TOSHIBA MICROWAVE SEMICONDUCTOR TECHNICAL DATA

MICROWAVE POWER GaAs FET

TIM8596-8

FEATURES:

- HIGH POWER
 P1dB = 39.5 dBm at 8.5 GHz to 9.6 GHz
- HIGH GAIN
 G_{1dB} = 6.0 dB at 8.5 GHz to 9.6 GHz
- BROAD BAND INTERNALLY MATCHED
- HERMETICALLY SEALED PACKAGE

RF PERFORMANCE SPECIFICATIONS ($T_a = 25^{\circ}C$)

				1		
CHARACTERISTICS	SYMBOL	CONDITION	UNIT	MIN.	TYP.	MAX.
Output Power at 1 dB Com- pression Point	P _{1dB}	V _{DS} = 9 V	dBm	38.5	39.5	-
Power Gain at 1 dB Com- pression Point	G _{1dB}	f = 8.5	dB	5.0	6.0	-
Drain Current	I _{DS}	-9.6 GHz	A	_	3.4	4.4
Power Added Efficiency	nadd		00	_	22	-
Channel-Temper- ature Rise	ΔT_{ch}	V _{DS} ×I _{DS} ×R _{th} (c-c)	C	: -		80

ELECTRICAL CHARACTERISTICS ($T_a = 25^{\circ}C$)

CHARACTERISTICS	SYMBOL	CONDITION	UNIT	MIN.	TYP.	MAX.
Trans- conductance	gm	$V_{DS} = 3 V$ $I_{DS} = 4.0 A$	mS	-	2400	-
Pinch-off Voltage	V _{GSoff}	$V_{DS} = 3 V$ $I_{DS} = 120 mA$	v	-2	-3.5	:-5
Saturated Drain Current	I _{DSS}	$V_{DS} = 3 V$ $V_{GS} = 0 V$	A	-	8.0	10.4
Gate-Source Breakdown Voltage	V _{GSO}	I _{GS} = -120μA	V	-5	- .	_
Thermal Resistance	R _{th} (c-c)	Channel to Case	°C/W	-	1.6	2.5

- * The information contained herein is presented only as a guide for the applications of our products. No responsibility is assumed by TOSHIBA for any infringements of patents or other rights of the third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of TOSHIBA or others.
- * The information contained herein may be changed without prior notice. It is therefore advisable to contact TOSHIBA before proceeding with the design of equipment incorporating this product.

-TIM8596-8-

CHARACTERISTIC	SYMBOL	UNIT	RATING
Drain-Source Voltage	v _{DS}	v	15
Gate-Source Voltage	v _{GS}	v	-5
Drain Current	I _{DS}	A	10.4
Total Power Dissipation (Tc=25°C)	P_{T}	Ŵ	60
Channel Temperature	Tch	°C	175
Storage Temperature	^T stg	°C	-65~175

ABSOLUTE MAXIMUM RATINGS ($T_a = 25^{\circ}C$)

PACKAGE OUTLINE (2-11C1B)

HANDLING PRECAUTIONS FOR PACKAGED TYPE

Soldering iron should be grounded and the operating time should not exceed 10 seconds at 260°C.

-TIM8596-8-

RF PERFORMANCES

TIM8596-8-

POWER DISSIPATION VS. CASE TEMPERATURE

