Integrated mixer oscillator PLL for satellite LNB

Rev. 01 — 25 August 2008

Product data sheet

1. General description

The TFF1004HN/N1 is an integrated downconverter for use in Low Noise Block (LNB) convertors in a 10.7 GHz to 12.75 GHz K_u band satellite receiver system.

CAUTION

This device is sensitive to ElectroStatic Discharge (ESD). Observe precautions for handling electrostatic sensitive devices.

Such precautions are described in the ANSI/ESD S20.20, IEC/ST 61340-5, JESD625-A or equivalent standards.

2. Features

- Pre-amplifier, mixer, buffer amplifier and PLL synthesizer in one IC
- Alignment-free concept
- Crystal controlled LO frequency generation
- Low phase noise
- Switched LO frequency (9.75 GHz and 10.6 GHz)
- Low spurious

3. Applications

K_u band LNB converters for digital satellite reception (DVB-S)

4. Quick reference data

Table 1. Quick reference data

 V_{CC} = 3.3 V; T_{amb} = 25 °C; f_{LO} = 9.75 GHz or 10.6 GHz; f_{xtal} = 50 MHz; Z_0 = 50 Ω unless otherwise specified.

00	· amb · 20		'				
Symbol	Parameter	Conditions		Min	Тур	Max	Unit
V _{CC}	supply voltage	RF input and IF output AC coupled	<u>[1]</u>	3.0	3.3	3.6	V
I _{CC}	supply current	RF input and IF output AC coupled	<u>[1][2]</u>	-	102	125	mA
	single sideband noise figure	low band	[2][3][4][5]	-	9	10	dB
	CC supply current NF _{SSB} single sideband noise figure G _{conv} conversion gain	high band	[2][4][5][6]	-	9	10	dB
G _{conv}	conversion gain	low band	[2][3][5]	26	32	35	dB
		high band	[2][5][6]	26	32	35	dB

Integrated mixer oscillator PLL for satellite LNB

Symbol	Parameter	Conditions		Min	Тур	Max	Unit
9 1 1 1	output third-order intercept point	carrier power = -10 dBm (measured at output); worst case is given.					
	low band	[2][3][7][8]	10	-	-	dBm	
		high band	[2][6][7][8	10	-	-	dBm

Table 1. Quick reference data ...continued

[1] DC values.

- [2] See corresponding graph in Section 13.1.2 "Parameters as function of temperature".
- $[3] Low band conditions: P_{RF_{IN}} = -50 \text{ dBm}; f_{LO} = 9.75 \text{ GHz}; f_{RF_{IN}} = 10.70 \text{ GHz} \text{ to } 11.70 \text{ GHz}; f_{IF_{OUT}} = 950 \text{ MHz} \text{ to } 1950 \text{ MHz}.$
- [4] Measured with band-pass filter according to Figure 4 and Figure 5.
- [5] See corresponding graph in <u>Section 13.1.1 "Parameters as function of frequency"</u>.
- [6] High band conditions: $P_{RF_{IN}} = -50 \text{ dBm}$; $f_{LO} = 10.6 \text{ GHz}$; $f_{RF_{IN}} = 11.70 \text{ GHz}$ to 12.75 GHz; $f_{IF_{OUT}} = 1100 \text{ MHz}$ to 2150 MHz.
- [7] measured in 50 Ω environment and calculated back towards a 75 Ω environment.
- [8] measured with carriers depicted in <u>Table 10</u>.

5. Ordering information

Table 2.Ordering information

Type number	Package					
	Name	Description	Version			
TFF1004HN/N1	HVQFN24	plastic, heatsink very thin quad flat package; no leads; 24 terminals; body $4\times 4\times 0.85$ mm	SOT616-1			

Integrated mixer oscillator PLL for satellite LNB

6. Block diagram

7. Functional diagram

Integrated mixer oscillator PLL for satellite LNB

8. Pinning information

8.1 Pinning

8.2 Pin description

	ruescription	
Symbol	Pin	Description
GND	0	ground (exposed die pad)
PLL_GND	1	ground [1]
V _{CC(PLL)}	2	PLL supply voltage. Decouple against pin 1.
XO_GND	3	ground [1]
V _{CC(XO)}	4	crystal oscillator supply voltage. Decouple against pin 3.
XO_TANK	5	crystal oscillator tank
XO_XTAL	6	50 MHz. Crystal connection. Connect other crystal terminal to GND.
LO_SEL	7	select high or low band [2]
BG_GND	8	ground [1]
V _{CC(BG)}	9	internal regulator supply. Decouple against pin 8.
REG_V_VCO	10	decoupling of the internal VCO supply
PLL_LF	11	loop filter PLL. Connect loop filter between this pin and pin 10.
VCO_GND	12	ground [1]
V _{CC(IF)}	13	IF-buffer supply voltage. Decouple against pin 14.
IF_GND	14, 15, 17, 18	ground [1]
IF_OUT	16	IF-buffer output. Connect RF choke coil between this pin and pin 13.
RF1_GND	19, 20	ground [1]

TFF1004HN/N1

Integrated mixer oscillator PLL for satellite LNB

Table 3.	Table 3. Pin descriptioncontinued				
Symbol	Pin	Description			
RF_IN	21	RF input. AC coupling required.			
RF2_GND	22, 23	ground [1]			
V _{CC(MIX)}	24	mixer supply voltage. Decouple against pin 23.			

[1] Connect this to the exposed die pad.

[2] See Table 4.

Table 4. LO_SEL

LO_SEL (pin 7)	local oscillator frequency
(V)	(GHz)
0	9.75
V _{CC}	10.60
open	10.60

9. Limiting values

Table 5. Limiting values

In accordance with the Absolute Maximum Rating System (IEC 60134).

Symbol	Parameter	Conditions	Min	Max	Unit
V _{CC(BG)}	band gap supply voltage		-0.5	+3.6	V
V _{CC(IF)}	IF supply voltage		-0.5	+3.6	V
V _{CC(PLL)}	PLL supply voltage		-0.5	+3.6	V
V _{CC(XO)}	XO supply voltage		-0.5	+3.6	V
Tj	junction temperature		-	125	°C
T _{stg}	storage temperature		-	125	°C

10. Recommended operating conditions

Table 6.	Operating conditions					
Symbol	Parameter	Conditions	Min	Тур	Max	Unit
T _{amb}	ambient temperature		-40	+25	+85	°C
Z ₀	characteristic impedance		-	50	-	Ω

Table 7.Selection of crystal

Mode	Frequency	Load capacitor	Frequency stability	Quartz cut	Maximum drive level	Tank circuit
	(MHz)	(pF)	(ppm)		(μW)	
fundamental	50	0 [1]	± 50 [2]	AT-cut	100	not used
overtone	50	0 [1]	± 50 [2]	AT-cut	100	used [3]

[1] Series resonant.

[2] The LO will have the same frequency stability.

[3] The components of the tank circuit are selected to form a parallel resonance at 50 MHz. The input capacitance at XO_TANK (pin 5) is 3 pF.

Integrated mixer oscillator PLL for satellite LNB

The tank circuit should have no DC path between $V_{CC(XO)}$ (pin 4) and XO_TANK (pin 5), therefore the inductive branch should contain a DC block.

11. Thermal characteristics

Table 8.	Thermal characteristics			
Symbol	Parameter	Conditions	Тур	Unit
R _{th(j-sp)}	thermal resistance from junction to solder point		24	K/W

12. Characteristics

Table 9. **Characteristics**

 V_{CC} = 3.3 V; T_{amb} = 25 °C; f_{LO} = 9.75 GHz or 10.6 GHz; f_{xtal} = 50 MHz; Z_0 = 50 Ω unless otherwise specified.

Symbol	Parameter	Conditions		Min	Тур	Мах	Unit
V _{CC}	supply voltage	RF input and IF output AC coupled	<u>[1]</u>	3.0	3.3	3.6	V
I _{CC}	supply current	RF input and IF output AC coupled	[1][2]	-	102	125	mA
Φnλ(itg)	integrated phase noise density	integration offset frequency = 10 kHz to 13 MHz; loop bandwidth = crossover bandwidth					
		low band	[2][3]	-	-	2.5	°RM
		high band	[2][4]	-	-	3.6 125	°RM
NF _{SSB}	single sideband noise	low band	[2][3][5][6]	-	9	10	dB
	figure	high band	[2][4][5][6]	-	9	10	dB
G _{conv}	conversion gain	low band	[2][3][6]	26	32	35	dB
		high band	[2][4][6]	26	32	35	dB
ΔG_{conv}	conversion gain	low band	[2][3]	-	-	3.6 125 2.5 10 10 35 5 1.5 5 1.5 -10 -10 -10 -10 -10 -10 -10	dB
S11	variation	high band	[2][4]	-	-	5	dB
		in every 36 MHz band; high band and low band	[6]	-	-	125 2.5 10 10 35 5 5 1.5 -10 -10 -10 -10 -10 -10 -10 -15 -35	dB
S ₁₁	input reflection coefficient	with optimum matching structure	<u>[6]</u>	-	-	-10	dB
S ₂₂	output reflection coefficient	${\rm f}_{\rm IF_OUT}$ = 950 MHz to 2150 MHz; ${\rm Z}_0$ = 75 Ω	[7]	-	-	-10	dB
IP3 ₀	output third-order intercept point	carrier power = -10 dBm (measured at output); worst case is given.					
		low band	[2][3][7][8]	10	-	-	dBm
		high band	[2][4][7][8]	10	-	3.6 125 2.5 10 10 35 5 5 1.5 -10 -10 -10 -10 -10 -10 -10 -110 -110	dBm
$\alpha_{L(RF)lo}$	local oscillator RF leakage	center frequency = local oscillator frequency; span = 100 MHz; RBW = 50 kHz; VBW = 200 kHz					
		low band	[2][3][9]	-	-	2.5 2.5 10 35 35 5 1.5 -10 -10 -10 -10 -10 -10 -10 -10	dBm
		high band	[2][4][9]	-	-		dBm
$\alpha_{L(IF)IO}$	local oscillator IF leakage	center frequency = local oscillator frequency; span = 100 MHz; RBW = 50 kHz; VBW = 200 kHz				10 10 35 5 5 1.5 -10 -10 -10 - 10 - 10 - 10 - 10 - 10 -	
		low band	[2][3][10]	-	-	-15	dBm
		high band	[2][4][10]	-	-	-15	dBm
$lpha_{resp(sp)IF}_OUT$	spurious response on pin IF_OUT	center frequency = 1.6 GHz; span frequency = 1.2 GHz; RBW = 30 kHz; VBW = 100 kHz	[10]	-	-	-60	dBm

6 of 19

TFF1004HN/N1

Integrated mixer oscillator PLL for satellite LNB

- [1] DC values.
- [2] See corresponding graph in Section 13.1.2 "Parameters as function of temperature".
- [3] Low band conditions: $P_{RF_{IN}} = -50 \text{ dBm}$; $f_{LO} = 9.75 \text{ GHz}$; $f_{RF_{IN}} = 10.70 \text{ GHz}$ to 11.70 GHz; $f_{IF_{OUT}} = 950 \text{ MHz}$ to 1950 MHz.
- [4] High band conditions: $P_{RF_{IN}} = -50 \text{ dBm}$; $f_{LO} = 10.6 \text{ GHz}$; $f_{RF_{IN}} = 11.70 \text{ GHz}$ to 12.75 GHz; $f_{IF_{OUT}} = 1100 \text{ MHz}$ to 2150 MHz.
- [5] Measured with band-pass filter according to Figure 4 and Figure 5.
- [6] See corresponding graph in <u>Section 13.1.1 "Parameters as function of frequency"</u>.
- [7] measured in 50 Ω environment and calculated back towards a 75 Ω environment.
- [8] measured with carriers depicted in Table 10.
- [9] measured with spectrum analyzer at RF_IN (pin 21); IF_OUT (pin 16) terminated with 50 Ω.
- [10] measured with spectrum analyzer at IF_OUT (pin 16); RF_IN (pin 21) terminated with 50 Ω via DC block.

Table 10. IP3₀ carriers

Band	RF frequency Carrier #1 (GHz)	RF frequency Carrier #2 (GHz)	IP3 _O Iow frequency (MHz)	IF frequency Carrier#1 (MHz)	IF frequency Carrier#2 (MHz)	IP3 _O high frequency (MHz)
Low	10.74	10.78	950	990	1030	1070
	11.62	11.66	1830	1870	1910	1950
High	11.74	11.78	1100	1140	1180	1220
	12.67	12.71	2030	2070	2110	2150

Integrated mixer oscillator PLL for satellite LNB

13. Application information

Table 11. List of components

The Printed Circuit Board (PCB) is a Rogers RO4223 ($\varepsilon_r = 3.38$); thickness = 0.51 mm. For application diagram, see <u>Figure 6</u>.

Component	Description	Value	Remarks
C1	decoupling of RF and MIX domain	100 pF	
C2	decoupling of PLL domain	100 pF	
C3	decoupling of XO domain	100 nF	
C4	decoupling of BG domain	100 nF	
		© NXP B.V. 20	08. All rights reserved.

Integrated mixer oscillator PLL for satellite LNB

Table 11. List of components ... continued

The Printed Circuit Board (PCB) is a Rogers RO4223 ($\varepsilon_r = 3.38$); thickness = 0.51 mm. For application diagram, see Figure 6.

Component	Description	Value	R	lemarks
C5	decoupling of IF domain	100 nF		
C6	XO_TANK circuit (only with overtone crystal)	18 pF	<u>[1]</u>	
C7	XO_TANK circuit, DC coupling (only with overtone crystal)	4.7 nF	[1]	
C8	REG_V_VCO decoupling	1 nF		naximum alue 1 nF
C9	loop filter	820 pF		
C10	loop filter	220 nF		
C11	output capacitor	100 pF		
C12	main supply decoupling and 22 kHz rejection	47 μF		
L1	XO_TANK circuit (only with overtone crystal)	470 nH	[1]	
L2	RF choke at 2.15 GHz	27 nH		
R1	loop filter	120 Ω		
X1	crystal; series resonant; ESR < 70 Ω	50 MHz	[1]	

[1] See Table 7.

Integrated mixer oscillator PLL for satellite LNB

13.1 Graphs

13.1.1 Parameters as function of frequency

Integrated mixer oscillator PLL for satellite LNB

Integrated mixer oscillator PLL for satellite LNB

13.1.2 Parameters as function of temperature

TFF1004HN/N1

Integrated mixer oscillator PLL for satellite LNB

TFF1004HN/N1

Integrated mixer oscillator PLL for satellite LNB

TFF1004HN/N1

Integrated mixer oscillator PLL for satellite LNB

TFF1004HN/N1

Integrated mixer oscillator PLL for satellite LNB

14. Package outline

Fig 29. Package outline SOT616-1

Integrated mixer oscillator PLL for satellite LNB

15. Abbreviations

Table 12. Abbreviation	ns
Acronym	Description
BG	Band Gap
DVB-S	Digital Video Broadcasting by Satellite
ESR	Equivalent Series Resistance
IC	Integrated Circuit
IF	Intermediate Frequency
K _u band	K-under band
LO	Local Oscillator
PFD	Phase Frequency Detector
PLL	Phase-Locked Loop
RBW	Resolution BandWidth
RF	Radio Frequency
VBW	Video BandWidth
VCO	Voltage-Controlled Oscillator
ХО	Crystal Oscillator

16. Revision history

Table 13. Revision history				
Document ID	Release date	Data sheet status	Change notice	Supersedes
TFF1004HN_N1_1	20080825	Product data sheet	-	-

Integrated mixer oscillator PLL for satellite LNB

17. Legal information

17.1 Data sheet status

Document status[1][2]	Product status ^[3]	Definition
Objective [short] data sheet	Development	This document contains data from the objective specification for product development.
Preliminary [short] data sheet	Qualification	This document contains data from the preliminary specification.
Product [short] data sheet	Production	This document contains the product specification.

[1] Please consult the most recently issued document before initiating or completing a design.

[2] The term 'short data sheet' is explained in section "Definitions".

[3] The product status of device(s) described in this document may have changed since this document was published and may differ in case of multiple devices. The latest product status information is available on the Internet at URL http://www.nxp.com.

17.2 Definitions

Draft — The document is a draft version only. The content is still under internal review and subject to formal approval, which may result in modifications or additions. NXP Semiconductors does not give any representations or warranties as to the accuracy or completeness of information included herein and shall have no liability for the consequences of use of such information.

Short data sheet — A short data sheet is an extract from a full data sheet with the same product type number(s) and title. A short data sheet is intended for quick reference only and should not be relied upon to contain detailed and full information. For detailed and full information see the relevant full data sheet, which is available on request via the local NXP Semiconductors sales office. In case of any inconsistency or conflict with the short data sheet, the full data sheet shall prevail.

17.3 Disclaimers

General — Information in this document is believed to be accurate and reliable. However, NXP Semiconductors does not give any representations or warranties, expressed or implied, as to the accuracy or completeness of such information and shall have no liability for the consequences of use of such information.

Right to make changes — NXP Semiconductors reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof.

Suitability for use — NXP Semiconductors products are not designed, authorized or warranted to be suitable for use in medical, military, aircraft, space or life support equipment, nor in applications where failure or malfunction of an NXP Semiconductors product can reasonably be expected to result in personal injury, death or severe property or environmental damage. NXP Semiconductors accepts no liability for inclusion and/or use of NXP Semiconductors products in such equipment or applications and therefore such inclusion and/or use is at the customer's own risk.

Applications — Applications that are described herein for any of these products are for illustrative purposes only. NXP Semiconductors makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

Limiting values — Stress above one or more limiting values (as defined in the Absolute Maximum Ratings System of IEC 60134) may cause permanent damage to the device. Limiting values are stress ratings only and operation of the device at these or any other conditions above those given in the Characteristics sections of this document is not implied. Exposure to limiting values for extended periods may affect device reliability.

Terms and conditions of sale — NXP Semiconductors products are sold subject to the general terms and conditions of commercial sale, as published at http://www.nxp.com/profile/terms, including those pertaining to warranty, intellectual property rights infringement and limitation of liability, unless explicitly otherwise agreed to in writing by NXP Semiconductors. In case of any inconsistency or conflict between information in this document and such terms and conditions, the latter will prevail.

No offer to sell or license — Nothing in this document may be interpreted or construed as an offer to sell products that is open for acceptance or the grant, conveyance or implication of any license under any copyrights, patents or other industrial or intellectual property rights.

Quick reference data — The Quick reference data is an extract of the product data given in the Limiting values and Characteristics sections of this document, and as such is not complete, exhaustive or legally binding.

17.4 Trademarks

Notice: All referenced brands, product names, service names and trademarks are the property of their respective owners.

18. Contact information

For more information, please visit: http://www.nxp.com

For sales office addresses, please send an email to: salesaddresses@nxp.com

Integrated mixer oscillator PLL for satellite LNB

19. Contents

1	General description 1
2	Features 1
3	Applications 1
4	Quick reference data 1
5	Ordering information 2
6	Block diagram 3
7	Functional diagram 3
8	Pinning information 4
8.1	Pinning 4
8.2	Pin description 4
9	Limiting values 5
10	Recommended operating conditions 5
11	Thermal characteristics 6
12	Characteristics
13	Application information 8
13.1	Graphs 10
13.1.1	Parameters as function of frequency 10
13.1.2	Parameters as function of temperature 12
14	Package outline 16
15	Abbreviations 17
16	Revision history 17
17	Legal information 18
17.1	Data sheet status 18
17.2	Definitions 18
17.3	Disclaimers
17.4	Trademarks
18	Contact information 18
19	Contents 19

Please be aware that important notices concerning this document and the product(s) described herein, have been included in section 'Legal information'.

© NXP B.V. 2008.

All rights reserved.

For more information, please visit: http://www.nxp.com For sales office addresses, please send an email to: salesaddresses@nxp.com

Date of release: 25 August 2008 Document identifier: TFF1004HN_N1_1