SGLS244A - MAY 2004 - REVISED JUNE 2008

- Qualified for Automotive Applications
- Rail-To-Rail Input/Output
- Wide Bandwidth ... 3 MHz
- High Slew Rate ... 2.4 V/μs
- Supply Voltage Range . . . 2.7 V to 16 V
- Supply Current . . . 550 μA/Channel
- Input Noise Voltage . . . 39 nV/√Hz
- Input Bias Current . . . 1 pA
- Specified Temperature Range -40°C to 125°C . . . Automotive Grade
- Ultrasmall Packaging
 - 5 Pin SOT-23 (TLV2371)
 - 8 Pin MSOP (TLV2372)

description

The TLV237x single supply operational amplifiers provide rail-to-rail input and output capability. The TLV237x takes the minimum operating supply voltage down to 2.7 V over the extended automotive temperature range while adding the rail-to-rail output swing feature. The TLV237x also provides 3-MHz bandwidth from only 550 μ A. The maximum recommended supply voltage is 16 V, which allows the devices to be operated from (±8 V supplies down to ±1.35 V) a variety of rechargeable cells.

The CMOS inputs enable use in high-impedance sensor interfaces, with the lower voltage operation making an ideal alternative for the TLC227x in battery-powered applications. The rail-to-rail input stage further increases its versatility. The TLV237x is the seventh member of a rapidly growing number of RRIO products available from Texas Instruments and it is the first to allow operation up to 16-V rails with good ac performance.

The 2.7-V operation makes the TLV237x compatible with Li-Ion powered systems and the operating supply voltage range of many micro-power microcontrollers available today including Texas Instruments' MSP430.

DEVICE	V _{DD} (V)	V _{IO} (μV)	lq/Ch (μA)	I _{IB} (pA)	GBW (MHz)	SR (V/μs)	SHUTDOWN	RAIL- TO- RAIL	SINGLES/DUALS/QUADS
TLV237x	2.7–16	500	550	1	3	2.4	Yes	I/O	S/D/Q
TLC227x	4–16	300	1100	1	2.2	3.6	—	0	D/Q
TLV27x	2.7–16	500	550	1	3	2.4	—	0	S/D/Q
TLC27x	3–16	1100	675	1	1.7	3.6	—	_	S/D/Q
TLV246x	2.7–6	150	550	1300	6.4	1.6	Yes	I/O	S/D/Q
TLV247x	2.7–6	250	600	2	2.8	1.5	Yes	I/O	S/D/Q
TLV244x	2.7–10	300	725	1	1.8	1.4	_	0	D/Q

SELECTION OF SIGNAL AMPLIFIER PRODUCTS[†]

[†] Typical values measured at 5 V, 25°C

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

PRODUCTION DATA information is current as of publication date. Products conform to specifications per the terms of Texas Instruments standard warranty. Production processing does not necessarily include testing of all parameters.

Copyright © 2008, Texas Instruments Incorporated

SGLS244A - MAY 2004 - REVISED JUNE 2008

FAMILY PACKAGE TABLE[†]

	NUMBER OF		PACKAGI	E TYPES [‡]		UNIVERSAL
DEVICE	CHANNELS	SOIC	SOT-23	TSSOP	MSOP	EVM BOARD
TLV2371	1	8	5			See the EVM
TLV2372	2	8	—	_	8	Selection Guide
TLV2374	4	14	—	14	_	(SLOU060)

[†] For the most current package and ordering information, see the Package Option Addendum at the end of this document, or see the TI web site at http://www.ti.com.

[‡] Package drawings, thermal data, and symbolization are available at http://www.ti.com/packaging.

TLV2371 AVAILABLE OPTIONS

		PACKAGED DEVICES				
T _A	V _{IO} MAX AT 25°C	SMALL OUTLINE	SOT-23			
	100	(D)	(DBV)	SYMBOL		
-40°C to 125°C	4.5 mV	TLV2371QDRQ1	TLV2371QDBVRQ1 [†]			

[†] Product Preview

TLV2372 AVAILABLE OPTIONS

		PACKAGED DEVICES				
TA	V _{IO} MAX AT 25°C	SMALL OUTLINE	MSOP			
	20 0	(D)	(DGK)	SYMBOL		
-40°C to 125°C	4.5 mV	TLV2372QDRQ1	TLV2372QDGKRQ1 [†]			

[†] Product Preview

TLV2374 AVAILABLE OPTIONS

	V MAX AT	PACKAGED DEVICES			
T _A	V _{IO} MAX AT 25°C	SMALL OUTLINE (D)	TSSOP (PW)		
-40°C to 125°C	4.5 mV	TLV2374QDRQ1	TLV2374QPWRQ1		

SGLS244A - MAY 2004 - REVISED JUNE 2008

TLV237x PACKAGE PINOUTS(1)

NC – No internal connection (1) SOT–23 may or may not be indicated

SGLS244A - MAY 2004 - REVISED JUNE 2008

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)[†]

Supply voltage, V_{DD} (see Note 1) Differential input voltage, V_{ID} Input voltage range, V_I (see Note 1) Input current range, I_I Output current range, I_O		$\begin{array}{c} \dots & \pm V_{DD} \\ \dots & -0.2 \text{ V to } V_{DD} + 0.2 \text{ V} \\ \dots & \pm 10 \text{ mA} \end{array}$
Package thermal impedance, θ_{JA} (see Notes 2 and 3):	,	
	D (14-pin) package	122.3°C/W
	D (16-pin) package	114.7°C/W
	DBV (5-pin) package	324.1°C/W
	DGK (8-pin) package	259.96°C/W
	PW (14-pin) package	173.6°C/W
Operating free-air temperature range, TA: Q suffix		
Maximum junction temperature, T		
Storage temperature range, T _{stq}		
Lead temperature 1,6 mm (1/16 inch) from case for 10	seconas	

[†] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

NOTES: 1. All voltage values, except differential voltages, are with respect to GND.

2. Maximum power dissipation is a function of $T_J(max)$, θ_{JA} , and T_A . The maximum allowable power dissipation at any allowable ambient temperature is $P_D = (T_J(max) - T_A)/\theta_{JA}$. Selecting the maximum of 150°C can affect reliability.

3. The package thermal impedance is calculated in accordance with JESD 51-7.

recommended operating conditions

		MIN	MAX	UNIT
Cumple up have M	Single supply	2.7	16	
Supply voltage, V _{DD}	Split supply	±1.35	7 16 5 ±8 0 V _{DD} 2 3	V
Common-mode input voltage range, VICR		0	V_{DD}	V
Turnon voltage level, $V_{(ON)}$, relative to GND pin voltage			2	V
Turnoff voltage level, V(OFF), relative to GND pin voltage)	0.8		V
Operating free-air temperature, T _A	Q-suffix	-40	125	°C

SGLS244A - MAY 2004 - REVISED JUNE 2008

electrical characteristics at specified free-air temperature, V_{DD} = 2.7 V, 5 V, and 15 V (unless otherwise noted)

dc performance

	PARAMETER	TEST CONDI	TIONS	T _A	MIN	TYP	MAX	UNIT
V	Input offset voltage	N N 10	V V /0	25°C		2	4.5	mV
V _{IO}	input onset voltage	$V_{IC} = V_{DD}/2,$ $R_S = 50 \Omega$	$V_{O} = V_{DD}/2$,	Full range			6	mv
ανιο	Offset voltage drift	113 - 00 11		25°C		2		μV/°C
		$V_{IC} = 0$ to V_{DD} ,		25°C	50	68		
		R _S = 50 Ω	V 07V	Full range	49			
		$V_{IC} = 0$ to $V_{DD} - 1.35$ V,	V _{DD} = 2.7 V	25°C	53	70		dB
		R _S = 50 Ω		Full range	54			
		$V_{IC} = 0$ to V_{DD} ,		25°C	55	72		
CMRR	Common mode rejection ratio	R _S = 50 Ω,		Full range	54			
CMRR	Common-mode rejection ratio	$V_{IC} = 0$ to $V_{DD} - 1.35$ V,	V _{DD} = 5 V	25°C	58	80		
		R _S = 50 Ω,		Full range	57			
		$V_{IC} = 0$ to V_{DD} , $R_S = 50 \Omega$,	V _{DD} = 15 V	25°C	64	82		
				Full range	63			
		$V_{IC} = 0$ to $V_{DD} - 1.35$ V,		25°C	67	84		
		R _S = 50 Ω,		Full range	66			
			V 07V	25°C	95	106		
			V _{DD} = 2.7 V	Full range	76			
	Large-signal differential voltage	$V_{O(PP)} = V_{DD}/2,$		25°C	80	110		dB
A _{VD}	amplification	$R_L = 10 k\Omega$	$V_{DD} = 5 V$	Full range	82			
				25°C	77	83		
			V _{DD} = 15 V	Full range	79	72 80 82 84 106 110		

input characteristics

	PARAMETER	TEST	T CONDITIONS	T _A	MIN	ТҮР	MAX	UNIT
	land affact an unant			25°C		1	60	- 1
IIO	Input offset current	V _{DD} = 15 V,	$V_{IC} = V_{DD}/2$,	125°C			500	pА
		$V_O = V_{DD}/2$		25°C		1	60	
I _{IB}	Input bias current			125°C	1 60 500	рA		
r _{i(d)}	Differential input resistance			25°C		1000		GΩ
CIC	Common-mode input capacitance	f = 21 kHz		25°C		8		pF

TLV2371-Q1, TLV2372-Q1, TLV2374-Q1 FAMILY OF 550- μ A/Ch 3-MHz RAIL-TO-RAIL INPUT/OUTPUT OPERATIONAL AMPLIFIERS SGLS244A – MAY 2004 – REVISED JUNE 2008

electrical characteristics at specified free-air temperature, V_{DD} = 2.7 V, 5 V, and 15 V (unless otherwise noted) (continued)

output characteristics

	PARAMETER	TEST CONDITIONS		Τ _Α	MIN	ТҮР	MAX	UNIT
			V 07V	25°C	2.55	2.58		
			$v_{DD} = 2.7 v$	Full range	2.48			
		$V_{IC} = V_{DD}/2$, $I_{OH} = -1 \text{ mA}$		25°C	4.9	4.93		l
		$V_{ID} = 1 V$	$v_{DD} = 5 v$	Full range	4.85			l
	$V_{OH} \text{High-level output voltage} \underbrace{V_{IC} = V_{DD}/2, \ I_{OH} = -1 \text{ mA}}_{V_{ID} = 1 \text{ V}} \underbrace{V_{DD} = 2.7 \text{ V}}_{V_{DD} = 5 \text{ V}} \underbrace{\frac{25^{\circ}\text{C}}{\text{Full range}} \underbrace{4.85}_{4.85}}_{Full range} \underbrace{4.85}_{1.92} \text{ mage}_{1.4.9}}_{V_{DD} = 15 \text{ V}} \underbrace{\frac{25^{\circ}\text{C}}{\text{Full range}} \underbrace{14.9}_{1.4.9}}_{Full range} \underbrace{14.9}_{1.4.9} \text{ mage}_{1.4.9}}_{V_{DD} = 15 \text{ V}} \underbrace{\frac{25^{\circ}\text{C}}{\text{Full range}} \underbrace{14.9}_{1.4.9}}_{Full range} \underbrace{14.9}_{1.4.9} \text{ mage}_{1.4.2}}_{V_{DD} = 5 \text{ V}} \underbrace{\frac{25^{\circ}\text{C}}{\text{Full range}} \underbrace{1.4.9}_{1.4.2} \text{ mage}_{1.4.2}}_{Full range} \underbrace{1.4.9}_{Full range} \underbrace{1.4.9}_{Full$	l						
v	High lovel output veltage		$v_{DD} = 15 v$	Full range	14.9			V
$V_{OH} \text{High-level output voltage} \begin{array}{c c c c c c } V_{IC} = V_{DD}/2, \ I_{OH} = -1 \text{ mA} \\ V_{ID} = 1 \text{ V} \end{array} \begin{array}{c c c c c c } \hline V_{DD} = 5 \text{ V} & \hline Full \ range & 2.48 & & & \\ \hline V_{DD} = 5 \text{ V} & \hline Full \ range & 4.85 & & & \\ \hline Full \ range & 14.92 & 14.96 & & \\ \hline Full \ range & 14.92 & 14.96 & & \\ \hline Full \ range & 14.9 & & & \\ \hline Full \ range & 14.9 & & & \\ \hline Full \ range & 14.9 & & & \\ \hline Full \ range & 14.9 & & & \\ \hline Full \ range & 1.42 & & & \\ \hline Full \ range & 1.42 & & & \\ \hline Full \ range & 1.42 & & & \\ \hline Full \ range & 4.44 & & & \\ \hline Full \ range & 4.44 & & & \\ \hline Full \ range & 14.6 & & \\ \hline Full \ range & 14.6 & & \\ \hline Full \ range & 14.6 & & \\ \hline Full \ range & 14.6 & & \\ \hline Full \ range & 14.6 & & \\ \hline Full \ range & 14.6 & & \\ \hline Full \ range & 14.6 & & \\ \hline Full \ range & 14.6 & & \\ \hline Full \ range & 14.6 & & \\ \hline Full \ range & 14.6 & & \\ \hline Full \ range & 14.6 & & \\ \hline Full \ range & 14.6 & & \\ \hline Full \ range & 14.6 & & \\ \hline Full \ range & 14.6 & & \\ \hline Full \ range & 14.6 & & \\ \hline Full \ range & 14.6 & & \\ \hline Full \ range & 0.15 & & \\ \hline Full \ Full \ range & 0.15 & & \\ \hline Full \ range & 0.15 & & \\ \hline Full \ Full \ range & 0.15 & & \\ \hline Full \ Full \ range & 0.15 & & \\ \hline Full \ Full \ Full \ range & 0.15 & & \\ \hline Full \ Full \ range & 0.15 & & \\ \hline Full \ Full \ Full $	V							
			v _{DD} = 2.7 v	Full range	1.42			
		$V_{ID} = 1 V$	V – E V	25°C	4.58	4.68		
			$v_{DD} = 5 v$	Full range	4.44			
			V 15.V	25°C	14.7	14.8		
	V _{DD} = 15 V Full range 14.6							
	V 07V	25°C		0.1	0.15			
			$v_{DD} = 2.7 v$	Full range			0.22	-
				25°C		0.05	0.1	
		V _{ID} = 1 V	$v_{DD} = 5 v$	Full range			0.15	
			V 15.V	25°C		0.05	0.08	l
V _a ,	Low-level output voltage		$v_{DD} = 15 v$	Full range			0.1	v
VOL	Low-level output voltage		V 07V	25°C		0.52	0.7	v
			$v_{DD} = 2.7 v$	Full range			1.15	
		$V_{IC} = V_{DD}/2$, $I_{OL} = 5 \text{ mA}$		25°C		0.28	0.4	
		$V_{\text{ID}} = 1 \text{ V}$	v _{DD} = 5 v	Full range			0.54	l
			V 15 V	25°C		0.19	0.3	l
			V _{DD} = 15 V	Full range			0.35	L

power supply

	PARAMETER	TEST CONE	DITIONS	T _A	MIN	TYP	MAX	UNIT
I _{DD} Supply current (per channel)			V _{DD} = 2.7 V	25°C		470	560	
		$V_{DD} = 5 V$	25°C		550	660		
	Supply current (per channel)	$V_{O} = V_{DD}/2,$	V 45.V	25°C		750	900	μA
			V _{DD} = 15 V	$7 V 25^{\circ}C 4$ $V 25^{\circ}C 5$ $5 V \frac{25^{\circ}C}{\text{Full range}}$		1200		
Supply voltage reje	Supply voltage rejection ratio	V _{DD} = 2.7 V to 15 V,	$V_{IC} = V_{DD}/2$,	25°C	70	80		-10
PSRR	$(\Delta V_{DD} / \Delta V_{IO})$	No load		Full range	65			dB

SGLS244A - MAY 2004 - REVISED JUNE 2008

electrical characteristics at specified free-air temperature, V_{DD} = 2.7 V, 5 V, and 15 V (unless otherwise noted) (continued)

dynamic performance

	PARAMETER	TEST CONDI	TIONS	T _A	MIN	ТҮР	MAX	UNIT
	the transfer to an about data	$R_L = 2 k\Omega$,	V _{DD} = 2.7 V	25°C		2.4		N 41 1-
UGBW	Unity gain bandwidth	$C_{L} = 10 \text{ pF}$	$V_{DD} = 5 V$ to 15 V	25°C		3		MHz
			N 071	25°C	1.4	2		N// -
			$V_{DD} = 2.7 V$	Full range	1			V/µs
0.0	Olever nete at units nein	$V_{O(PP)} = V_{DD}/2,$ $C_{L} = 50 \text{ pF},$ $R_{I} = 10 \text{ k}\Omega$	<u>м</u> су	25°C	1.4	2.4		V/µs
SR	Slew rate at unity gain		$V_{DD} = 5 V$	Full range	1.2			
			V 15.V	25°C	1.9	2.1		V/µs
			V _{DD} = 15 V	Full range	1.4			
φm	Phase margin	$R_L = 2 k\Omega$,	C _L = 100 pF	25°C		65°		
	Gain margin	$R_L = 2 k\Omega$,	C _L = 10 pF	25°C		18		dB
		$ \begin{array}{l} V_{DD} = 2.7 \ V, \\ V_{(STEP)PP} = 1 \ V, \ A_V = -1, \\ C_L = 10 \ pF, \ R_L = 2 \ k\Omega \end{array} $	0.1%	05%0		2.9		
t _s	Settling time	$ \begin{array}{l} V_{DD} = 5 \; V, \; 15 \; V, \\ V_{(STEP)PP} = 1 \; V, \; \; A_V = -1, \\ C_L = 47 \; pF, \; \; R_L = 2 \; k\Omega \end{array} $	0.1%	- 25°C		2		μs

noise/distortion performance

	PARAMETER	TEST COND	TA	MIN	TYP	MAX	UNIT		
	Total harmonic distortion plus noise	Vpp = 2.7 V.	A _V = 1			0.02%			
		$V_{DD} = 2.7 \text{ V},$ $V_{O(PP)} = V_{DD}/2 \text{ V},$ $R_L = 2 \text{ k}\Omega, \text{ f} = 10 \text{ kHz}$	A _V = 10	25°C		0.05%			
			A _V = 100	1		0.18%			
THD + N		$V_{DD} = 5 V, 5 V,$ $V_{O(PP)} = V_{DD}/2 V,$ $R_L = 2 k\Omega, f = 10 kHz$	A _V = 1			0.02%			
			A _V = 10	25°C		0.09%			
			A _V = 100			0.5%			
		f = 1 kHz		0.500		39			
V _n	Equivalent input noise voltage	f = 10 kHz		25°C		35		nV/√Hz	
I _n	Equivalent input noise current	f = 1 kHz	25°C		0.6		fA/√ Hz		

TLV2371-Q1, TLV2372-Q1, TLV2374-Q1 FAMILY OF 550-μA/Ch 3-MHz RAIL-TO-RAIL INPUT/OUTPUT OPERATIONAL AMPLIFIERS SGLS244A - MAY 2004 - REVISED JUNE 2008

TYPICAL CHARACTERISTICS

Table of Graphs

			FIGURE
V _{IO}	Input offset voltage	vs Common-mode input voltage	1, 2, 3
CMRR	Common-mode rejection ratio	vs Frequency	4
	Input bias and offset current	vs Free-air temperature	5
V _{OL}	Low-level output voltage	vs Low-level output current	6, 8, 10
V _{OH}	High-level output voltage	vs High-level output current	7, 9, 11
V _{O(PP)}	Peak-to-peak output voltage	vs Frequency	12
I _{DD}	Supply current	vs Supply voltage	13
PSRR	Power supply rejection ratio	vs Frequency	14
A _{VD}	Differential voltage gain & phase	vs Frequency	15
	Gain-bandwidth product	vs Free-air temperature	16
0.0	Olympication	vs Supply voltage	17
SR	Slew rate	vs Free-air temperature	18
φm	Phase margin	vs Capacitive load	19
Vn	Equivalent input noise voltage	vs Frequency	20
	Voltage-follower large-signal pulse response		21, 22
	Voltage-follower small-signal pulse response		23
	Inverting large-signal response		24, 25
	Inverting small-signal response		26
	Crosstalk	vs Frequency	27

SGLS244A - MAY 2004 - REVISED JUNE 2008

SGLS244A - MAY 2004 - REVISED JUNE 2008

TYPICAL CHARACTERISTICS

SGLS244A - MAY 2004 - REVISED JUNE 2008

TYPICAL CHARACTERISTICS

NSTRUMENTS POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

SGLS244A - MAY 2004 - REVISED JUNE 2008

CROSSTALK vs

TLV2371-Q1, TLV2372-Q1, TLV2374-Q1 FAMILY OF 550-μA/Ch 3-MHz RAIL-TO-RAIL INPUT/OUTPUT OPERATIONAL AMPLIFIERS SGLS244A – MAY 2004 – REVISED JUNE 2008

APPLICATION INFORMATION

rail-to-rail input operation

The TLV237x input stage consists of two differential transistor pairs, NMOS and PMOS, that operate together to achieve rail-to-rail input operation. The transition point between these two pairs can be seen in Figure 1 through Figure 3 for a 2.7-V, 5-V, and 15-V supply. As the common-mode input voltage approaches the positive supply rail, the input pair switches from the PMOS differential pair to the NMOS differential pair. This transition occurs approximately 1.35 V from the positive rail and results in a change in offset voltage due to different device characteristics between the NMOS and PMOS pairs. If the input signal to the device is large enough to swing between both rails, this transition results in a reduction in common-mode rejection ratio (CMRR). If the input signal does not swing between both rails, it is best to bias the signal in the region where only one input pair is active. This is the region in Figure 1 through Figure 3 where the offset voltage varies slightly across the input range and optimal CMRR can be achieved. This has the greatest impact when operating from a 2.7-V supply voltage.

driving a capacitive load

When the amplifier is configured in this manner, capacitive loading directly on the output decreases the device's phase margin, leading to high frequency ringing or oscillations. Therefore, for capacitive loads of greater than 10 pF, it is recommended that a resistor be placed in series (R_{NULL}) with the output of the amplifier, as shown in Figure 28. A minimum value of 20 Ω should work well for most applications.

Figure 28. Driving a Capacitive Load

offset voltage

The output offset voltage, (V_{OO}) is the sum of the input offset voltage (V_{IO}) and both input bias currents (I_{IB}) times the corresponding gains. The schematic and formula in Figure 29 can be used to calculate the output offset voltage.

Figure 29. Output Offset Voltage Model

SGLS244A - MAY 2004 - REVISED JUNE 2008

APPLICATION INFORMATION

general configurations

When receiving low-level signals, limiting the bandwidth of the incoming signals into the system is often required. The simplest way to accomplish this is to place an RC filter at the noninverting terminal of the amplifier (see Figure 30).

Figure 30. Single-Pole Low-Pass Filter

If even more attenuation is needed, a multiple pole filter is required. The Sallen-Key filter can be used for this task. For best results, the amplifier should have a bandwidth that is 8 to 10 times the filter frequency bandwidth. Failure to do this can result in phase shift of the amplifier.

Figure 31. 2-Pole Low-Pass Sallen-Key Filter

TLV2371-Q1, TLV2372-Q1, TLV2374-Q1 FAMILY OF 550-μA/Ch 3-MHz RAIL-TO-RAIL INPUT/OUTPUT OPERATIONAL AMPLIFIERS SGLS244A – MAY 2004 – REVISED JUNE 2008

APPLICATION INFORMATION

circuit layout considerations

To achieve the levels of high performance of the TLV237x, follow proper printed-circuit board design techniques. The following is a general set of guidelines.

- Ground planes—It is highly recommended that a ground plane be used on the board to provide all
 components with a low inductive ground connection. However, in the areas of the amplifier inputs and
 output, the ground plane can be removed to minimize the stray capacitance.
- Proper power supply decoupling—Use a 6.8-µF tantalum capacitor in parallel with a 0.1-µF ceramic capacitor on each supply terminal. It may be possible to share the tantalum capacitor among several amplifiers depending on the application, but a 0.1-µF ceramic capacitor should always be used on the supply terminal of every amplifier. In addition, the 0.1-µF capacitor should be placed as close as possible to the supply terminal. As this distance increases, the inductance in the connecting trace makes the capacitor less effective. The designer should strive for distances of less than 0.1 inches between the device power terminals and the ceramic capacitors.
- Sockets—Sockets can be used but are not recommended. The additional lead inductance in the socket pins
 often leads to stability problems. Surface-mount packages soldered directly to the printed-circuit board is
 the best implementation.
- Short trace runs/compact part placements—Optimum high performance is achieved when stray series inductance has been minimized. To realize this, the circuit layout should be made as compact as possible, thereby minimizing the length of all trace runs. Particular attention should be paid to the inverting input of the amplifier. Its length should be kept as short as possible. This helps to minimize stray capacitance at the input of the amplifier.
- Surface-mount passive components—Using surface-mount passive components is recommended for high
 performance amplifier circuits for several reasons. First, because of the extremely low lead inductance of
 surface-mount components, the problem with stray series inductance is greatly reduced. Second, the small
 size of surface-mount components naturally leads to a more compact layout thereby minimizing both stray
 inductance and capacitance. If leaded components are used, it is recommended that the lead lengths be
 kept as short as possible.

SGLS244A - MAY 2004 - REVISED JUNE 2008

APPLICATION INFORMATION

general power dissipation considerations

For a given θ_{JA} , the maximum power dissipation is shown in Figure 32 and is calculated by the following formula:

$$\mathsf{P}_{\mathsf{D}} = \left(\frac{\mathsf{T}_{\mathsf{MAX}} - \mathsf{T}_{\mathsf{A}}}{\theta_{\mathsf{JA}}}\right)$$

Where:

P_D = Maximum power dissipation of TLV237x IC (watts)

 T_{MAX} = Absolute maximum junction temperature (150°C)

 T_A = Free-ambient air temperature (°C)

 $\theta_{JA} = \theta_{JC} + \theta_{CA}$

 θ_{JC} = Thermal coefficient from junction to case

 θ_{CA} = Thermal coefficient from case to ambient air (°C/W)

NOTE A: Results are with no air flow and using JEDEC Standard Low-K test PCB.

Figure 32.

26-Aug-2013

PACKAGING INFORMATION

Orderable Device	Status	Package Type	Package Drawing		Package Qty	Eco Plan	Lead/Ball Finish	· · · · ·	Op Temp (°C)	Device Marking	Samples
TLV2371QDBVRQ1	(1) ACTIVE	SOT-23	DBV	5	3000	(2) Green (RoHS & no Sb/Br)	CU NIPDAU	(3) Level-1-260C-UNLIM	-40 to 125	(4/5) 371Q	Samples
TLV2371QDRG4Q1	ACTIVE	SOIC	D	8	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 125	2371Q1	Samples
TLV2372QDRG4Q1	ACTIVE	SOIC	D	8	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 125	2372Q1	Samples
TLV2372QDRQ1	ACTIVE	SOIC	D	8	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 125	2372Q1	Samples
TLV2374QDRG4Q1	ACTIVE	SOIC	D	14	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 125	2374Q1	Samples
TLV2374QDRQ1	ACTIVE	SOIC	D	14	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 125	2374Q1	Samples
TLV2374QPWRG4Q1	ACTIVE	TSSOP	PW	14	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 125	2374Q1	Samples
TLV2374QPWRQ1	ACTIVE	TSSOP	PW	14	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 125	2374Q1	Samples

⁽¹⁾ The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

⁽²⁾ Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.

TBD: The Pb-Free/Green conversion plan has not been defined.

Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.

Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.

Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)

⁽³⁾ MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

www.ti.com

26-Aug-2013

⁽⁴⁾ There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.

⁽⁵⁾ Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

OTHER QUALIFIED VERSIONS OF TLV2371-Q1, TLV2372-Q1, TLV2374-Q1 :

Catalog: TLV2371, TLV2372, TLV2374

• Enhanced Product: TLV2371-EP, TLV2374-EP

NOTE: Qualified Version Definitions:

- Catalog TI's standard catalog product
- Enhanced Product Supports Defense, Aerospace and Medical Applications

PACKAGE MATERIALS INFORMATION

www.ti.com

Texas Instruments

TAPE AND REEL INFORMATION

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

*All dimensions are nominal												
Device	-	Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
TLV2371QDBVRQ1	SOT-23	DBV	5	3000	180.0	9.0	3.15	3.2	1.4	4.0	8.0	Q3
TLV2374QPWRG4Q1	TSSOP	PW	14	2000	330.0	12.4	6.9	5.6	1.6	8.0	12.0	Q1
TLV2374QPWRQ1	TSSOP	PW	14	2000	330.0	12.4	6.9	5.6	1.6	8.0	12.0	Q1

TEXAS INSTRUMENTS

www.ti.com

PACKAGE MATERIALS INFORMATION

12-Sep-2013

*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
TLV2371QDBVRQ1	SOT-23	DBV	5	3000	182.0	182.0	20.0
TLV2374QPWRG4Q1	TSSOP	PW	14	2000	367.0	367.0	35.0
TLV2374QPWRQ1	TSSOP	PW	14	2000	367.0	367.0	35.0

DBV (R-PDSO-G5)

PLASTIC SMALL-OUTLINE PACKAGE

- All linear dimensions are in millimeters. A.
 - This drawing is subject to change without notice. Β.
 - Body dimensions do not include mold flash or protrusion. Mold flash and protrusion shall not exceed 0.15 per side. C.
 - D. Falls within JEDEC MO-178 Variation AA.

D (R-PDSO-G14)

PLASTIC SMALL OUTLINE

NOTES: A. All linear dimensions are in inches (millimeters).

- B. This drawing is subject to change without notice.
- Body length does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0.006 (0,15) each side.
- Body width does not include interlead flash. Interlead flash shall not exceed 0.017 (0,43) each side.
- E. Reference JEDEC MS-012 variation AB.

NOTES: A. All linear dimensions are in millimeters.

- B. This drawing is subject to change without notice.
- C. Publication IPC-7351 is recommended for alternate designs.
- D. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC-7525 for other stencil recommendations.
 E. Customers should contact their board fabrication site for solder mask tolerances between and around signal pads.

PW (R-PDSO-G14)

PLASTIC SMALL OUTLINE

A. An integration of the information o

Body length does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0,15 each side.

Body width does not include interlead flash. Interlead flash shall not exceed 0,25 each side.

E. Falls within JEDEC MO-153

NOTES: A. All linear dimensions are in millimeters.

- B. This drawing is subject to change without notice.
- C. Publication IPC-7351 is recommended for alternate designs.
- D. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC-7525 for other stencil recommendations.
- E. Customers should contact their board fabrication site for solder mask tolerances between and around signal pads.

D (R-PDSO-G8)

PLASTIC SMALL OUTLINE

NOTES: A. All linear dimensions are in inches (millimeters).

- B. This drawing is subject to change without notice.
- Body length does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0.006 (0,15) each side.
- Body width does not include interlead flash. Interlead flash shall not exceed 0.017 (0,43) each side.
- E. Reference JEDEC MS-012 variation AA.

NOTES: A. All linear dimensions are in millimeters.

- B. This drawing is subject to change without notice.
- C. Publication IPC-7351 is recommended for alternate designs.
- D. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC-7525 for other stencil recommendations.
 E. Customers should contact their board fabrication site for solder mask tolerances between and around signal pads.

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products (also referred to herein as "components") are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI's terms and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily performed.

TI assumes no liability for applications assistance or the design of Buyers' products. Buyers are responsible for their products and applications using TI components. To minimize the risks associated with Buyers' products and applications, Buyers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use of any TI components in safety-critical applications.

In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI's goal is to help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and requirements. Nonetheless, such components are subject to these terms.

No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties have executed a special agreement specifically governing such use.

Only those TI components which TI has specifically designated as military grade or "enhanced plastic" are designed and intended for use in military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components which have *not* been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.

Products		Applications	
Audio	www.ti.com/audio	Automotive and Transportation	www.ti.com/automotive
Amplifiers	amplifier.ti.com	Communications and Telecom	www.ti.com/communications
Data Converters	dataconverter.ti.com	Computers and Peripherals	www.ti.com/computers
DLP® Products	www.dlp.com	Consumer Electronics	www.ti.com/consumer-apps
DSP	dsp.ti.com	Energy and Lighting	www.ti.com/energy
Clocks and Timers	www.ti.com/clocks	Industrial	www.ti.com/industrial
Interface	interface.ti.com	Medical	www.ti.com/medical
Logic	logic.ti.com	Security	www.ti.com/security
Power Mgmt	power.ti.com	Space, Avionics and Defense	www.ti.com/space-avionics-defense
Microcontrollers	microcontroller.ti.com	Video and Imaging	www.ti.com/video
RFID	www.ti-rfid.com		
OMAP Applications Processors	www.ti.com/omap	TI E2E Community	e2e.ti.com
Wireless Connectivity	www.ti.com/wirelessconne	ctivity	

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2015, Texas Instruments Incorporated