TOSHIBA

TOSHIBA PHOTOCOUPLER GaAs IRED & PHOTO-TRIAC

TRIAC DRIVER **PROGRAMMABLE CONTROLLERS** AC-OUTPUT MODULE SOLID STATE RELAY

The TOSHIBA TLP3507 consists of a zero voltage crossing turn-on photo-triac optically coupled to a gallium arsenide infrared emitting diode in a 8 lead plastic DIP package.

- Peak Off-State Voltage : 600V (MIN.)
- Trigger LED Current : 10mA (MAX.)
- **On-State Current** : 0.5A_{rms} (MAX.)
- Isolation Voltage : 2500V_{rms} (MIN.)
- Zero Crossing Fanction
- UL Recognized
- : UL1577, File No. E67349

11-10C3 Weight : 0.52g

PIN CONFIGURATIONS (TOP VIEW)

2: ANODE 3 : CATHODE 5 : TRIAC GATE 6 : TRIAC T1 8 : TRIAC T2

Unit in mm

MAXIMUM RATINGS (Ta = 25°C)

	CHARACTERISTIC		SYMBOL	RATING	UNIT	
	Forward Current	IF	50	mA		
Ð	Forward Current Derating (Ta \geq 53	3°C)	⊿I _F /°C	-0.7	mA/°C	
LEI	Peak Forward Current (100 μ s puls	se, 100pps)	I _{FP}	1	A	
	Reverse Voltage	VR	5	V		
	Junction Temperature		Тј	125	°C	
	Off-State Output Terminal Voltage	e	VDRM	600	V	
~	On-State RMS Current	Ta=40°C		0.5	А	
TOR	On-State KMS Current	$Ta = 60^{\circ}C$	IT (RMS)	0.35	A	
ECJ	On-State Current Derating (Ta \geq 4	0°C)	$\Delta I_T / C$	-7.2	mA/°C	
DETI	Peak Current from Snubber Circus $(100\mu s \text{ pulse}, 120 \text{ pps})$	it	I _{SP}	2	Α	
	Peak Nonrepetitive Surge Current	(50Hz, Peak)	I _{TSM}	5	A	
	Junction Temperature	Тј	110	°C		
Sto	rage Temperature Range		T _{stg}	$-40 \sim 125$	°C	
Ope	erating Temperature Range		T _{opr}	$-20 \sim 80$	°C	
Lea	d Soldering Temperature (10s)	rature (10s)		260	°C	
Isol	solation Voltage (AC, 1 min., R.H. \leq 60%) (Note)		BVS	2500	V _{rms}	

(Note) Device considereded a two-terminal device : Pins 2 and 3 shorted together, and pins 5, 6 and 8 shorted together.

RECOMMENDED OPERATING CONDITIONS

CHARACTERISTIC	SYMBOL	MIN.	TYP.	MAX.	UNIT		
Supply Voltage	V _{AC}	_	_	240	Vac		
Forward Current	$I_{ m F}$	15	20	25	mA		
Peak Current from Snubber Circuit	I _{SP}	_	_	1	Α		
Operating Temperature	T _{opr}	-20	-	80	°C		

	CHARACTERISTIC	SYMBOL	TEST CONDITION	MIN.	TYP.	MAX.	UNIT
	Forward Voltage	$V_{\mathbf{F}}$	$I_F = 10 mA$	1.0	1.15	1.3	V
LED	Reverse Current	IR	$V_R = 5V$			10	$\mu \mathbf{A}$
	Capacitance	CT	V=0, f=1MHz		30	_	pF
OR	Peak Off-State Current	I _{DRM}	V _{DRM} =600V, Ta=110°C			100	$\mu \mathbf{A}$
	Peak On-State Voltage	v_{TM}	$I_{TM} = 0.75 A$			3.0	V
CT(Holding Current	$I_{ m H}$	$R_L = 100\Omega$		_	25	mA
DETE	Critical Rate of Rise of Off-State Voltage	dv / dt	V _{in} =240V _{rms} (Fig.1)		500	_	$V/\mu s$
	Critical Rate of Rise of Commutating Voltage	dv / dt (c)	$V_{in} = 240 V_{rms}$, $I_T = 0.5 A_{rms}$ (Fig.1)		5	_	V/μs

INDIVIDUAL ELECTRICAL CHARACTERISTICS (Ta = 25°C)

COUPLED ELECTRICAL CHARACTERISTICS (Ta = 25°C)

CHARACTERISTIC	SYMBOL	TEST CONDITION	MIN.	TYP.	MAX.	UNIT
Trigger LED Current	I_{FT}	$V_{\rm T}=6V$	_	_	10	mA
Inhibit Voltage	v_{IH}	$I_F = Rated I_{FT}$			50	V
Leakage in Inhibited State	I_{IH}	$I_{F} = Rated I_{FT}$ $V_{T} = Rated V_{DRM}$	_	200	_	μA
Capacitance (Input to Output)	C_S	V _S =0, f=1MHz		1.5	_	pF
Isolation Resistance	RS	V_{S} = 500V, R.H. \leq 60%	5×10^{10}	1014	_	Ω
	BVS	AC, 1 minute	2500	_	_	Vara
Isolation Voltage		AC, 1 second, in oil		5000		Vrms
		DC, 1 minute, in oil	_	5000	_	V _{dc}

Fig.1 : dv/dt TEST CIRCUIT

TOSHIBA

RESTRICTIONS ON PRODUCT USE

000707EBC

- TOSHIBA is continually working to improve the quality and reliability of its products. Nevertheless, semiconductor devices in general can malfunction or fail due to their inherent electrical sensitivity and vulnerability to physical stress. It is the responsibility of the buyer, when utilizing TOSHIBA products, to comply with the standards of safety in making a safe design for the entire system, and to avoid situations in which a malfunction or failure of such TOSHIBA products could cause loss of human life, bodily injury or damage to property. In developing your designs, please ensure that TOSHIBA products are used within specified operating ranges as set forth in the most recent TOSHIBA products specifications. Also, please keep in mind the precautions and conditions set forth in the "Handling Guide for Semiconductor Devices," or "TOSHIBA Semiconductor Reliability Handbook" etc..
- The TOSHIBA products listed in this document are intended for usage in general electronics applications (computer, personal equipment, office equipment, measuring equipment, industrial robotics, domestic appliances, etc.). These TOSHIBA products are neither intended nor warranted for usage in equipment that requires extraordinarily high quality and/or reliability or a malfunction or failure of which may cause loss of human life or bodily injury ("Unintended Usage"). Unintended Usage include atomic energy control instruments, airplane or spaceship instruments, transportation instruments, traffic signal instruments, combustion control instruments, medical instruments, all types of safety devices, etc.. Unintended Usage of TOSHIBA products listed in this document shall be made at the customer's own risk.
- Gallium arsenide (GaAs) is a substance used in the products described in this document. GaAs dust and fumes are toxic. Do not break, cut or pulverize the product, or use chemicals to dissolve them. When disposing of the products, follow the appropriate regulations. Do not dispose of the products with other industrial waste or with domestic garbage.
- The products described in this document are subject to the foreign exchange and foreign trade laws.
- The information contained herein is presented only as a guide for the applications of our products. No responsibility is assumed by TOSHIBA CORPORATION for any infringements of intellectual property or other rights of the third parties which may result from its use. No license is granted by implication or otherwise under any intellectual property or other rights of TOSHIBA CORPORATION or others.

• The information contained herein is subject to change without notice.