

SLVSBS5-JANUARY 2013

Thunderbolt[™] Supply Selection IC

Check for Samples: TPS22986

FEATURES

- 2.8 V to 19.8 V Input
- Auto Selects 3.3 V supply
- >10mA Low Power Switch
- >500mA High Power Switch
- Reverse Current Blocking from OUT to VDD
- Wake on UART Input Activity
- UART RX and TX Buffers

APPLICATIONS

- Thunderbolt[™] Cables
- Notebook Computers
- Desktop Computers
- Power Management Systems

Figure 1. Typical Application

DESCRIPTION

The TPS22986 is a supply selection device for active ThunderboltTM cables. The device selects a 3.3V input from two available supplies and connects the chosen input to two outputs, OUTA and OUTB. When a 3.3V supply is not present, the outputs become high impedance.

The TPS22986 has two modes of operation, Normal and Control. In Normal Mode, OUTA is always on when a valid supply is present. OUTB is connected to a valid supply when the ENB input is high.

In Control Mode, OUTA behaves the same as Normal Mode and OUTB is controlled by a combination of monitored inputs and valid supplies on VDD1 and VDD2. When a valid VDD is available, the device waits for a rising input on ENB and then disconnects OUTB until the next falling RXH transition. Once the next falling RXH transition occurs, the device reconnects OUTB.

In either mode, when a valid VDD is not available, the TPS22986 opens all switches and the outputs OUTA and OUTB become high impedance. When the connected VDD exceeds 3.6V, it is disconnected from the outputs.

The TPS22986 is available in a 1.6mm x 1.6mm WCSP package.

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet. Thunderbolt is a trademark of Texas Instruments.

TPS22986

SLVSBS5-JANUARY 2013

www.ti.com

These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam during storage or handling to prevent electrostatic damage to the MOS gates.

ORDERING INFORMATION

PART NUMBER	PACKAGE MARKING ⁽¹⁾	PACKAGE	DEVICE SPECIFIC FEATURES
TPS22986YFP	YMDDJS	YFP	WCSP

(1) Y=Year, M=Month, D=Sequence Code, DJ=TPS22986 Device Code, S=Wafer Fab/Assembly Site Code

Die Size: 1.6mm x 1.6mm Bump Size: 0.25mm Bump Pitch: 0.4mm

TPS22986 Pin Mapping (Top View)

	4	3	2	1					
D	VDD1	VDD1	VDD2	VDD2					
С	OUTA OUTE		OUTB	GND					
В	RXH	KH TXH F		CPO					
Α	RXC	TXC	ENB	CFG/OE					

DISSIPATION RATINGS

PACKAGE	THERMAL RESISTANCE θ_{JA}	THERMAL RESISTANCE ⁽¹⁾ θ_{JB}	POWER RATING T _A = 25°C	DERATING FACTOR ABOVE ⁽²⁾ $T_A = 25^{\circ}C$
YFP	95°C/W	63°C/W	1050 mW	10.5 mW/°C

(1) Simulated with high-K board

(2) Maximum power dissipation is a function of $T_{J(max)}$, θ_{JA} and T_A . The maximum allowable power dissipation at any allowable ambient temperature is $P_D = (T_{J(max)} - T_A) / \theta_{JA}$.

www.ti.com

ABSOLUTE MAXIMUM RATINGS

over operating free-air temperature range (unless otherwise noted)⁽¹⁾⁽²⁾

		VALUE	UNIT
	Voltage range on VDD1, VDD2 ⁽³⁾	-0.3 to 20	V
VI	Voltage range on OUTA, OUTB ⁽³⁾	-0.3 to 4.0	V
	Voltage range on RXC, TXH, RESETZ, CFG/OE, ENB ^{(3) (4)} (VDD is the active valid 3.3V input at VDD1 or VDD2)	-0.3 to VDD+0.3	V
	Voltage range on CPO ⁽³⁾	-0.3 to 13	V
	Voltage range on RXH, TXC ⁽³⁾	-0.3 to 4.0	V
T _A	Operating ambient temperature range	-40 to 85	°C
T _{J (MAX)}	Maximum operating junction temperature	125	°C
T _{stg}	Storage temperature range	-65 to 150	°C
	Charge Device Model (JESD 22 C101)	500	V
	Human Body Model (JESD 22 A114)	2	kV
	Contact discharge on VDD1, VDD2 (IEC 61000-4-2) ⁽⁵⁾	4.4	kV

(1) Stresses beyond those listed under absolute maximum ratings may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under recommended operating conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

(2) In applications where high power dissipation and/or poor package thermal resistance is present, the maximum ambient temperature may have to be derated. Maximum ambient temperature $[T_{A(max)}]$ is dependent on the maximum operating junction temperature $[T_{J(max)}]$, the maximum power dissipation of the device in the application $[P_{D(max)}]$, and the junction-to-ambient thermal resistance of the part/package in the application (θ_{JA}), as given by the following equation: $T_{A(max)} = T_{J(max)} - (\theta_{JA} \times P_{D(max)})$. All voltage values are with respect to network ground terminal.

(3)

All inputs must be connected to a supply that is less than the max of VDD1 and VDD2 (4)

(5) IEC tests are run with 0.1µF on VDD1 and VDD2. IEC rating is non-destructive.

RECOMMENDED OPERATING CONDITIONS

over operating free-air temperature range (unless otherwise noted)

			MIN	MAX	UNIT
V _{DD1}			2.8	19.8	V
V _{DD2}	Supply voltage range	Supply voltage range			
I _{LIM1/2}	FET1 and FET2 Swit	ch current range		10	mA
I _{LIM3/4}	FET3 and FET4 Swit	ch current range		500	mA
VIH	Input logic high	RXH, TXC, CFG/OE, ENB	2		V
VIL	Input logic low	RXH, TXC, CFG/OE, ENB		0.8	V
V _{OH}	Output logic high	RXC, TXH, RESETZ	2.25		V
V _{OL}	Output logic low	RXC, TXH, RESETZ		0.4	V
<u> </u>	Output capacitance of	on OUTA	1	4	
C _{OUT}	Output capacitance on OUTB		4	22	μF
C _{CPO}	Output capacitance on CPO			10	nF
T _A	Operating temperatu	re range	-40	85	°C

SLVSBS5-JANUARY 2013

ELECTRICAL CHARACTERISTICS

Unless otherwise noted the specification applies over the V_{DD} range and operating junction temp $-40^{\circ}C \le T_J \le 85^{\circ}C$. Typical values are for V_{DD} = 3.3V and T_J = 25°C.

	PARAMETER	TEST CON	DITIONS	MIN	TYP	MAX	UNIT
POWER SUP	PLIES AND CURRENTS						
V _{DD1/2}	Input voltage range			2.8		19.8	V
1	VDD1 Quiescent current	V _{DD1} = 2.8 to 15V	$V_{DD1} > V_{DD2}$		250	500	
I _{DD-1}		v _{DD1} = 2.8 to 15v	$V_{DD1} < V_{DD2}$		20		μA
1	VDD2 Quiescent current	$\lambda = 2.8 \pm 15 \lambda$	$V_{DD2} > V_{DD1}$		250	500	
I _{DD-2}	VDD2 Quiescent current	V _{DD2} = 2.8 to 15V	$V_{DD2} < V_{DD1}$		20		μA
I _{IN-ENB}	ENB Input current	V _{IN} = 1.8V to 3.6V				1	μA
I _{IN-UART}	RXH and TXC input current	$V_{IN} = 1.8V$ to 3.6V				6	μA
I _{IN-CFGOE}	CFG/OE Input current after mode selection	V _{IN} = 1.8V to 3.6V				3	μA
I _{IN-RESETZ}	RESETZ Input current	V _{RESETZ} = 100 mV		0.8	2	3	mA
SWITCH AND	RESISTANCE CHARACTERISTICS			1			
R _{F1/2}	FET1/2 On resistance	V_{DD} = 3.3V, I_{OUT} =	10mA		1	3	Ω
R _{F3/4}	FET3/4 On resistance	V _{DD} = 3.3V, I _{OUT} = 3	350mA		120	175	mΩ
R _{PDRESETZ}	RESETZ Pull-down resistance	RESETZ asserted		33	50	100	Ω
R _{PUCFGOE} (1)	CFG/OE Pull-up resistance			15	20	25	kΩ
R _{PDUART}	TXC and RXH	See the UART RX a	and TX Section	0.6	1	1.75	MΩ
	Pull-down resistance						
R _{PDNORMAL}	Series CFG/OE Resistance to enter normal mode	See Mode Selection	Section	35	50		kΩ
R _{PDCONTROL}	CFG/OE Resistance to GND to enter control mode	See Mode Selection Section			10	12	kΩ
	IESHOLDS AND AMPLITUDES						
	High voltage lockout	3.3V Supply Rising	3.5	3.55	3.6	V	
V _{HVLO}	Hysteresis			20	40	60	mV
		3.3V Supply Rising		2.7	2.75	2.8	
V _{UVLO}	Under voltage lockout	3.3V Supply Falling	2.4	2.45	2.5	V	
V _{CPO}	Charge pump voltage	$C_{CPO} = 2nF, I_{CPO} =$	0mA	8	9	11	V
0.0		$C_{OUTB} = 4\mu F, I_{OUTB}$					
V _{OS}	Voltage overshoot on OUTA/B	$C_{OUTA} = 1\mu F, I_{OUTA}$	$C_{OUTA} = 1\mu F$, $I_{OUTA} = 0mA$,			200	mV
		VDD1 SR _{3.3\rightarrow4V} = 10mV/µs					
TRANSITION	TIMING						
t _d	UVLO To FETn open time	COUTB = 4µF				200	μs
t _e	UVLO To FETn closed time	COUTA = 1µF	COUTA = 1µF			2	ms
t _{dh}	HVLO To FETn open time					20	μs
t _{eh}	HVLO To FETn closed time	See The Supply Sw HVLO Section	ritch-Over During				
TRANSITION	TIMING (NORMAL MODE)						
t _{eb}	ENB To FET3/4 closed time	$COUTB = 4\mu F$				2	ms
t _{db}	ENB To FET3/4 open time	$COUTA = 1\mu F$				200	μs
t _{E2R}	ENB to RESETZ time					6	ms

(1) CFG/OE is pulled to the internal VDD (VDD1 or VDD2) through the resistance R_{PUCFGOE} only during mode selection at power-up.

www.ti.com

ELECTRICAL CHARACTERISTICS (continued)

Unless otherwise noted the specification applies over the V_{DD} range and operating junction temp $-40^{\circ}C \le T_J \le 85^{\circ}C$. Typical values are for V_{DD} = 3.3V and T_J = 25°C.

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
TRANSITIC	ON TIMING (CONTROL MODE)	· · · · ·				
t _{U2R}	UVLO to RESETZ time		5	6	7	ms
t _{E2R}	ENB to RESETZ time			2	10	μs
t _{E2O}	ENB to FET3/4 open time	COUTB = 4μ F, COUTA = 1μ F		100	200	μs
t _{RX2O}	RX to FET3/4 closed time	$COUTB = 4\mu F$, $COUTA = 1\mu F$		0.8	2	ms
t _{RX2R}	RX to RESETZ time		5	6	7	ms
t _{OE2TX}	OE to TXH valid time	RTXH = $100k\Omega$ to GND			20	μs
t _{OE2TXZ}	OE to TXH Hi-Z time	RTXH = $100k\Omega$ to GND			20	μs
ТХС / ТХН	/ RXC / RXH I/O					
VIH	TXC, RXH Input logic high		2			V
VIL	TXC, RXH Input logic low				0.8	V
V _{OH}	TXH, RXC Output logic high		2.25			V
V _{OL}	TXH, RXC Output logic low				0.4	V
T _R / T _F	TXH, RXC rise/fall time	10-90% CL = 20pF	5		70	ns
Z _O	TXH Output impedance		45	70	90	Ω
ZO	RXC Output impedance		29	32	35	Ω
f _{MAX}	TXC, RXH Signal frequency				1	Mb/s
DC	TXC, RXH Duty cycle		40%		60%	
THERMAL	SHUTDOWN					
T _{SD}	Shutdown temperature		110		130	°C
T _{SDHYST}	Shutdown hysteresis			15		°C

www.ti.com

PIN FUNCTIONS

PIN NAME	TYPE	DESCRIPTION
VDD1	Supply	Device Supply 1. 0V to 19.8V Input.
VDD2	Supply	Device Supply 2. 0V to 19.8V Input.
OUTA	Output	Output A. 10mA capable output. Refer to the OUTA Supply Selection section for more information
OUTB	Output	Output B. 500mA capable output. Refer to the OUTB Supply Selection section for more information
CPO	Output	Charge Pump Output. This pin is the output of the internal charge pump. It drives the gates fo the internal FET switches. Connect a capacitor of at least 2nF between this pin and GND.
CFG/OE	Input	Mode Configuration/Output Enable. When CFG is floating or pulled high, the device is in Normal Mode. When CFG is ground, the device is in Control Mode (see Application Description section for more information), the mode is latched at power-up. Refer to the Mode Selection section for more information. After the mode is latched, this pin becomes the output enable for the UART TXH output. Refer UART RX and TX section for more information.
RXH	Input	UART RX Input. This input is buffered and level-shifted on RXC. In Control Mode, this pin in monitored for a high to low transition to enable the outputs. Refer UART RX and TX section for more information.
RXC	Output	UART RX Output. This output is a level shifted version of RXH. RXC is referenced to OUTA. Refer UART RX and TX section for more information.
ТХС	Input	UART TX Input. This input is buffered and level-shifted on TXH. Refer the UART RX and TX section for more information.
ТХН	Output	UART TX Output. This output is a buffered version of TXC. TXH is referenced to OUTA. Refer UART RX and TX section for more information.
RESETZ	Output	Active Low Reset Output. This pin is a delayed reset signal indicating OUTB is connected to a valid VDD. RESETZ is low when OUTB is high impedance. RESETZ is an open drain output.
ENB	Input	OUTB Enable. In Normal Mode, this pin is the active-high OUTB enable. In Control Mode, this pin opens OUTB when asserted high and latches this condition.
GND	Supply	Device ground.

SLVSBS5-JANUARY 2013

TPS22986

APPLICATION INFORMATION

OUTA Supply Selection

The TPS22986 chooses between two different power supplies, VDD1 or VDD2, and connects these to OUTA. When a valid VDD ($V_{UVLO} < VDD < V_{HVLO}$) is present on VDD1 or VDD2, the valid VDD is connected to OUTA. When VDD1 > V_{HVLO} and a valid VDD is present on VDD2, the TPS22986 connects OUTA to VDD2. VDD1 will always take priority over VDD2. VDD2 will only be connected to OUTA when VDD1 < V_{UVLO} or VDD1 > V_{HVLO} . When OUTA is connected to VDD2 and VDD1 becomes valid ($V_{UVLO} < V_{DD} < V_{HVLO}$), the TPS22986 will disconnect OUTA from VDD2 and connect it to VDD1. Note, VDD1 and VDD2 may power up in any order. Figure 2 shows a flow diagram illustrating the selection of VDD1 or VDD2 as the appropriate supply to connect to OUTA.

Figure 2. OUTA Supply Selection

OUTB Supply Selection

The TPS22986 chooses between two different power supplies, VDD1 or VDD2, and connects these to OUTB. At initial power-up, when a valid VDD ($V_{UVLO} < VDD < V_{HVLO}$) is present on VDD1, VDD1 connects to OUTB. When VDD1 > V_{HVLO} and a valid VDD is present on VDD2, the TPS22986 will connect OUTB to VDD2. Note, OUTB is also opened and closed by other digital inputs, ENB and RXH, depending on the mode of the TPS22986. See the Normal Mode and Control Mode sections for more information on the control of OUTB. VDD1 will always take priority over VDD2. VDD2 will only be connected to OUTB when VDD1 > V_{HVLO} . When OUTB is connected to VDD2 and VDD1 drops below V_{HVLO} , the TPS22986 will disconnect OUTB from VDD2 and connect it to VDD1. Note, VDD1 and VDD2 may power up in any order. Figure 3 shows a flow diagram illustrating the selection of VDD1 or VDD2 as the appropriate supply to connect to OUTB. Note, this diagram shows only the dependence on the VDD values and does not show the enabling and disabling of OUTB by the ENB and RXH input signals.

Figure 3. OUTB Supply Selection

Valid VDD at Inputs

A valid VDD on either input occurs when the voltage on VDD1 or VDD2 is between V_{UVLO} and V_{HVLO} ($V_{UVLO} < VDD < V_{HVLO}$). The VDD voltage is invalid when outside of this range. A VDD is considered high when VDD > V_{HVLO} . Table 1 shows the relationship between the output voltages and the input voltages. Note, other factors also determine whether OUTA and OUTB are open. Table 1 only shows the relationship to the voltage at the inputs VDD1 and VDD2.

VDD1	VDD2	OUTA	OUTB
Invalid	Invalid	Open	Open
Valid	Valid or Invalid	VDD1	VDD1
Invalid	Valid	VDD2	Open
High	Valid	VDD2	VDD2

Table 1. Output Voltages vs Input Voltages

Mode Selection

The TPS22986 has two modes of operation, Normal and Control. Refer to the Normal Mode and Control Mode sections for the operational description of each mode. At power-up, the TPS22986 determines which mode the device will operate in. At power-up, the resistance $R_{PUCFGOE}$ is switched to the CFG/OE pin. The external resistance connected to the pin determines the mode.

To enter Normal Mode, leave this pin floating or ensure that any external pull-down resistance on this pin is equal to or greater than R_{PDNORMAL}. When the UART buffers/level-shifters are used in this mode, the CFG/OE pin will also be the output enable for the TXH output. The R_{PDNORMAL} resistance is recommended in series with the driver of the CFG/OE pin to prevent this driver from loading CFG/OE during power-up.

To enter Control Mode, the CFG/OE pin must be pulled low during power-up. Connect a resistance less than or equal to $R_{PDCONTROL}$ between CFG/OE and ground that will pull the pin low during power-up. Again, the CFG/OE pin is the output enable for the TXH output. The $R_{PDCONTROL}$ resistance should be chosen such that the device driving CFG/OE can overdrive this resistance.

SLVSBS5-JANUARY 2013

Normal Mode

SLVSBS5-JANUARY 2013

When the CFG/OE pin is floating or pulled high at power-up, the device enters Normal Mode. In Normal Mode, the TPS22986 provides power through OUTA and OUTB. OUTA is connected whenever a valid VDD is present on either VDD1 or VDD2. OUTB is connected whenever a valid VDD is present on VDD1 or VDD1 > V_{HVLO} and VDD2 is a valid VDD, and the GPIO control signal ENB is high. If a valid VDD is not present, the TPS22986 enters into a shutdown mode and blocks current flow through the switches.

After the device is latched into Normal Mode, the CFG/OE pin becomes the output enable for the TX buffer/levelshifter. See the UART RX and TX section for more information.

Figure 4. Normal Mode Typical Application

TEXAS INSTRUMENTS

www.ti.com

Figure 5. Timing During Normal Mode

Control Mode

When CFG/OE is grounded at power-up, the device latches into Control Mode. When a valid VDD connected, OUTA and OUTB are connected to the VDD. Note, a valid VDD is different for OUTA than OUTB. See Table 1 for the output voltages versus input conditions. OUTB remains connected to VDD until ENB transitions high. OUTA remains connected to VDD as long as a valid VDD exists. RESETZ indicates that a valid VDD is available at OUTB. When RESETZ is low, OUTB is high-impedance or is transitioning from high-impedance to an on-state. During power-up, when a valid supply becomes available, RESETZ remains asserted low for the time t_{U2R} to allow settling of ENB. ENB is masked during this interval until RESETZ is high. When RESETZ is high, a valid VDD is available at OUTB and ENB is monitored.

When either VDD is not in UVLO for more than t_{U2R} , the device monitors ENB for a high transition. When ENB transitions high, RESETZ will assert low after time t_{E2R} , and OUTB will open after time t_{E2O} . After the time t_{E2O} , the TPS22986 starts monitoring RXH for a falling edge. When a falling RXH is detected, OUTB is connected to the valid VDD after time t_{RX2O} and RESETZ transitions from low to high after time t_{RX2R} . The device then begins to monitor ENB again for a low to high transition. When a valid VDD is not available, RESETZ is asserted low and the TPS22986 blocks current flow through the switches. When both VDDs are in UVLO, the device clears any wait state and does not monitor ENB or RXH.

After the device is latched into Control Mode, the CFG/OE pin becomes the output enable for the TX buffer/levelshifter. See the UART RX and TX section for more information.

TPS22986

www.ti.com

Figure 6. Control Mode Typical Application

TEXAS INSTRUMENTS

www.ti.com

SLVSBS5-JANUARY 2013

Figure 7. Timing During Control Mode

www.ti.com

Typical Startup

Figure 9. Typical Startup in Normal Mode

TPS22986

SLVSBS5-JANUARY 2013

Figure 10. Typical Startup Timing for Control Mode

Soft Start

To prevent inrush current to the load, the TPS22986 soft starts OUTA and OUTB. When OUTA and OUTB are first enabled, the resistance of the FET switches (FET1, FET2, FET3, and FET4) starts high and reduces every 250µs in four steps. Figure 11 shows the nominal resistance ramp profile for OUTB. Figure 12 shows the flow diagram of the transition of the outputs.

TPS22986

SLVSBS5-JANUARY 2013

Ω 12.7Ω 5.9Ω 1.6Ω 0.17Ω μs

Figure 11. OUTB Soft Start Resistance vs Time profile (FET3 and FET4 resistance)

www.ti.com

Supply Switch-Over During HVLO

When OUTA and OUTB are connected to VDD1 and VDD1 crosses V_{HVLO} , the TPS22986 opens the FET1/3 switches. Due to the delay t_{dh} , the output will overshoot V_{HVLO} by V_{OS} . When a valid VDD is present on VDD2, OUTA and OUTB will connect to VDD2 after time t_{eh} . Figure 13 illustrates this switch-over event.

The overshoot V_{OS} will occur when the VDD (VDD1 or VDD2) that is connected to the output transitions above V_{HVLO} . V_{OS} is set by the delay t_{dh} and the slew rate of the connected VDD.

The following equation determines the overshoot V_{OS} .

Equation 1: $V_{OS} = SR_{VDD} \times t_{dh}$

 SR_{VDD} is the slew rate of the supply that is transitioning above V_{HVLO} . As an example, when SR_{VDD} is 10mV/µs and t_{dh} is 20µs, V_{OS} is 200mV.

When switching to VDD2 due to an HVLO event on VDD1, the outputs OUTA and OUTB are discharged by their respective loads until they reach the VDD2 voltage. This prevents in-rush current when charging the output caps. The discharge time t_{eh} is variable and is determined by the following equation.

Equation 2: $_{teh} = t_{dh} + (V_{HVLO} + V_{OS} - V_{DD2}) \times C_{LOAD}/I_{LOAD}$

In this equation, V_{OS} is determined by Equation 1, C_{LOAD} is the load capacitance at the respective output, and I_{LOAD} is the load current flowing out of the same output. As an example, when V_{DD2} is 3.3V, t_{dh} is 20µs, V_{OS} is 200mV, C_{LOAD} is 4µF, and I_{LOAD} is 350mA, the resulting t_{eh} is 25.7 µs.

Note, when VDD1 transitions above V_{HVLO} and a valid VDD is not present on VDD2, the outputs will open and will discharge through each respective load.

Figure 13. VDD Switch-over at VDD1 Rising Above V_{HVLO}

When VDD1 drops from a HVLO condition, the TPS22986 may brownout at OUTA and OUTB before switching the outputs to VDD1.

UART RX and TX

The TPS22986 provides failsafe buffers for digital UART RX and TX lines. The failsafe mechanism prevents the RX and TX lines from being loaded when power is removed from the device. The RX line is divided into a host side RXH input and a cable side RXC output. The TX line is divided into host side TXH output and a cable side TXC input. The inputs RXH and TXC have a weak pull-down resistance R_{PDUART} to allow each to be left floating if unused in the application.

When the TPS22986 is unpowered or when RESETZ is asserted low, the TXH output is high impedance. This prevents loading the system TX line and allowing other devices on the UART bus to communicate.

Copyright © 2013, Texas Instruments Incorporated

www.ti.com

Figure 14 illustrates the TXH control. When RESETZ is high, CFG/OE controls TXH. When CFG/OE is low, TXH is high impedance. When CFG/OE is high, TXH is a buffered/level-shifted TXC. The CFG/OE input is ignored when RESETZ is asserted low. Figure 15 shows the delay from CFG/OE to TXH.

Note, the UART buffers are powered from OUTA. When OUTA is disconnected, the UART buffers are unpowered. When there are no valid supplies connected or when the device is in Thermal Shutdown, OUTA will disconnect and the buffers will be unpowered.

Figure 15. CFG/OE to TXH Timing

TPS22986

Thunderbolt System with TPS22981/TPS22986

Figure 16. Thunderbolt System with TPS22981/TPS22986

PACKAGING INFORMATION

Γ	Orderable Device	Status	Package Type	•	Pins	Package Qty	Eco Plan	Lead/Ball Finish	MSL Peak Temp	Samples
		(1)		Drawing			(2)		(3)	(Requires Login)
	TPS22986YFPR	ACTIVE	DSBGA	YFP	16	3000	Green (RoHS & no Sb/Br)	SNAGCU	Level-1-260C-UNLIM	

⁽¹⁾ The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

⁽²⁾ Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.

TBD: The Pb-Free/Green conversion plan has not been defined.

Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.

Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.

Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)

⁽³⁾ MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

MECHANICAL DATA

YFP (S-XBGA-N16)

DIE-SIZE BALL GRID ARRAY

- B. This drawing is subject to change without notice.
- C. NanoFree™ package configuration.
- The package size (Dimension D and E) of a particular device is specified in the device Product Data Sheet version of this drawing, in case it cannot be found in the product data sheet please contact a local TI representative.
- E. Reference Product Data Sheet for array population.
- 4 x 4 matrix pattern is shown for illustration only.
- F. This package contains Pb-free balls.

NanoFree is a trademark of Texas Instruments

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products (also referred to herein as "components") are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI's terms and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily performed.

TI assumes no liability for applications assistance or the design of Buyers' products. Buyers are responsible for their products and applications using TI components. To minimize the risks associated with Buyers' products and applications, Buyers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use of any TI components in safety-critical applications.

In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI's goal is to help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and requirements. Nonetheless, such components are subject to these terms.

No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties have executed a special agreement specifically governing such use.

Only those TI components which TI has specifically designated as military grade or "enhanced plastic" are designed and intended for use in military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components which have *not* been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.

Products		Applications	
Audio	www.ti.com/audio	Automotive and Transportation	www.ti.com/automotive
Amplifiers	amplifier.ti.com	Communications and Telecom	www.ti.com/communications
Data Converters	dataconverter.ti.com	Computers and Peripherals	www.ti.com/computers
DLP® Products	www.dlp.com	Consumer Electronics	www.ti.com/consumer-apps
DSP	dsp.ti.com	Energy and Lighting	www.ti.com/energy
Clocks and Timers	www.ti.com/clocks	Industrial	www.ti.com/industrial
Interface	interface.ti.com	Medical	www.ti.com/medical
Logic	logic.ti.com	Security	www.ti.com/security
Power Mgmt	power.ti.com	Space, Avionics and Defense	www.ti.com/space-avionics-defense
Microcontrollers	microcontroller.ti.com	Video and Imaging	www.ti.com/video
RFID	www.ti-rfid.com		
OMAP Applications Processors	www.ti.com/omap	TI E2E Community	e2e.ti.com
Wireless Connectivity	www.ti.com/wirelessconne	ectivity	

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2013, Texas Instruments Incorporated