

2.25 MHz Dual Step-Down Converter With 4 Low Input Voltage LDOs

FEATURES

- Up to 95% Efficiency
- Output Current for DCDC Converters 2 × 0.6A
- Two Selectable Fixed Output Voltages 1.0 V/1.2 V for DCDC2
- V_{IN} Range for DCDC Converters From 2.5 V to 6 V
- 2.25 MHz Fixed Frequency Operation
- Power Save Mode at Light Load Current
- 180° Out of Phase Operation
- Output Voltage Accuracy in PWM Mode ±1%
- Low Ripple PFM Mode
- Total Typ. 32 μA Quiescent Current for Both DCDC Converters
- 100% Duty Cycle for Lowest Dropout
- 2 General Purpose 400 mA- High PSRR LDOs
- 2 General Purpose 200 mA- High PSRR LDOs
- V_{IN} Range for LDOs from 1.5 V to 6.5 V
- Digital Voltage Selection for the LDOs
- I²C Compatible Interface
- Available in a 4 mm × 4 mm 32-Pin QFN Package

APPLICATIONS

- Cell Phones, Smart-phones
- WLAN
- PDAs, Pocket PCs
- OMAP[™] and Low Power DSP Supply
- XScale
- Portable Media Players
- Digital Cameras

DESCRIPTION

The TPS65055 is an integrated Power Management IC for applications powered by one Li-Ion or Li-Polymer cell, which require multiple power rails.

The TPS65055 provides two highly efficient, 2.25 MHz step-down converters targeted at providing the core voltage and I/O voltage in a processor-based system. Both step-down converters enter a low power mode at light load for maximum efficiency across the widest possible range of load currents.

For low noise applications the device can be forced into fixed frequency PWM mode using the l^2C compatible interface. In shutdown mode, current consumption is reduced to less than 1 μ A.

The device allows the use of small inductors and capacitors to achieve a small solution size.

The TPS65055 provides an output current of up to 0.6 A on each dcdc converter.

The TPS65055 also integrates two 400 mA LDO and two 200 mA LDO voltage regulators, which can be turned on/off using separate enable pins on each LDO. Each LDO operates with an input voltage range between 1.5 V and 6.5 V allowing them to be supplied from one of the step-down converters or directly from the main battery. Two digital input pins are used to set the output voltage of the LDOs from a set of 9 different combinations for LDO1 to LDO4. Additionally, the converters can be controlled by an l^2C compatible interface.

The TPS65055 is available in a small 32-pin leadless package (4 mm × 4 mm QFN) with a 0,4 mm pitch.

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

TPS65055

SLVS844-SEPTEMBER 2008

These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam during storage or handling to prevent electrostatic damage to the MOS gates.

ORDERING INFORMATION⁽¹⁾

T _A	PART NUMBER ⁽²⁾	OUTPUT CURRENT FOR DCDC CONVERTERS	QFN ⁽²⁾ PACKAGE	PACKAGE MARKING
-40°C to 85°C	TPS65055	2 × 600 mA	RSM	65055

(1) For the most current package and ordering information, see the Package Option Addendum at the end of this document, or see the TI web site at www.ti.com.

(2) The RSM package is available in tape and reel. Add R suffix (TPS65055RSMR) to order quantities of 3000 parts per reel. Add T suffix (TPS65055RSMT) to order quantities of 250 parts per reel.

ABSOLUTE MAXIMUM RATINGS

over operating free-air temperature range (unless otherwise noted) ⁽¹⁾

		VALUE	UNIT
	Input voltage range on all pins except A/PGND, EN_LDO1 pins with respect to AGND	-0.3 to 7	V
	Input voltage range on EN_LDO1 pins with respect to AGND	-0.3 to V _{CC} +0.5	V
	Output voltage range on LDO1, LDO2, LDO3, LDO4 pins with respect to AGND	-0.3 to 4.0	V
	Current at VINDCDC1/2, L1, PGND1, L2, PGND2	1800	mA
	Current at all other pins	1000	mA
	Continuous total power dissipation	See Dissipation Rating Table	
T _A	Operating free-air temperature	-40 to 85	°C
TJ	Maximum junction temperature	125	°C
T _{st}	Storage temperature	-65 to 150	°C
	Lead temperature 1,6 mm (1/16-inch) from case for 10 seconds	260	°C

(1) Stresses beyond those listed under absolute maximum ratings may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions beyond those indicated under recommended operating conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability. This device contains circuits to protect its inputs and outputs against damage due to high static voltages or electrostatic fields. These circuits have been qualified to protect this device against electrostatic discharges; HBM according to EIA/JESD22-A114-B: 1.5kV; and CDM according EIA/JESD22C101C: 500V, however, it is advised that precautions should be taken to avoid application of any voltage higher than maximum-rated voltages to these high-impedance circuits. During storage or handling, the device leads should be shorted together or the device should be placed in conductive foam. In a circuit, unused inputs should always be connected to an appropriated logic voltage level, preferably either VCC or ground. Specific guidelines for handling devices of this type are contained in the publication Guidelines for Handling Electrostatic-Discharge-Sensitive (ESDS) Devices and Assemblies available from Texas Instruments.

DISSIPATION RATINGS

PACKAGE	$R_{ heta JA}$	T _A ≤ 25°C POWER RATING	DERATING FACTOR ABOVE T _A = 25°C	T _A = 70°C POWER RATING	T _A = 85°C POWER RATING
RSM ⁽¹⁾	58 K/W	1.7 W	17 mW/K	0.95 W	0.68 W

(1) The thermal resistance junction-to-case of the RSM package is 4 K/W measured on a high K board.

RECOMMENDED OPERATING CONDITIONS

over operating free-air temperature range (unless otherwise noted)

		MIN	NOM	MAX	UNIT
VINDCDC1/2	Input voltage range for step-down converters	2.5	4	6.0	V
V _{DCDC1}	Output voltage range for VDCDC1 step-down converter	0.6		VINDCDC1	V
V _{DCDC2}	Output voltage range for VDCDC2 step-down converter	0.6		VINDCDC2	V
V _{INLDO1} , V _{INLDO2} , V _{INLDO3/4}	Input voltage range for LDOs	1.5		6.5	V
V _{LDO1-3}	Output voltage range for LDO1 and LDO3	0.8		2.8	V
V _{LDO2-4}	Output voltage range for LDO2 and LDO4	1.0		3.0	V

SLVS844-SEPTEMBER 2008

RECOMMENDED OPERATING CONDITIONS (continued)

over operating free-air temperature range (unless otherwise noted)

		MIN	NOM	MAX	UNIT
IOUTDCDC1	Output current at L1			600	mA
L1	Inductor at L1 ⁽¹⁾	1.5	2.2		μH
CINDCDC1/2	Input capacitor at VINDCDC1/2 ⁽¹⁾	22			μF
C _{OUTDCDC1}	Output capacitor at VDCDC1 ⁽¹⁾	10	22		μF
IOUTDCDC2	Output current at L2			600	mA
L2	Inductor at L2 ⁽¹⁾	1.5	2.2		μH
C _{OUTDCDC2}	Output capacitor at VDCDC2 ⁽¹⁾	10	22		μF
C _{VCC}	Input capacitor at VCC ⁽¹⁾	1			μF
C _{in1-2}	Input capacitor at VINLDO1/2 ⁽¹⁾	2.2			μF
C _{in3-4}	Input capacitor at VINLDO3/4 ⁽¹⁾	2.2			μF
C _{OUT1-2}	Output capacitor at VLDO1-4 ⁽¹⁾	2.2			μF
I _{LDO1,2}	Output current at VLDO1,2			400	mA
I _{LDO3,4}	Output current at VLDO3,4			200	mA
T _A	Operating ambient temperature	-40		85	°C
TJ	Operating junction temperature	-40		125	°C
R _{CC}	Resistor from battery voltage to V_{cc} used for filtering $^{\left(2\right)}$		1	10	Ω

(1) See application section for more details.

(2) Up to 2 mA can flow into V_{cc} when both converters are running in PWM, this resistor causes the UVLO threshold to be shifted accordingly.

ELECTRICAL CHARACTERISTICS

 V_{IN} = 3.6 V, EN = V_{IN} , MODE = GND, L = 2.2 μ H, C_{OUT} = 22 μ F, T_A = -40°C to 85°C, Typical values are at T_A = 25°C (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
SUPPLY	CURRENT					
V _{cc}	Input voltage range		2.5		6.0	V
		One converter, $I_{OUT} = 0$ mA. PFM mode enabled; device not switching, EN_DCDC1 = V_{IN} or EN_DCDC2 = V_{IN} ; EN_LDO1 = EN_LDO2 = EN_LDO3/4 = GND		30	40	μA
Ι _Q	Operating quiescent current Total current into V_{CC} , VINDCDC1/2, VINLDO1, VINLDO2, VINLDO3/4	Two converters, $I_{OUT} = 0$ mA, PFM mode device not switching, EN_DCDC1 = V_{IN} and EN_DCDC2 = V_{IN} ; EN_LD01 = EN_LD02 = EN_LD03/4 = GND		40	55	μΑ
		One converter, $I_{OUT} = 0$ mA, PFM mode enabled; device not switching, EN_DCDC1 = V_{IN} or EN_DCDC2 = V_{IN} ; EN_LDO1 = EN_LDO2 = EN_LDO3 = EN_LDO4 = V_{IN}		190	260	μΑ
Ι _Q		One converter, $I_{OUT} = 0$ mA, Switching with no load, PWM operation EN_DCDC1 = V_{IN} or EN_DCDC2 = V_{IN} ; EN_LDO1 = EN_LDO2 = EN_LDO3/4 = GND		0.85		mA
	Operating quiescent current into V _{CC}	Two converters, $I_{OUT} = 0$ mA, Switching with no load, PWM operation EN_DCDC1 = V _{IN} AND EN_DCDC2 = V _{IN} ; EN_LDO1 = EN_LDO2 = EN_LDO3/4 = GND		1.25		mA
$I_{(SD)}$	Shutdown current	EN_DCDC1 = EN_DCDC2 = GND EN_LDO1 = EN_LDO2 = EN_LDO3 = EN_LDO4 = GND		18	22	μΑ
V _(UVLO)	Undervoltage lockout threshold for DCDC converters and LDOs	Voltage at V_{CC}		1.8	2	V
EN_DCD	OC1, EN_DCDC2, DEFDCDC2, DEFLDO1, DEFLD	O2, EN_LDO1, EN_LDO2, EN_LDO3, EN_LDO4				
V _{IH}	High-level input voltage, SDAT, SCLK, EN_DCDC1, EN_DCDC2, DEFDCDC2, EN_LDO1, EN_LDO2, EN_LDO3, EN_LDO4		1.2		V _{CC}	V
V _{IL}	Low-level input voltage SDAT, SCLK, EN_DCDC1, EN_DCDC2, EN_LDO1, EN_LDO2, EN_LDO3, EN_LDO4, DEFDCDC2		0		0.4	V

SLVS844-SEPTEMBER 2008

ELECTRICAL CHARACTERISTICS (continued)

 $V_{IN} = 3.6 \text{ V}, \text{ EN} = V_{IN}, \text{ MODE} = \text{GND}, \text{ L} = 2.2 \text{ }\mu\text{H}, \text{ C}_{OUT} = 22 \text{ }\mu\text{F}, \text{ T}_{A} = -40^{\circ}\text{C} \text{ to } 85^{\circ}\text{C}, \text{ Typical values are at }\text{T}_{A} = 25^{\circ}\text{C} \text{ (unless otherwise noted)}$

	PARAMETER		TEST CONDITIONS	MIN	TYP	MAX	UNIT
I _{IN}	Input bias current SDAT, SCLI EN_DCDC1, EN_DCDC2, DE DEFLDO1, DEFLDO2, EN_LD EN_LDO3, EN_LDO4	FDCDC2,			0.01	1.0	μA
V _{IH}	DEFLDO1, DEFLDO2		V _{CC} = 2.5 V	1.0			V
V _{IL}	DEFLDO1, DEFLDO2		$V_{CC} = 6.5 V$			0.38	V
RPD	Pull-down resistor at DEFLDO LOW signal	1, DEFLDO2 for	Pulled to GND			1	kΩ
RPU	Pull-up resistor at DEFLDO1, HIGH signal	DEFLDO2 for	Pulled to V _{CC}			1	kΩ
RGNDop en	Resistance at DEFLDO1, DEF detect open state	LDO2 to GND to		10			MΩ
RVCCop en	Resistance at DEFLDO1, DEF detect open state	LDO2 to Vcc to		20			MΩ
POWER	SWITCH						
-	P-channel MOSFET on	DCDC1,	VINDCDC1/2 = 3.6 V		280	630	mΩ
r _{DS(on)}	resistance	DCDC2	VINDCDC1/2 = 2.5 V		400		mu
I _{LD_PMOS}	P-channel leakage current	II.	$V_{DS} = 6 V$			1	μA
_	N-channel MOSFET on	DCDC1,	VINDCDC1/2 = 3.6 V		220	450	
r _{DS(on)}	resistance	DCDC2	VINDCDC1/2 = 2.5 V		320		mΩ
I _{LK_NMOS}	N-channel leakage current	Ш	$V_{DS} = 6 V$		7	10	μA
	Forward current limit PMOS	DCDC1		0.85	1.0	1.15	
I _(LIMF)	(high-side) and NMOS (low side)	DCDC2	$\frac{1}{2.5 \text{ V} \le \text{V}_{\text{IN}} \le 6 \text{ V}}$		1.0	1.15	A
T _{SD}	Thermal shutdown		Increasing junction temperature		150		°C
	Thermal shutdown hysteresis		Decreasing junction temperature		20		°C
OSCILLA	TOR						
f _{SW}	Oscillator frequency			2.025	2.25	2.475	MHz

TPS65055

SLVS844-SEPTEMBER 2008

www.ti.com

ELECTRICAL CHARACTERISTICS (continued)

 V_{IN} = 3.6 V, EN = V_{IN} , MODE = GND, L = 2.2 μ H, C_{OUT} = 22 μ F, T_A = -40°C to 85°C, Typical values are at T_A = 25°C (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
OUTPUT	г					
V _{OUT}	Output voltage range		0.8		V_{IN}	V
V	DC output voltage accuracy DCDC1,	$V_{\rm IN}$ = 2.5 V to 6 V, Mode = GND, PFM operation, 0 mA < I_{\rm OUT} < I_{\rm OUTMAX}	-1.5	0	3.5	%
V _{OUT}	DC output voltage accuracy DCDC2 ⁽¹⁾	$V_{\rm IN} = 2.5$ V to 6 V, Mode = $V_{\rm IN},$ PWM operation, 0 mA < $I_{\rm OUT} < I_{\rm OUTMAX}$	-1.5	0	1.5	%
ΔV_{OUT}	Power save mode ripple voltage ⁽²⁾	I _{OUT} = 1 mA, PFM = GND, Bandwidth = 20 MHz		25		mV _{PP}
t _{Start}	Start-up time	Time from active EN to start switching		170		μs
t _{Ramp}	V _{OUT} Ramp up time	Time to ramp from 5% to 95% of $\rm V_{OUT}$		750		μs
R _{DIS}	Internal discharge resistor at L1, L2			350		Ω
V _{OL}	RST, DPD, discharge output low voltage	I_{OL} = 1 mA, $V_{threshold}$ < 0.8 V			0.3	V
	RST, DPD sink current		1			mA
I _{OL}	discharge sink current		10			mA
	RST, DPD, discharge output leakage curr	ent V _{threshold} > 0.8 V, <u>RST</u> and <u>DPD</u> outputs turned off (internal NMOS in high impedance state)		0.01	1.0	μA
V _{th}	V _{threshold} voltage	Voltage rising	0.78	0.8	0.82	V
	Hysteresis on threshold	Voltage decreasing		80		mV
VLDO1,	VLDO2, VLDO3 and VLDO4 LOW DROPO	UT REGULATORS				
V _{INLDO}	Input voltage range for LDO1, LDO2, LDC LDO4	3,	1.5		6.5	V
V_{LDO1}	LDO1 output voltage range		0.8		2.8	V
V_{LDO2}	LDO2 output voltage range		1.2		3.0	V
V _{LDO3}	LDO3 output voltage		0.8		2.8	V
V _{LDO4}	LDO4 output voltage range		1.2		3.0	V
	Maximum output current for LDO1,LDO2		400			
I _O	Maximum output current for LDO3, LDO4		200			mA
	LDO1 and LDO2 short-circuit current limit	$V_{LDO1} = GND, V_{LDO2} = GND$			800	mA
I _(SC)	LDO3 and LDO4 short-circuit current limit	$V_{LDO3} = GND, V_{LDO4} = GND$			400	mA
	Dropout voltage at LDO1	I _O = 250 mA, V _{INLDO} = 1.8 V			600	mV
	Dropout voltage at LDO2	I _O = 400 mA, V _{INLDO} = 3.3 V			450	mV
	Dropout voltage at LDO3, LDO4	I _O = 200 mA, V _{INLDO} = 1.8 V			280	mV
	Output voltage accuracy for LDO1, LDO2 LDO3	I _O = 10 mA	-2%		1%	
	Leakage current from V_{INLDOx} to V_{LDOx}	LDO enabled, V_{INLDOx} = 6.5 V; V_O = 1.0 V, T = 140°C		3		μA
	Output voltage accuracy for LDO1, LDO2 LDO3, LDO4	I _O = 10 mA	-2%		1%	
	Line regulation for LDO1, LDO2, LDO3, L	DO4 $\begin{array}{l} V_{\text{INLDO1,2}} = V_{\text{LDO1,2}} + 0.5 \text{ V} \text{ (min. 2.5 V) to 6.5 V,} \\ V_{\text{INLDO3,4}} = V_{\text{LDO3,4}} + 0.5 \text{ V} \text{ (min. 2.5 V) to 6.5 V,} \\ I_{\text{O}} = 10 \text{ mA} \end{array}$	-1%		1%	
	Load regulation for LDO1, LDO2, LDO3, I	DO4 $I_0 = 0$ mA to 400 mA for LDO1, LDO2 $I_0 = 0$ mA to 200 mA for LDO3, LDO4	-1%		1%	
	Regulation time for LDO1, LDO2, LDO3, I	DO4 Load change from 10% to 90%		10		μs
PSRR	Power supply rejection ratio	f = 10 kHz; I _O = 50 mA; V _I = V _O + 1 V	70		dB	
R _{DIS}	Internal discharge resistor at VLDO1, VLD VLDO3, VLDO4	02,		350		Ω
T _{SD}	Thermal shutdown	Increasing junction temperature		140		°C
-	Thermal shutdown hysteresis	Decreasing junction temperature		20		°C

(1) Output voltage specification does not include tolerance of external voltage programming resistors (2) In power save mode, PWM operation is typically entered at IPSM = $VIN/32\Omega$

DEVICE INFORMATION

PIN ASSIGNMENT (TOP VIEW)

TERMINAL FUNCTIONS

TERMINAL			DECODIDION		
NAME	NO.	I/O	DESCRIPTION		
Vcc	3	I	Power supply for digital and analog circuitry of DCDC1, DCDC2 and LDOs. This pin must be connected to the same voltage supply as VINDCDC1/2.		
VDCDC1	24	I	Feedback voltage sense input, connect directly to Vout1		
VINDCDC1/2	21		Input voltage for VDCDC1 and VDCDC2 step-down converter. This must be connected to the same voltage supply as VCC.		
VDCDC2	18	Ι	Feedback voltage sense input, connect directly to Vout2		
DEF_DCDC2	17	Ι	Select pin of converter 2 output voltage. High = 1.0 V, low = 1.2 V		
L1	22	0	Switch pin of converter1. Connected to inductor		
PGND1	23	I	GND for converter 1		
PGND2	19	Ι	GND for converter 2		
AGND	2	Ι	Analog GND, connect to PGND and PowerPAD		
L2	20	0	Switch pin of converter 2. Connected to inductor.		
EN_DCDC1	25	I	Enable input for converter1, active high		
EN_DCDC2	26	I	Enable input for converter2, active high		
VINLDO1	29	Ι	Input voltage for LDO1		
VINLDO2	4	Ι	Input voltage for LDO2		
VINLDO3/4	11	Ι	Input voltage for LDO3 and LDO4		
VLDO1	30	0	Output voltage of LDO1		
VLDO2	5	0	Output voltage of LDO2		
VLDO3	10	0	Output voltage of LDO3		
VLDO4	12	0	Output voltage of LDO4		
DEFLDO1	9	Ι	Digital input, used to set the default output voltage of LDO1 to LDO4; LSB		
DEFLDO2	6	I	Digital input, used to set the default output voltage of LDO1 to LDO4; MSB		
SDAT	31	I/O	Data line for the I ² C compatible interface.		
SCLK	32	Ι	Clock input for the I ² C compatible interface.		

TERMINAL FUNCTIONS (continued)

TERMINAL		1/0	DESCRIPTION
NAME	NO.	1/0	DESCRIPTION
EN_LDO1	27	Ι	Enable input for LDO1. Logic high enables the LDO, logic low disables the LDO.
EN_LDO2	28	Ι	Enable input for LDO2. Logic high enables the LDO, logic low disables the LDO.
EN_LDO3	15	Ι	Enable input for LDO3. Logic high enables the LDO, logic low disables the LDO.
EN_LDO4	16	Ι	Enable input for LDO4. Logic high enables the LDO, logic low disables the LDO.
threshold	7	I	Input to comparator driving the $\overline{\text{discharge}}$ output. If the input voltage at threshold is < 0.8 V, the $\overline{\text{discharge}}$ output is actively pulled low.
discharge	14	0	Open drain output driven by the signal at the threshold input
RST	8	0	Open drain active low output; low after UVLO event
DPD	13	0	Open drain active low output; low after UVLO event
BP	1	Ι	Input for bypass capacitor for internal reference
PowerPAD™	-		Connect to GND

7

SLVS844-SEPTEMBER 2008

SLVS844-SEPTEMBER 2008

SLVS844-SEPTEMBER 2008

www.ti.com

PARAMETER MEASUREMENT INFORMATION

The measurements for the graphs were taken using the EVM in the configuration shown in the functional block diagram. The inductors used were Coilcraft LPS3010.

TYPICAL CHARACTERISTICS

TABLE OF GRAPHS

			FIGURE
η	Efficiency DCDC1 ($V_0 = 2.1 V$)	vs Load current / PWM mode	1
η	Efficiency DCDC1 (V _O = 2.1 V)	vs Load current / PFM mode	2
η	Efficiency DCDC2 (V _O = 1.575 V)	vs Load current / PWM mode	3
η	Efficiency DCDC2 (V _O = 1.575 V)	vs Load current / PFM mode	4
η	Efficiency DCDC2 (V _O = 1.2 V)	vs Load current / PWM mode	5
η	Efficiency DCDC2 (V _O = 1.2 V)	vs Load current / PFM mode	6
	Output voltage ripple in PFM mode	Scope plot	7
	Output voltage ripple in PWM mode	Scope plot	8
	Startup timing DCDC1, DCDC2, LDO1	Scope plot	9
	Startup timing LDO1, LDO2, LDO3, LDO4	Scope plot	10
	Load transient response DCDC1; PWM	Scope plot	11
	Load transient response DCDC1; PFM	Scope plot	12
	Load transient response DCDC2; PWM	Scope plot	13
	Load transient response DCDC2;PFM	Scope plot	14
	Line transient response DCDC1 ($V_0 = 2.1 V$)	Scope plot	15
	Line transient response DCDC2 ($V_0 = 1.2 V$)	Scope plot	16
	Load transient response LDO1	Scope plot	17
	Load transient response LDO4	Scope plot	18
-	Line transient response LDO1	Scope plot	19

1

1 0.01 0.1 I_O - Output Current - A Figure 5.

Figure 6.

I_O - Output Current - A

0.01

0.001

10

0.0001

PWM/PFM Mode, V_O = 1.2 V

0.1

1

1

10 0

0.0001

0.001

TEST CONDITIONS
V _{IN} = 3.6 V T _A = 25°C VDCD1 = 2.1 V VDCD2 = 1.2 V
Load DCDC1 = 600 mA Load DCDC2 = 600 mA
ENDCDC1 = High ENDCDC2 = High ENLDO1 = Low ENLDO2 = Low ENLDO3 = Low ENLDO4 = Low
CH1: VDCD1 (Black) CH2: VDCD2 (Green) CH3: Inductor Current DCDC2 (Red) CH4: Inductor Current DCDC1 (Blue)

SLVS844-SEPTEMBER 2008

www.ti.com

SLVS844-SEPTEMBER 2008

V_{IN} = 3.6 V T_A = 25°C

Load Current = 60 mA to 540 mA VDCDC1 = 2.1 V

CH1: VDCD1 (Green) CH2: Load Current (Blue)

Figure 16. Line Transient Response DCDC2 (V₀ = 1.2 V)

Figure 19. Line Transient Response LDO1

DETAILED DESCRIPTION

OPERATION

The TPS65055 includes two synchronous step-down converters. The converters operate with typically 2.25 MHz fixed frequency pulse width modulation (PWM) at moderate to heavy load currents. At light load currents the converters automatically enter power save mode and operate with PFM (pulse frequency modulation).

During PWM operation the converters use a unique fast response voltage mode controller scheme with input voltage feed-forward to achieve good line and load regulation allowing the use of small ceramic input and output capacitors. At the beginning of each clock cycle initiated by the clock signal, the P-channel MOSFET switch is turned on and the inductor current ramps up until the comparator trips and the control logic turns off the switch. The current limit comparator also turns off the switch in case the current limit of the P-channel switch is exceeded. After the adaptive dead time preventing shoot through current, the N-channel MOSFET rectifier is turned on and the inductor current ramps down. The next cycle is initiated by the clock signal again turning off the N-channel rectifier and turning on the P-channel switch.

The two dc-dc converters operate synchronized to each other, with converter 1 as the master. A 180° phase shift between converter 1 and converter 2 decreases the input RMS current. Therefore smaller input capacitors can be used.

DCDC1 Converter

The converter 1 output voltage is set by the status of the DEFLDO1 and DEFLDO2 pins. The pins can be pulled low, pulled high or left floating to allow 9 different logic states. See the description for the LDOs for further details. With the TPS65055 it is also possible to change the output voltage of converter DCDC1 via the I^2C compatible interface. The VDCDC1 pin must be directly connected to V_{OUT1} and no external resistor network may be connected.

DCDC2 Converter

The VDCDC2 pin must be directly connected to the DCDC2 converter output voltage. The DCDC2 converter output voltage can be selected via the DEFDCDC2 pin or the I²C compatible interface.

Copyright © 2008, Texas Instruments Incorporated

The DEFDCDC2 pin can either be connected to GND, or to V_{CC} . The converter 2 defaults to 1.0 V or 1.2 V depending on the logic level of the DEFDCDC2 pin. If DEFDCDC2 is tied to ground, the default is 1.2 V; if it is tied to V_{CC} , the default is 1.0 V.

With the TPS65055, the voltage can also be changed using the I^2C registers – see the application section for details.

POWER SAVE MODE

Power safe mode is enabled per default and can be disabled using the I²C compatible interface. If the load current decreases, the converters enter power save mode operation automatically. During power save mode the converters operate with reduced switching frequency in PFM mode and with a minimum quiescent current to maintain high efficiency. The converter positions the output voltage typically 1% above the nominal output voltage. This voltage positioning feature minimizes voltage drops caused by a sudden load step.

In order to optimize converter efficiency at light load the average current is monitored, and if in PWM mode the inductor current remains below a certain threshold, then power save mode is entered. The typical threshold can be calculated according to:

Equation 1: Average output current threshold to enter PFM mode

$$I_{\text{PFM}_\text{enter}} = \frac{\text{VIN}_{\text{DCDC}}}{32 \ \Omega}$$

Equation 2: Average output current threshold to leave PFM mode

$$I_{\text{PSMDCDCleave}} = \frac{\text{VIN}_{\text{DCDC}}}{24 \ \Omega}$$

During power save mode, the output voltage is monitored with a comparator. As the output voltage falls below the skip comparator threshold (skip comp) of $V_{OUTnominal}$ +1%, the P-channel switch turns on and the converter effectively delivers a constant current as defined above. If the load is below the delivered current, then the output voltage rises until the same threshold is crossed again, whereupon all switching activity ceases, hence reducing the quiescent current to a minimum until the output voltage has dropped below the threshold again. If the load current is greater than the delivered current, then the output voltage falls until it crosses the skip comparator low (skip comp low) threshold set to 1% below nominal V_{out} , whereupon power save mode is exited and the converter returns to PWM mode.

These control methods reduce the quiescent current typically to 12 μ A per converter and the switching frequency to a minimum achieving the highest converter efficiency. PFM mode operates with very low output voltage ripple. The ripple depends on the comparator delay and the size of the output capacitor; increasing capacitor values makes the output ripple tend to zero.

Dynamic Voltage Positioning

This feature reduces the voltage under/overshoots at load steps from light to heavy load and vice versa. It is activated in power save mode operation when the converter runs in PFM mode. It provides more headroom for both, the voltage drop at a load step and the voltage increase at a load throw-off. This improves load transient behavior.

At light loads, in which the converter operates in PFM mode, the output voltage is regulated typically 1% higher than the nominal value. In case of a load transient from light load to heavy load, the output voltage drops until it reaches the skip comparator low threshold set to -1% below the nominal value and enters PWM mode. During a load throw off from heavy load to light load, the voltage overshoot is also minimized due to active regulation turning on the N-channel switch.

SLVS844-SEPTEMBER 2008

Soft Start

The two converters have an internal soft start circuit that limits the inrush current during start-up. During soft start, the output voltage ramp up is controlled as shown in Figure 20.

100% Duty Cycle Low Dropout Operation

The converters offer a low input to output voltage difference while still maintaining operation with the use of the 100% duty cycle mode. In this mode the P-channel switch is constantly turned on. This is particularly useful in battery-powered applications to achieve the longest operation time by taking full advantage of the whole battery voltage range, for example. The minimum input voltage to maintain regulation depends on the load current and output voltage and can be calculated as:

$$Vin_{min} = Vout_{max} + Iout_{max} \times (RDSon_{max} + R_L)$$

With:

lout_{max} = maximum output current plus inductor ripple current

RDSon_{max} = maximum P-channel switch RDSon.

 $R_L = DC$ resistance of the inductor

Vout_{max} = nominal output voltage plus maximum output voltage tolerance

With decreasing load current, the device automatically switches into pulse skipping operation in which the power stage operates intermittently based on load demand. By running cycles periodically the switching losses are minimized and the device runs with a minimum quiescent current maintaining high efficiency.

In power save mode the converter only operates when the output voltage trips below its nominal output voltage. It ramps up the output voltage with several pulses and goes again into power save mode once the output voltage exceeds the nominal output voltage.

SLVS844-SEPTEMBER 2008

Under-Voltage Lockout

The under voltage lockout circuit prevents the device from malfunctioning at low input voltages and from excessive discharge of the battery and disables the converters and LDOs. The under-voltage lockout threshold is typically 1.8 V.

ENABLE

The DCDC converters and the LDOs are enabled using external enable pins or enable bits with the I²C compatible interface. The signal of the enable pin and the enable bit are logically XORed to generate the enable signal to the converter or LDO. There is one enable pin and one enable bit for each of the LDOs or DCDC converters, which allows start up of each converter independently. If EN_DCDC1, EN_DCDC2, EN_LDO1, EN_LDO2, ENLDO3, or EN_LDO4 are set to high, the corresponding converter starts up with soft start as previously described. The converters and LDOs can also be enabled by setting the enable bits for each of the LDOs or DCDC converters in register REG_CTRL. See the register description for more details.

Disabling the DCDC converter or LDO forces the device into shutdown with a shutdown quiescent current as defined in the electrical characteristics. In this mode, the P and N-Channel MOSFETs are turned-off, and the entire internal control circuitry is switched-off. For proper operation the enable pins must be terminated and must not be left floating.

discharge

The TPS65055 contains a comparator that supervises a voltage applied to the threshold pin and drives a open drain NMOS according to the input level applied at threshold. If the input voltage at the threshold pin is lower than 1V, the open drain NMOS at the discharge output is turned on, pulling the pin to GND. This circuitry is functional as soon as the supply voltage at Vcc exceeds the undervoltage lockout threshold. Therefore the TPS65055 has a shutdown current (all DCDC converters and LDOs are off) of 9μ A in order to supply bandgap and comparator.

RST and DPD

The TPS65055 contains two open drain outputs that are controlled by the l^2C compatible interface. The \overline{RST} and \overline{DPD} outputs are low (internal NMOS active) per default, once the undervoltage lockout threshold has been exceeded. The status of these outputs can be changed using the REG_CTRL register. See the register description for more details.

SHORT-CIRCUIT PROTECTION

All outputs are short-circuit protected with a maximum output current as defined in the electrical specifications.

THERMAL SHUTDOWN

As soon as the junction temperature, T_J, exceeds typically 150°C for the dcdc converters, the device goes into thermal shutdown. In this mode, the P- and N-Channel MOSFETs are turned-off. The device continues its operation when the junction temperature falls below the thermal shutdown hysteresis again. A thermal shutdown for one of the dcdc converters disables both converters simultaneously.

The thermal shutdown temperature for the LDOs are set to typically 140°C. Therefore, a LDO which may be used to power an external voltage never heats up the device that high to turn off the dcdc converters. If one LDO exceeds the thermal shutdown temperature, all LDOs turn off simultaneously.

LDO1 to LDO4

The low dropout voltage regulators are designed to operate well with low value ceramic input and output capacitors. They operate with input voltages down to 1.5 V. The LDOs offer a maximum dropout voltage of 280 mV at rated output current. Each LDO supports a current limit feature. The LDOs are enabled by the EN_LDO1, ENLDO2, EN_LDO3, and EN_LDO4 pin EXOR with a bit in register REG_CTRL (Reg#02h).

Default Voltage Setting for LDOs and DCDC1

In the TPS65055, the output voltage of the LDOs and of DCDC1 is set using two pins, DEFLDO1 and DEFLDO2. These pins can either be connected to a logic low level, a logic high level, or left floating to define a set of output voltages for LDO1 to LDO4 and DCDC1 according to the following table. The status of the DEFLDO pins is latched after an undervoltage lockout event (UVLO) and sets the registers LDO_CTRL1, LDO_CTRL2, and DEFDCDC1 accordingly. The output voltage of each LDO and DCDC1 can be changed later by reprogramming these registers. See the register description for more details.

The TPS65055 default voltage options are adjustable with DEFLDO2 and DEFLDO1 according to the following table:

DEFLDO2	DEFLDO1	VLDO1	VLDO2	VLDO3	VLDO4	DCDC1
		400mA LDO	400mA LDO	200mA LDO	200mA LDO	600mA
0	0	1.2 V	1.8 V	2.8 V	1.3 V	2.1 V
0	float	1.2 V	1.8 V	2.8 V	2.8 V	1.8 V
0	1	1.2 V	1.8 V	2.8 V	1.3 V	1.8 V
float	0	1.2 V	1.8 V	2.8 V	2.8 V	2.1 V
float	float	1.2 V	1.8 V	2.8 V	1.8 V	2.1 V
float	1	1.2 V	1.8 V	2.8 V	2.8 V	1.2 V
1	0	1.2 V	1.8 V	2.8 V	1.0 V	1.9 V
1	float	1.2 V	1.8 V	2.8 V	3.0 V	2.1 V
1	1	1.0 V	1.2 V	1.0 V	1.0 V	1.2 V

INTERFACE SPECIFICATION

Serial Interface

The serial interface is compatible with the standard and fast mode I^2C specifications, allowing transfers at up to 400 kHz. The interface adds flexibility to the power supply solution, enabling most functions to be programmed to new values depending on the instantaneous application requirements and charger status to be monitored. Register contents remain intact as long as V_{CC} remains above the UVLO threshold. The TPS65055 has a 7bit address: '1001000', other addresses are available upon contact with the factory. Attempting to read data from register addresses not listed in this section result in 00h being read out.

For normal data transfer, DATA is allowed to change only when CLK is low. Changes when CLK is high are reserved for indicating the start and stop conditions. During data transfer, the data line must remain stable whenever the clock line is high. There is one clock pulse per bit of data. Each data transfer is initiated with a start condition and terminated with a stop condition. When addressed, the TPS65055 device generates an acknowledge bit after the reception of each byte. The master device (microprocessor) must generate an extra clock pulse that is associated with the acknowledge bit. The TPS65055 device must pull down the DATA line during the acknowledge clock pulse so that the DATA line is a stable low during the high period of the

Copyright © 2008, Texas Instruments Incorporated

SLVS844-SEPTEMBER 2008

www.ti.com

acknowledge clock pulse. The DATA line is a stable low during the high period of the acknowledge – related clock pulse. Setup and hold times must be taken into account. During read operations, a master must signal the end of data to the slave by not generating an acknowledge bit on the last byte that was clocked out of the slave. In this case, the slave TPS65055 device must leave the data line high to enable the master to generate the stop condition.

Figure 23. Serial I/F Write to the TPS65055 Device

t_{su(STA)}

t(HIGH)

		MIN	MAX	UNIT
f _{MAX}	Clock frequency		400	kHz
t _{wH(HIGH)}	Clock high time	600		ns
t _{wL(LOW)}	Clock low time	1300		ns
t _R	DATA and CLK rise time		300	ns
t _F	DATA and CLK fall time		300	ns
t _{h(STA)}	Hold time (repeated) start condition (after this period the first clock pulse is generated)	600		ns
t _{h(DATA)}	Setup time for repeated start condition	600		ns
t _{h(DATA)}	Data input hold time	100		ns
t _{su(DATA)}	Data input setup time	100		ns
t _{su(STO)}	Stop condition setup time	600		ns

Copyright © 2008, Texas Instruments Incorporated

t_{h(STA)}

CLK

STO

STA

tsu(STO)

STO

TPS65055

t_(BUF)

SLVS844-SEPTEMBER 2008

MIN 1300 www.ti.com

t _(BUE)	Bus free time		

MAX	UNIT	
	ns	

PGOODZ. Register Address: 01h (read only)										
PGOODZ	B7	B6	B5	B4	B3	B2	B1	BO		
Bit name and function	discharge	DVM	PGOODZ VDCDC1	PGOODZ VDCDC2	PGOODZ LDO1	PGOODZ LDO2	PGOODZ LDO3	PGOODZ LDO4		
Set by signal			PGOODZ VDCDC1	PGOODZ VDCDC2	PGOODZ LDO1	PGOODZ LDO2	PGOODZ LDO3	PGOODZ LDO4		
Default value loaded by:			PGOOD VDCDC1	PGOOD VDCDC2	PGOOD LDO1	PGOOD LDO2	PGOOD LDO3	PGOOD LDO4		
Read/write	R	R	R	R	R	R	R	R		

Bit 7 discharge:

0 = Indicates that the comparator input voltage is below the 1 V threshold.

1 = Indicates that the comparator input voltage is above the 1 V threshold.

Bit 6 DVM:

0 = Indicates that the voltage of DCDC2 is not changing

1 = Indicates that a voltage change of DCDC2 is ongoing

PGOODZ VDCDC1: Bit 5

0 = Indicates that the VDCDC1 converter output voltage is within its nominal range.

1 = Indicates that the VDCDC1 converter output voltage is below its target regulation voltage or is disabled.

Bit 4 PGOODZ VDCDC2:

0 = Indicates that the VDCDC2 converter output voltage is within its nominal range.

1 = Indicates that the VDCDC2 converter output voltage is below its target regulation voltage or is disabled.

PGOODZ LDO1: Bit 3

0 = Indicates that the LDO1 output voltage is within its nominal range.

1 = Indicates that the LDO1 output voltage is below its target regulation voltage or is disabled.

Bit 2 PGOODZ LDO2:

0 = Indicates that the LDO2 output voltage is within its nominal range.

1 = Indicates that LDO2 output voltage is below its target regulation voltage or is disabled.

PGOODZ LDO3: Bit 1

0 = Indicates that the LDO3 output voltage is within its nominal range.

1 = Indicates that the LDO3 output voltage is below its target regulation voltage or is disabled.

Bit 0 PGOODZ LDO4:

0 = Indicates that the LDO4 output voltage is within its nominal range.

1 = Indicates that the LDO4 output voltage is below its target regulation voltage or is disabled.

REG_CTRL. Register Address:	02h (read/write)	Default Va	ault Value: 00h						
REG_CTRL	B7	B6	B5	B4	B3	B2	B1	во	
Bit name and function	RST	DPD	DCDC1 ENABLE	DCDC2 ENABLE	LDO1 ENABLE	LDO2 ENABLE	LDO3 ENABLE	LDO4 ENABLE	
Default	0	0	0	0	0	0	0	0	
Set by signal									
Default value loaded by:	UVLO	UVLO	UVLO	UVLO	UVLO	UVLO	UVLO	UVLO	
Read/write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	

SLVS844-SEPTEMBER 2008

www.ti.com

The REG CTRL register can be used to disable and enable all power supplies via the serial interface. The following tables indicate how the enable pins and the REG CTRL register are combined.

EN_DCDC1 Pin	REG_CTRL<5>	DCDC1 Converter
0	0	Disabled
0	1	Enabled
1	0	Enabled
1	1	Disabled
EN_DCDC2 pin	REG_CTRL<4>	DCDC2
0	0	Disabled
0	1	Enabled
1	0	Enabled
1	1	Disabled
EN_LDO1 pin	REG_CTRL<3>	LDO1
0	0	Disabled
0	1	Enabled
1	0	Enabled
1	1	Disabled

EN_LDO2 Pin	REG_CTRL<2>	LDO2
0	0	Disabled
0	1	Enabled
1	0	Enabled
1	1	Disabled
EN_LDO3 pin	REG_CTRL<1>	LDO3
0	0	Disabled
0	1	Enabled
1	0	Enabled
1	1	Disabled
EN_LDO4 pin	REG_CTRL<0>	LDO4
0	0	Disabled
0	1	Enabled
1	0	Enabled
1	1	Disabled

Bit 7 RST:

0 = The internal NMOS is turned on and drives the output to GND

1 = The internal NMOS is turned off, an external pull-up resistor at RST drives the output high

DPD: Bit 6

0 = The internal NMOS is turned on and drives the output to GND

1 = The internal NMOS is turned off, an external pull-up resistor at \overline{DPD} drives the output high

CON_CTRL. Register Address: 03h (read/write) Default Value: 00h										
CON_CTRL	B7	B6	B5	B4	B3	B2	B1	BO		
Bit name and function					LOW RIPPLE DCDC1	LOW RIPPLE DCDC2	FPWM DCDC1	FPWM DCDC2		
Default	0	0	0	0	0	0	0	1		
Default value loaded by:					UVLO	UVLO	UVLO	UVLO		
Read/write	R	R	R	R	R/W	R/W	R/W	R/W		

The CON CTRL register is used to force any or all of the converters into forced PWM operation, when low output voltage ripple is vital.

LOW RIPPLE DCDC1: Bit 3

0 = PFM mode operation optimized for high efficiency for DCDC1

1 = PFM mode operation optimized for low output voltage ripple for DCDC1

- LOW RIPPLE DCDC2: Bit 2
 - 0 = PFM mode operation optimized for high efficiency for DCDC2
 - 1 = PFM mode operation optimized for low output voltage ripple for DCDC2

FPWM DCDC1: Bit 1

0 = DCDC1 converter operates in PWM / PFM mode

1 = DCDC1 converter is forced into fixed frequency PWM mode

SLVS844-SEPTEMBER 2008

Bit 0 FPWM DCDC2:

- 0 = DCDC2 converter operates in PWM / PFM mode
- 1 = DCDC2 converter is forced into fixed frequency PWM mode

CON_CTRL2. Register Ad	CON_CTRL2. Register Address: 04h (read/write) Default Value: 0Fh											
CON_CTRL2	B7	B6	B5	B4	B3	B2	B1	BO				
Bit name and function	GO		DCDC1 discharge	DCDC2 discharge	LDO1 discharge	LDO2 discharge	LDO3 discharge	LDO4 discharge				
Default	0	0	0	0	1	1	1	1				
Default value loaded by:	UVLO + DONE*		UVLO	UVLO	UVLO	UVLO	UVLO	UVLO				
Read/write	R	R	R/W	R/W	R/W	R/W	R/W	R/W				

046 /--. - -

The CON CTRL2 register can be used to take control of the inductive converters.

Bit 7 GO:

0 = No change in the output voltage for the DCDC2 converter

1 = A voltage change for the DCDC2 converter is ongoing. The voltage is changed to the value written into the DEFDCDC2 HIGH or DEFDCDC2 LOW register with the slew rate defined in DEFSLEW. This bit is automatically set and cleared internally. The transition is considered complete in this case when the desired output voltage code has been reached, not when the VDCDC2 output voltage is actually in regulation at the desired voltage. The GO bit is also high when a voltage change is ongoing caused by changing the logic level of the DEFDCDC2 pin.

Bit 5-0 0 = The output capacitor of the associated converter or LDO is not actively discharged when the converter or LDO is disabled

1 = The output capacitor of the associated converter or LDO is actively discharged when the converter or LDO is disabled. This decreases the fall time of the output voltage at light load

DEFDCDC2_LOW. Register Address: 05h (read/write) Default Value: 10h										
DEFDCDC2_LOW	B7	B6	B5	B4	B3	B2	B1	во		
Bit name and function			DCDC2[5]	DCDC2[4]	DCDC2[3]	DCDC2[2]	DCDC2[1]	DCDC2[0]		
Default	0	0	0	1	0	0	0	0		
Default value loaded by:			UVLO	UVLO	UVLO	UVLO	UVLO	UVLO		
Read/write	R	R	R/W	R/W	R/W	R/W	R/W	R/W		

DEFDCDC2_HIGH. Register Address: 06h (read/write) Default Value: 08h									
DEFDCDC2_HIGH	B7	B6	B5	B4	B3	B2	B1	во	
Bit name and function			DCDC2[5]	DCDC2[4]	DCDC2[3]	DCDC2[2]	DCDC2[1]	DCDC2[0]	
Default	0	0	0	0	1	0	0	0	
Default value loaded by:			UVLO	UVLO	UVLO	UVLO	UVLO	UVLO	
Read/write	R	R	R/W	R/W	R/W	R/W	R/W	R/W	

The output voltage for DCDC2 is switched between the value defined in DEFDCDC2_LOW and DEFDCDC2_HIGH depending on the status of the DEFDCDC2 pin. IF DEFDCDC2 is low, the value in DEFDCDC2_LOW is selected, if DEFDCDC2 = high, the value in DEFDCDC2_HIGH is selected.

	OUTPUT VOLTAGE [V]	В5	B4	B3	B2	B1	В0
0	0.800	0	0	0	0	0	0
1	0.825	0	0	0	0	0	1
2	0.850	0	0	0	0	1	0

TPS65055

www.ti.com

SLVS844-SEPTEMBER 2008

	OUTPUT VOLTAGE [V]	B5	B4	B3	B2	B1	B0				
3	0.875	0	0	0	0	1	1				
4	0.900	0	0	0	1	0	0				
5	0.925	0	0	0	1	0	1				
6	0.950	0	0	0	1	1	0				
7	0.975	0	0	0	1	1	1				
8	1.000	0	0	1	0	0	0				
9	1.025	0	0	1	0	0	1				
10	1.050	0	0	1	0	1	0				
11	1.075	0	0	1	0	1	1				
12	1.100	0	0	1	1	0	0				
13	1.125	0	0	1	1	0	1				
14	1.150	0	0	1	1	1	0				
15	1.175	0	0	1	1	1	1				
16	1.200	0	1	0	0	0	0				
17	1.225	0	1	0	0	0	1				
18	1.250	0	1	0	0	1	0				
19	1.275	0	1	0	0	1	1				
20	1.300	0	1	0	1	0	0				
21	1.325	0	1	0	1	0	1				
22	1.350	0	1	0	1	1	0				
23	1.375	0	1	0	1	1	1				
24	1.400	0	1	1	0	0	0				
25	1.425	0	1	1	0	0	1				
26	1.450	0	1	1	0	1	0				
27	1.475	0	1	1	0	1	1				
28	1.500	0	1	1	1	0	0				
29	1.525	0	1	1	1	0	1				
30	1.550	0	1	1	1	1	0				
31	1.575	0	1	1	1	1	1				

Table 1. VOLTAGE TABLE FOR DCDC2 (continued)

SLVS844-SEPTEMBER 2008

	OUTPUT VOLTAGE [V]	В5	B4	B3	B2	B1	В0					
0	1.600	1	0	0	0	0	0					
1	1.650	1	0	0	0	0	1					
2	1.700	1	0	0	0	1	0					
3	1.750	1	0	0	0	1	1					
4	1.800	1	0	0	1	0	0					
5	1.850	1	0	0	1	0	1					
6	1.900	1	0	0	1	1	0					
7	1.950	1	0	0	1	1	1					
8	2.000	1	0	1	0	0	0					
9	2.050	1	0	1	0	0	1					
10	2.100	1	0	1	0	1	0					
11	2.150	1	0	1	0	1	1					
12	2.200	1	0	1	1	0	0					
13	2.250	1	0	1	1	0	1					
14	2.300	1	0	1	1	1	0					
15	2.350	1	0	1	1	1	1					
16	2.400	1	1	0	0	0	0					
17	2.450	1	1	0	0	0	1					
18	2.500	1	1	0	0	1	0					
19	2.550	1	1	0	0	1	1					
20	2.600	1	1	0	1	0	0					
21	2.650	1	1	0	1	0	1					
22	2.700	1	1	0	1	1	0					
23	2.750	1	1	0	1	1	1					
24	2.800	1	1	1	0	0	0					
25	2.850	1	1	1	0	0	1					
26	2.900	1	1	1	0	1	0					
27	2.950	1	1	1	0	1	1					
28	3.000	1	1	1	1	0	0					
29	3.100	1	1	1	1	0	1					
30	3.200	1	1	1	1	1	0					
31	3.300	1	1	1	1	1	1					

VOLTAGE TABLE FOR DCDC2

DEFSLEW. Register Address: 07h (read/write) Default Value: 06h									
DEFSLEW	B7	B6	B5	B4	B3	B2	B1	BO	
Bit name and function						SLEW2	SLEW1	SLEW0	
Default	0	0	0	0	0	1	1	0	
Default value loaded by:						UVLO	UVLO	UVLO	
Read/write	R	R	R	R	R	R/W	R/W	R/W	

SLVS844-SEPTEMBER 2008

SLEW2	SLEW1	SLEW0	VDCDC3 SLEW RATE
0	0	0	0.11 mV/μs
0	0	1	0.22 mV/µs
0	1	0	0.45 mV/μs
0	1	1	0.9 mV/μs
1	0	0	1.8 mV/μs
1	0	1	3.6 mV/μs
1	1	0	7.2 mV/μs
1	1	1	Immediate

LDO_CTRL1. Register Addres	s: 08h (r/w)	 Default Value: set with DEFLDO1, DEFLDO2 						
LDO_CTRL	B7	B6	B5	B4	B3	B2	B1	BO
Bit name and function		LDO2[2]	LDO2[1]	LDO2[0]		LDO1[2]	LDO1[1]	LDO1[0]
Default	0	DEFLDO pins	DEFLDO pins	DEFLDO pins	0	DEFLDO pins	DEFLDO pins	DEFLDO pins
Default value loaded by:		UVLO	UVLO	UVLO		UVLO	UVLO	UVLO
Read/write	R	R/W	R/W	R/W	R	R/W	R/W	R/W

The LDO_CTRLx registers can be used to set the output voltages of LDO1 to LDO4. The default value is loaded at power-up depending on the status of the DEFLDO pins. See section *Default Voltage Setting for LDOs and DCDC1* for details. The status of the DEFLDO pins is latched after the undervoltage lockout threshold is exceeded, so the voltage can be changed by reprogramming the register content.

LDO2[2]	LDO2[1]	LDO2[0]	LDO2 OUTPUT VOLTAGE
0	0	0	1.2 V
0	0	1	1.3 V
0	1	0	1.8 V
0	1	1	2.6 V
1	0	0	2.7 V
1	0	1	2.8 V
1	1	0	2.9 V
1	1	1	3.0 V

LDO1[2]	LDO1[1]	LDO1[0]	LDO1 OUTPUT VOLTAGE
0	0	0	0.8V
0	0	1	1.0 V
0	1	0	1.2 V
0	1	1	1.5 V
1	0	0	1.8 V
1	0	1	2.1 V
1	1	0	2.5 V
1	1	1	2.8 V

LDO_CTRL2. Registe	r Address:	: 09h (r/w)	w) Default Value: set with DEFLDO1, DEFLDO2					
LDO_CTRL	B7	B6	B5	B4	B3	B2	B1	BO
Bit name and function		LDO4[2]	LDO4[1]	LDO4[0]		LDO3[2]	LDO3[1]	LDO3[0]
Default	0	DEFLDO pins	DEFLD O pins	DEFLDO pins	0	DEFLD O pins	DEFLD O pins	DEFLD O pins
Default value loaded by:		UVLO	UVLO	UVLO		UVLO	UVLO	UVLO
Read/write	R	R/W	R/W	R/W	R	R/W	R/W	R/W

The default value is loaded at power-up depending on the status of the DEFLDO pins. See section *Default Voltage Setting for LDOs and DCDC1* for details. The status of the DEFLDO pins is latched after the undervoltage lockout threshold is exceeded, so the voltage can be changed by reprogramming the register content.

SLVS844-SEPTEMBER 2008

www.ti.com

4[2]	LDO4[1]	LDO4[0]	LDO4 OUTPUT VOLTAGE	LDO3[2]	DO3[2] LDO3[1	LDO3[0]
0	0	0	1.0 V	0	0 0	0
0	0	1	1.2 V	0	0 0	1
0	1	0	1.3 V	0	0 1	0
0	1	1	1.8 V	0	0 1	1
1	0	0	2.6 V	1	1 0	0
1	0	1	2.7 V	1	1 0	1
1	1	0	2.8 V	1	1 1	0
1	1	1	3.0 V	1	1 1	1

DEFDCDC1. Register Address: 0Ah (r/w) Default Value: set with DEFLDO1, DEFLDO2										
DEFDCDC1	B7	B6	B5	B4	B3	B2	B1	BO		
Bit name and function			DCDC1[5]	DCDC1[4]	DCDC1[3]	DCDC1[2]	DCDC1[1]	DCDC1[0]		
Default	0	0	DEFLDO pins	DEFLDO pins	DEFLDO pins	DEFLDO pins	DEFLDO pins	DEFLDO pins		
Default value loaded by:		UVLO	UVLO	UVLO	UVLO	UVLO	UVLO	UVLO		
Read/write	R	R	R/W	R/W	R/W	R/W	R/W	R/W		

Per default the DCDC1 converter is internally adjustable and the default output voltage for DCDC1 (bits B0 to B5) depends on the status of the DEFLDO pins – see section *Default Voltage Setting for LDOs and DCDC1*. The status of the DEFLDO pins is latched after the undervoltage lockout threshold is exceeded, so the voltage can be changed by reprogramming the register content.

DCDC1 voltage is listed in the following table.

	OUTPUT VOLTAGE [V]	B5	B4	B3	B2	B1	В0
0	0.800	0	0	0	0	0	0
1	0.825	0	0	0	0	0	1
2	0.850	0	0	0	0	1	0
3	0.875	0	0	0	0	1	1
4	0.900	0	0	0	1	0	0
5	0.925	0	0	0	1	0	1
6	0.950	0	0	0	1	1	0
7	0.975	0	0	0	1	1	1
8	1.000	0	0	1	0	0	0
9	1.025	0	0	1	0	0	1
10	1.050	0	0	1	0	1	0
11	1.075	0	0	1	0	1	1
12	1.100	0	0	1	1	0	0
13	1.125	0	0	1	1	0	1
14	1.150	0	0	1	1	1	0
15	1.175	0	0	1	1	1	1
16	1.200	0	1	0	0	0	0
17	1.225	0	1	0	0	0	1
18	1.250	0	1	0	0	1	0
19	1.275	0	1	0	0	1	1
20	1.300	0	1	0	1	0	0
21	1.325	0	1	0	1	0	1
22	1.350	0	1	0	1	1	0
23	1.375	0	1	0	1	1	1

TPS65055

www.ti.com

Texas Instruments

SLVS844-SEPTEMBER 2008

	OUTPUT VOLTAGE [V]	В5	B4	В3	B2	B1	В0
24	1.400	0	1	1	0	0	0
25	1.425	0	1	1	0	0	1
26	1.450	0	1	1	0	1	0
27	1.475	0	1	1	0	1	1
28	1.500	0	1	1	1	0	0
29	1.525	0	1	1	1	0	1
30	1.550	0	1	1	1	1	0
31	1.575	0	1	1	1	1	1

	OUTPUT VOLTAGE [V]	B5	B4	B3	B2	B1	В0
0	1.600	1	0	0	0	0	0
1	1.650	1	0	0	0	0	1
2	1.700	1	0	0	0	1	0
3	1.750	1	0	0	0	1	1
4	1.800	1	0	0	1	0	0
5	1.850	1	0	0	1	0	1
6	1.900	1	0	0	1	1	0
7	1.950	1	0	0	1	1	1
8	2.000	1	0	1	0	0	0
9	2.050	1	0	1	0	0	1
10	2.100	1	0	1	0	1	0
11	2.150	1	0	1	0	1	1
12	2.200	1	0	1	1	0	0
13	2.250	1	0	1	1	0	1
14	2.300	1	0	1	1	1	0
15	2.350	1	0	1	1	1	1
16	2.400	1	1	0	0	0	0
17	2.450	1	1	0	0	0	1
18	2.500	1	1	0	0	1	0
19	2.550	1	1	0	0	1	1
20	2.600	1	1	0	1	0	0
21	2.650	1	1	0	1	0	1
22	2.700	1	1	0	1	1	0
23	2.750	1	1	0	1	1	1
24	2.800	1	1	1	0	0	0
25	2.850	1	1	1	0	0	1
26	2.900	1	1	1	0	1	0
27	2.950	1	1	1	0	1	1
28	3.000	1	1	1	1	0	0
29	3.100	1	1	1	1	0	1
30	3.200	1	1	1	1	1	0
31	3.300	1	1	1	1	1	1

Submit Documentation Feedback 31

TPS65055

TEXAS INSTRUMENTS

www.ti.com

SLVS844-SEPTEMBER 2008

VERSION. Register Address: 0Bh (r)								
LDO_CTRL	B7	B6	B5	B4	B3	B2	B1	BO
Default	0	0	0	0	0	0	0	0
Read/write	R	R	R	R	R	R	R	R

APPLICATION INFORMATION

OUTPUT VOLTAGE SETTING

Converter 1 (DCDC1)

The output voltage of converter 1 is set by the status of the DEFLDO pins and the I²C compatible interface.

Converter 2 (DCDC2)

The output voltage of converter 2 is selected with the DEFDCDC2 pin.

Table 2. Default Fixed Output Voltages

CONVERTER 2	DEFDCDC2 = LOW	DEFDCDC2 = HIGH
TPS65055	1.2 V	1.0 V

OUTPUT FILTER DESIGN (INDUCTOR AND OUTPUT CAPACITOR)

Inductor Selection

The two converters operate typically with 2.2 μH output inductors . Larger or smaller inductor values can be used to optimize the performance of the device for specific operation conditions. The selected inductor has to be rated for its dc resistance and saturation current. The dc resistance of the inductance influences directly the efficiency of the converter. Therefore an inductor with the lowest dc resistance should be selected for highest efficiency. Due to the internal control scheme used, the inductor should have a minimum value of 3.3 μH for an output voltage of 3.0 V or higher.

Formula 1 calculates the maximum inductor current under static load conditions. The saturation current of the inductor should be rated higher than the maximum inductor current as calculated with Formula 1. This is recommended because during heavy load transient the inductor current rises above the calculated value.

Formula 1:
$$\Delta I_{L} = Vout \times \frac{1 - \frac{Vout}{Vin}}{L \times f}$$
 (3) $I_{Lmax} = I_{outmax} + \frac{\Delta I_{L}}{2}$

With:

f = Switching frequency (2.25 MHz typical)

L = Inductor value

 ΔI_{L} = Peak-to-peak inductor ripple current

 I_{Lmax} = Maximum inductor current

The highest inductor current occurs at maximum Vin.

Open core inductors have a soft saturation characteristic and they can usually handle higher inductor currents versus a comparable shielded inductor.

A more conservative approach is to select the inductor current rating just for the maximum switch current of the corresponding converter. It must be considered, that the core material from inductor to inductor differs and has an impact on the efficiency especially at high switching frequencies.

Refer to Table 3 and the typical applications for possible inductors.

INDUCTOR TYPE	INDUCTOR VALUE	SUPPLIER
LPS3010	2.2 μΗ	Coilcraft
VLF3010	2.2 μH	TDK
LPS4012	2.2 μH	Coilcraft
VLF4012	2.2 μΗ	TDK

SLVS844-SEPTEMBER 2008

Output Capacitor Selection

The advanced fast response voltage mode control scheme of the two converters allows the use of small ceramic capacitors with a typical value of 22 μ F, without having large output voltage under and overshoots during heavy load transients. Ceramic capacitors having low ESR values result in the lowest output voltage ripple and are therefore recommended. Refer to Table 4 for recommended components.

If ceramic output capacitors are used, the capacitor RMS ripple current rating always meets the application requirements. For completeness, the RMS ripple current is calculated as:

$$I_{\text{RMSCout}} = \text{Vout} \times \frac{1 - \frac{\text{Vout}}{\text{Vin}}}{L \times f} \times \frac{1}{2 \times \sqrt{3}}$$

At nominal load current the inductive converters operate in PWM mode and the overall output voltage ripple is the sum of the voltage spike caused by the output capacitor ESR plus the voltage ripple caused by charging and discharging the output capacitor:

$$\Delta \text{Vout} = \text{Vout} \times \frac{1 - \frac{\text{Vout}}{\text{Vin}}}{\text{L} \times f} \times \left(\frac{1}{8 \times \text{Cout} \times f} + \text{ESR}\right)$$

Where the highest output voltage ripple occurs at the highest input voltage, Vin.

At light load currents the converters operate in power save mode, and the output voltage ripple is dependent on the output capacitor value. The output voltage ripple is set by the internal comparator delay and the external capacitor. The typical output voltage ripple is less than 1% of the nominal output voltage.

Input Capacitor Selection

Because of the nature of the buck converter having a pulsating input current, a low ESR input capacitor is required for best input voltage filtering and minimizing interference with other circuits caused by high input voltage spikes. The converters require a ceramic input capacitor of 10 μ F. The input capacitor can be increased without limit for better input voltage filtering.

22 μF	0805	TDK C2012X5R0J226MT	Ceramic
22 μF	0805	Taiyo Yuden JMK212BJ226MG	Ceramic
10 μF	0805	Taiyo Yuden JMK212BJ106M	Ceramic
10 µF	0805	TDK C2012X5R0J106M	Ceramic
10 µF	0603	Taiyo Yuden JMK107BJ106MA	Ceramic

Table 4. Possible Capacitors

PACKAGING INFORMATION

Orderable Device	Status ⁽¹⁾	Package Type	Package Drawing	Pins	Package Qty	e Eco Plan ⁽²⁾	Lead/Ball Finish	MSL Peak Temp ⁽³⁾
TPS65055RSMR	ACTIVE	QFN	RSM	32	3000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1 YEAR
TPS65055RSMT	ACTIVE	QFN	RSM	32	250	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1 YEAR

⁽¹⁾ The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

⁽²⁾ Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details. **TBD:** The Pb-Free/Green conversion plan has not been defined.

Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.

Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.

Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)

⁽³⁾ MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

MECHANICAL DATA

- A. An integrit amensions are in minimeters. Dimensioning and tolerationing pe B. This drawing is subject to change without notice.
 - C. QFN (Quad Flatpack No-Lead) Package configuration.
 - The package thermal pad must be soldered to the board for thermal and mechanical performance. See the Product Data Sheet for details regarding the exposed thermal pad dimensions.

THERMAL PAD MECHANICAL DATA

RSM (S-PQFP-N32)

THERMAL INFORMATION

This package incorporates an exposed thermal pad that is designed to be attached directly to an external heatsink. The thermal pad must be soldered directly to the printed circuit board (PCB). After soldering, the PCB can be used as a heatsink. In addition, through the use of thermal vias, the thermal pad can be attached directly to the appropriate copper plane shown in the electrical schematic for the device, or alternatively, can be attached to a special heatsink structure designed into the PCB. This design optimizes the heat transfer from the integrated circuit (IC).

For information on the Quad Flatpack No-Lead (QFN) package and its advantages, refer to Application Report, Quad Flatpack No-Lead Logic Packages, Texas Instruments Literature No. SCBA017. This document is available at www.ti.com.

The exposed thermal pad dimensions for this package are shown in the following illustration.

Bottom View

NOTE: All linear dimensions are in millimeters

Exposed Thermal Pad Dimensions

RSM (S-PQFP-N32)

NOTES: A. All linear dimensions are in millimeters.

- B. This drawing is subject to change without notice.
- C. Publication IPC-7351 is recommended for alternate designs.
- D. This package is designed to be soldered to a thermal pad on the board. Refer to Application Note, Quad Flat-Pack Packages, Texas Instruments Literature No. SCBA017, SLUA271, and also the Product Data Sheets for specific thermal information, via requirements, and recommended board layout. These documents are available at www.ti.com <http://www.ti.com>.
- E. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC 7525 for stencil design considerations.
- F. Customers should contact their board fabrication site for recommended solder mask tolerances and via tenting recommendations for vias placed in the thermal pad.

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would reasonably be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products and any use of TI products in such safety-critical applications, notwithstanding any applications-related information or support that may be provided by TI. Further, Buyers must fully indemnify TI and its representatives against any damages arising out of the use of TI products in such safety-critical applications.

TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products are designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated products in automotive applications, TI will not be responsible for any failure to meet such requirements.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

Products		Applications	
Amplifiers	amplifier.ti.com	Audio	www.ti.com/audio
Data Converters	dataconverter.ti.com	Automotive	www.ti.com/automotive
DSP	dsp.ti.com	Broadband	www.ti.com/broadband
Clocks and Timers	www.ti.com/clocks	Digital Control	www.ti.com/digitalcontrol
Interface	interface.ti.com	Medical	www.ti.com/medical
Logic	logic.ti.com	Military	www.ti.com/military
Power Mgmt	power.ti.com	Optical Networking	www.ti.com/opticalnetwork
Microcontrollers	microcontroller.ti.com	Security	www.ti.com/security
RFID	www.ti-rfid.com	Telephony	www.ti.com/telephony
RF/IF and ZigBee® Solutions	www.ti.com/lprf	Video & Imaging	www.ti.com/video
		Wireless	www.ti.com/wireless

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2008, Texas Instruments Incorporated