Width
W1 (mm) | A0
(mm) | B0
(mm) | K0
(mm) | P1
(mm) | W
(mm) | Pin1
Quadrant | |------------|-----------------|--------------------|---|------|--------------------------|--------------------------|------------|------------|------------|------------|-----------|------------------| | TPS76601DR | SOIC | D | 8 | 2500 | 330.0 | 12.4 | 6.4 | 5.2 | 2.1 | 8.0 | 12.0 | Q1 | | TPS76615DR | SOIC | D | 8 | 2500 | 330.0 | 12.4 | 6.4 | 5.2 | 2.1 | 8.0 | 12.0 | Q1 | | TPS76618DR | SOIC | D | 8 | 2500 | 330.0 | 12.4 | 6.4 | 5.2 | 2.1 | 8.0 | 12.0 | Q1 | | TPS76625DR | SOIC | D | 8 | 2500 | 330.0 | 12.4 | 6.4 | 5.2 | 2.1 | 8.0 | 12.0 | Q1 | | TPS76628DR | SOIC | D | 8 | 2500 | 330.0 | 12.4 | 6.4 | 5.2 | 2.1 | 8.0 | 12.0 | Q1 | | TPS76633DR | SOIC | D | 8 | 2500 | 330.0 | 12.4 | 6.4 | 5.2 | 2.1 | 8.0 | 12.0 | Q1 | | TPS76633DR | SOIC | D | 8 | 2500 | 330.0 | 12.4 | 6.4 | 5.2 | 2.1 | 8.0 | 12.0 | Q1 | | TPS76650DR | SOIC | D | 8 | 2500 | 330.0 | 12.4 | 6.4 | 5.2 | 2.1 | 8.0 | 12.0 | Q1 | www.ti.com 13-Feb-2016 *All dimensions are nominal | Device | Package Type | Package Drawing | Pins | SPQ | Length (mm) | Width (mm) | Height (mm) | | |------------|--------------|-----------------|------|------|-------------|------------|-------------|--| | TPS76601DR | SOIC | D | 8 | 2500 | 367.0 | 367.0 | 38.0 | | | TPS76615DR | SOIC | D | 8 | 2500 | 367.0 | 367.0 | 38.0 | | | TPS76618DR | SOIC | D | 8 | 2500 | 367.0 | 367.0 | 38.0 | | | TPS76625DR | SOIC | D | 8 | 2500 | 367.0 | 367.0 | 38.0 | | | TPS76628DR | SOIC | D | 8 | 2500 | 367.0 | 367.0 | 38.0 | | | TPS76633DR | SOIC | D | 8 | 2500 | 367.0 | 367.0 | 38.0 | | | TPS76633DR | SOIC | D | 8 | 2500 | 367.0 | 367.0 | 35.0 | | | TPS76650DR | SOIC | D | 8 | 2500 | 367.0 | 367.0 | 38.0 | | ## D (R-PDSO-G8) ## PLASTIC SMALL OUTLINE NOTES: - A. All linear dimensions are in inches (millimeters). - B. This drawing is subject to change without notice. - Body length does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0.006 (0,15) each side. - Body width does not include interlead flash. Interlead flash shall not exceed 0.017 (0,43) each side. - E. Reference JEDEC MS-012 variation AA. # D (R-PDSO-G8) ## PLASTIC SMALL OUTLINE NOTES: - A. All linear dimensions are in millimeters. - B. This drawing is subject to change without notice. - C. Publication IPC-7351 is recommended for alternate designs. - D. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC-7525 for other stencil recommendations. - E. Customers should contact their board fabrication site for solder mask tolerances between and around signal pads. #### IMPORTANT NOTICE Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products (also referred to herein as "components") are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment. TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI's terms and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily performed. TI assumes no liability for applications assistance or the design of Buyers' products. Buyers are responsible for their products and applications using TI components. To minimize the risks associated with Buyers' products and applications, Buyers should provide adequate design and operating safeguards. TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI. Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions. Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements. Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use of any TI components in safety-critical applications. In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI's goal is to help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and requirements. Nonetheless, such components are subject to these terms. No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties have executed a special agreement specifically governing such use. Only those TI components which TI has specifically designated as military grade or "enhanced plastic" are designed and intended for use in military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components which have *not* been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and regulatory requirements in connection with such use. TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of non-designated products, TI will not be responsible for any failure to meet ISO/TS16949. #### Products Applications Audio www.ti.com/audio Automotive and Transportation www.ti.com/automotive **Amplifiers** amplifier.ti.com Communications and Telecom www.ti.com/communications **Data Converters** dataconverter.ti.com Computers and Peripherals www.ti.com/computers **DLP® Products** www.dlp.com Consumer Electronics www.ti.com/consumer-apps DSP dsp.ti.com **Energy and Lighting** www.ti.com/energy Clocks and Timers www.ti.com/clocks Industrial www.ti.com/industrial Interface interface.ti.com Medical www.ti.com/medical Logic Security www.ti.com/security logic.ti.com Power Mgmt power.ti.com Space, Avionics and Defense www.ti.com/space-avionics-defense Microcontrollers microcontroller.ti.com Video and Imaging www.ti.com/video RFID www.ti-rfid.com OMAP Applications Processors www.ti.com/omap TI E2E Community e2e.ti.com Wireless Connectivity www.ti.com/wirelessconnectivity