

Car radio tuner front-end for digital IF

Rev. 03 — 19 July 2005

Product data sheet

1. General description

The TEF6721HL is a single chip car radio tuner for AM, FM standard, FM In-Band On-Channel Digital Audio Broadcast (IBOC DAB) and weather band providing combined AM and FM gain controlled differential Intermediate Frequency (IF) output for the SAF7730H including the following functions:

- AM up-conversion tuner to an IF frequency of 10.7 MHz for Long Wave (LW)/Medium Wave (MW)/Short Wave (SW) (31 m, 41 m and 49 m bands)
- FM single conversion tuner to an IF frequency of 10.7 MHz with integrated image rejection for US FM, Europe FM, Japan FM, East Europe FM and weather band reception; all bands can be selected using high side or low side Local Oscillator (LO) injection
- Tuning system includes Voltage-Controlled Oscillator (VCO), crystal oscillator and Phase-Locked Loop (PLL) synthesizer on one chip.

2. Features

- FM mixer for conversion of FM Radio Frequency (RF) (64 MHz to 108 MHz and US weather band) to an IF of 10.7 MHz; the mixer provides inherent image rejection and can be switched from low injection to high injection Local Oscillator (LO) via the I²C-bus; two different mixer conversion gains can be selected via the I²C-bus
- Automatic Gain Control (AGC) PIN diode drive circuit for FM RF AGC; AGC detection at FM mixer input and IF AGC amplifier input; AGC threshold for detection at FM mixer input is a programmable and keyed function switchable via the I²C-bus; the AGC PIN diode drive can be activated via the I²C-bus as a local function for search tuning; in AM mode the AGC PIN diode drive can be activated via the I²C-bus if required
- Digital alignment circuit for bus controlled matching of oscillator tuning voltage to FM antenna tank circuit tuning voltage
- Buffer output for weather band flag
- Combined AM and FM IF AGC amplifier with high dynamic input range; one of the four gain settings is selected automatically via two control signals from IF Digital Signal Processor (DSP); combined differential AM and FM IF output signal to analog-to-digital converter of IF DSP
- AM mixer for conversion of AM RF to AM IF 10.7 MHz
- AM RF PIN diode drive circuit and RF Junction Field Effect Transistor (JFET) conductance control by AGC cascode drive circuit; AGC threshold detection at AM mixer and IF AGC input; threshold for detection at AM mixer is programmable via the I²C-bus
- AM and FM RF AGC monitor output intended for gain control of active antennas

Car radio tuner front-end for digital IF

- Inductor Capacitor (LC) tuner oscillator providing mixer frequencies for FM and AM mixers
- Crystal oscillator providing reference frequencies for synthesizer PLL and timing for Alternative Frequency (AF) updating
- Optional crystal oscillator frequency pulling possibility via I²C-bus
- Fast synthesizer PLL tuning system with local control for inaudible AF updating
- Timing function for AF updating algorithm and control signal output for interfacing with IF DSP
- Three hardware programmable I²C-bus addresses; pin BUSENABLE; two software controlled flag outputs
- Several test modes for fast Integrated Circuit (IC) tests.

3. Quick reference data

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
V _{DDA(n)}	analog supply voltages 1 to 5		8	8.5	9	V
V _{DDA6}	analog supply voltage 6		4.75	5	5.25	V
V _{DDD}	digital supply voltage		4.75	5	5.25	V
I _{DDA(n)}	sum of analog supply	FM Japan mode	35	44	55	mA
	currents 1 to 5	AM mode	28	38	48	mA
I _{DDA6}	analog supply current 6	FM Japan mode	2.2	3.2	4.3	mA
		AM mode	10	14	18	mA
I _{DDD}	digital supply current	FM Japan mode	23	30	39	mA
		AM mode	17	23	30	mA
f _{AM(ant)}	AM input frequency	LW	0.144	-	0.288	MHz
		MW	0.522	-	1.710	MHz
		SW	5.73	-	9.99	MHz
f _{FM(ant)}	FM input frequency		64	-	108	MHz
f _{FM(WB)(ant)}	FM weather band input frequency		162.4	-	162.55	MHz
T _{amb}	ambient temperature		-40	-	+85	°C
	system parameters (bas n IF DSP; voltages in RI					audio
V _{i(RF)(IFAGC)}	RF input voltage for	first step	-	5.5	-	mV
	start of IF AGC	second step	-	11	-	mV
		third step	-	22	-	mV
V _{i(RF)(RFAGC)}	RF input voltage for	in-band; m = 0	-	31	-	mV
	start of RF AGC	wideband; $m = 0$				
		AGC[1:0] = 00	-	92	-	mV
		AGC[1:0] = 01	-	126	-	mV
		AGC[1:0] = 10	-	168	-	mV
		AGC[1:0] = 11	-	210	-	mV

© Koninklijke Philips Electronics N.V. 2005. All rights reserved.

Philips Semiconductors

Car radio tuner front-end for digital IF

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
IP3	3rd-order input	∆f _{undesired} = 50 kHz	-	130	-	dBμV
	intercept point	$\Delta f_{undesired} = 300 \text{ kHz}$	-	135	-	dBµV
IP2	2nd-order input intercept point		-	140	-	dBμV
		ed on 75 Ω dummy aeria alue at input of dummy a				hasis is
V _{i(RF)(IFAGC)}	RF input voltage for	first step	-	0.57	-	mV
	start of IF AGC	second step	-	1.1	-	mV
		third step	-	2.3	-	mV
V _{i(RF)(RFAGC)}	RF input voltage for	in-band	-	4.5	-	mV
	start of wideband AGC	wideband				
		AGC[1:0] = 11	-	8	-	mV
		AGC[1:0] = 10	-	12	-	mV
		AGC[1:0] = 01	-	17	-	mV
		AGC[1:0] = 00	-	21	-	mV
α_{26dB}	sensitivity	f = 97 MHz	-	1.4	-	μV
IP3	3rd-order input intercept point	$\Delta f_{undesired}$ = 400 kHz	-	117	-	dBμV

4. Ordering information

Table 2:Ordering information

Type number	Package	Package						
	Name	Description	Version					
TEF6721HL	LQFP64	plastic low profile quad flat package; 64 leads; body $10 \times 10 \times 1.4$ mm	SOT314-2					

Car radio tuner front-end for digital IF

5. Block diagram

6. Pinning information

6.1 Pinning

6.2 Pin description

Table 3: Pin description

SymbolPinDescriptioni.c.1internally connected for test purposes; leave open-circuitV _{DDA1} 2analog supply voltage 1 (8.5 V) for IF AGC amplifierAMIFIN3IF AGC amplifier AM input (10.7 MHz)FMIFIN4IF AGC amplifier FM input (10.7 MHz)IFDEC5IF AGC amplifier AM and FM decouplingIFGND6IF AGC amplifier groundIFAGCBIAS7bias voltage for IF AGC amplifier decouplingi.c.8internally connected for test purposes; connect to groundFMMIXOUT19FM mixer IF output 1 (10.7 MHz)AMMIXOUT110AM mixer IF output 1 (10.7 MHz)	Table 5.	Findescription	
VDDA12analog supply voltage 1 (8.5 V) for IF AGC amplifierAMIFIN3IF AGC amplifier AM input (10.7 MHz)FMIFIN4IF AGC amplifier FM input (10.7 MHz)IFDEC5IF AGC amplifier AM and FM decouplingIFGND6IF AGC amplifier groundIFAGCBIAS7bias voltage for IF AGC amplifier decouplingi.c.8internally connected for test purposes; connect to groundFMMIXOUT19FM mixer IF output 1 (10.7 MHz)	Symbol	Pin	Description
AMIFIN3IF AGC amplifier AM input (10.7 MHz)FMIFIN4IF AGC amplifier FM input (10.7 MHz)IFDEC5IF AGC amplifier AM and FM decouplingIFGND6IF AGC amplifier groundIFAGCBIAS7bias voltage for IF AGC amplifier decouplingi.c.8internally connected for test purposes; connect to groundFMMIXOUT19FM mixer IF output 1 (10.7 MHz)	i.c.	1	internally connected for test purposes; leave open-circuit
FMIFIN4IF AGC amplifier FM input (10.7 MHz)IFDEC5IF AGC amplifier AM and FM decouplingIFGND6IF AGC amplifier groundIFAGCBIAS7bias voltage for IF AGC amplifier decouplingi.c.8internally connected for test purposes; connect to groundFMMIXOUT19FM mixer IF output 1 (10.7 MHz)	V _{DDA1}	2	analog supply voltage 1 (8.5 V) for IF AGC amplifier
IFDEC5IF AGC amplifier AM and FM decouplingIFGND6IF AGC amplifier groundIFAGCBIAS7bias voltage for IF AGC amplifier decouplingi.c.8internally connected for test purposes; connect to groundFMMIXOUT19FM mixer IF output 1 (10.7 MHz)	AMIFIN	3	IF AGC amplifier AM input (10.7 MHz)
IFGND6IF AGC amplifier groundIFAGCBIAS7bias voltage for IF AGC amplifier decouplingi.c.8internally connected for test purposes; connect to groundFMMIXOUT19FM mixer IF output 1 (10.7 MHz)	FMIFIN	4	IF AGC amplifier FM input (10.7 MHz)
IFAGCBIAS7bias voltage for IF AGC amplifier decouplingi.c.8internally connected for test purposes; connect to groundFMMIXOUT19FM mixer IF output 1 (10.7 MHz)	IFDEC	5	IF AGC amplifier AM and FM decoupling
i.c.8internally connected for test purposes; connect to groundFMMIXOUT19FM mixer IF output 1 (10.7 MHz)	IFGND	6	IF AGC amplifier ground
FMMIXOUT1 9 FM mixer IF output 1 (10.7 MHz)	IFAGCBIA	S 7	bias voltage for IF AGC amplifier decoupling
	i.c.	8	internally connected for test purposes; connect to ground
AMMIXOUT1 10 AM mixer IF output 1 (10.7 MHz)	FMMIXOU	IT1 9	FM mixer IF output 1 (10.7 MHz)
	AMMIXOU	JT1 10	AM mixer IF output 1 (10.7 MHz)

Table 3: Pin	description	ncontinued
Symbol	Pin	Description
FMMIXOUT2	11	FM mixer IF output 2 (10.7 MHz)
AMMIXOUT2	12	AM mixer IF output 2 (10.7 MHz)
V _{DDA2}	13	analog supply voltage 2 (8.5 V) for FM and AM RF
SWPORT1	14	software programmable port 1
AMMIXDEC	15	AM mixer decoupling
AMMIXIN	16	AM mixer input
VAMCAS	17	output for AM RF cascode AGC
VAMCASFB	18	feedback input for AM RF cascode AGC
IAMAGC	19	PIN diode drive current output of AM front-end AGC
TAFAMAGC	20	AF time constant of AM front-end AGC
TRFAMAGC	21	RF time constant of AM front-end AGC
VREFFMMIX	22	reference voltage for FM RF mixer
FMMIXIN1	23	FM mixer input 1
RFGND	24	RF ground
i.c.	25	internally connected; connect to ground
FMMIXIN2	26	FM mixer input 2
WBFLAG	27	buffered weather band flag output
IFMAGC	28	PIN diode drive current output of FM front-end AGC
AGCBUF	29	monitor current output of FM and AM front-end AGC
DAAOUT	30	output of Digital Auto Alignment (DAA) circuit for antenna tank circuit
KAGCADJ	31	adjustment for FM keyed AGC function; leave open-circuit
TFMAGC	32	time constant of FM front-end AGC
KAGC	33	level input for FM keyed AGC function from IF DSP
DAATD	34	temperature compensation diode of DAA circuit for antenna tank circuit
DAAIN	35	input of DAA circuit for antenna tank circuit
VTUNE	36	VCO tuning voltage
CPOUT	37	charge pump output
V _{DDA3}	38	analog supply voltage 3 (8.5 V) for tuning PLL
DGND	39	digital ground
V _{DDD}	40	digital supply voltage (5 V)
VCOGND	41	VCO ground
OSCFDB	42	VCO feedback input
OSCTNK	43	VCO tank circuit
V _{DDA4}	44	analog supply voltage 4 (8.5 V) for VCO
ADDRSEL	45	hardware address select for I ² C-bus
BUSENABLE	46	enable input for I ² C-bus
AFSAMPLE	47	AF sample flag output for IF DSP
AFHOLD	48	AF hold flag output for IF DSP
SDA	49	I ² C-bus Serial Data (SDA) line input and output

Table 3: Pin	description	ncontinued
Symbol	Pin	Description
SCL	50	I ² C-bus Serial Clock (SCL) line input
IFAGCLSB	51	Least Significant Bit (LSB) input for IF AGC amplifier gain setting from IF DSP
IFAGCMSB	52	Most Significant Bit (MSB) input for IF AGC amplifier gain setting from IF DSP
SWPORT2	53	software programmable port 2
V _{DDA5}	54	analog supply voltage 5 (8.5 V) for on-chip power supply
GND	55	ground
V _{DDA6}	56	analog supply voltage 6 (5 V) for on-chip power supply
XTAL1	57	crystal oscillator 1
XTAL2	58	crystal oscillator 2
XTALGND	59	crystal oscillator ground
VDAC	60	Digital-to-Analog Converter (DAC) output voltage for crystal oscillator frequency pulling
IREF	61	reference current for power supply
i.c.	62	internally connected; connect to ground
IFOUT1	63	IF AGC amplifier output 1
IFOUT2	64	IF AGC amplifier output 2

7. Functional description

7.1 FM in-phase/quadrature-phase mixer

The FM quadrature mixer converts FM RF (64 MHz to 108 MHz and 162.4 MHz to 162.55 MHz) to an IF of 10.7 MHz. It provides inherent image rejection and high dynamic range. The image rejection can be switched from low injection Local Oscillator (LO) to high injection LO via the I²C-bus. The mixer conversion gain can be increased by 6 dB via the I²C-bus. In this case the threshold of the FM keyed AGC has to be lowered by 6 dB to prevent the mixer from being overloaded.

7.2 Buffer output for weather band flag

The buffer output (pin WBFLAG) is HIGH for weather band mode.

7.3 VCO

The varactor tuned LC oscillator provides the local oscillator signal for both FM and AM mixers. It has a frequency range from 159.9 MHz to 248.2 MHz.

7.4 Crystal oscillator

The crystal oscillator provides a 20.5 MHz signal that is used for:

- Reference frequency for frequency synthesizer PLL
- Timing signal for the Radio Data System (RDS) update algorithm.

7.5 PLL

The fast synthesizer PLL tuning system with local control is used for inaudible AF updating, combining fast PLL jumps with low reference frequency breakthrough.

It is capable of tuning the following FM and AM bands:

- US FM and US IBOC DAB from 87.9 MHz to 107.9 MHz
- US weather FM from 162.4 MHz to 162.55 MHz
- Europe FM from 87.5 MHz to 108 MHz
- Japan FM from 76 MHz to 91 MHz
- East Europe FM from 64 MHz to 74 MHz
- LW from 144 kHz to 288 kHz
- MW from 522 kHz to 1710 kHz (US AM band)
- SW from 5.73 MHz to 9.99 MHz (including the 31 m, 41 m and 49 m bands).

7.6 DAA

To reduce the number of manual alignments in production, the following I²C-bus controlled Digital Auto Alignment (DAA) functions are included:

- FM RF DAA
 - 7-bit DAC to control the conversion of the VCO tuning voltage to FM antenna tank tuning voltage
 - For cost reduction the diode at pin DAATD can be omitted from this application. In this case, pin DAATD must be connected to ground, which reduces the available alignment range (see Figure 9)
- Crystal frequency and general purpose DAA
 - 5-bit DAC for adjustment of the crystal oscillator frequency to align the actual IF frequency to the center frequency of IF selectivity inside the IF DSP. If the IF DSP can be aligned to the actual IF frequency, this DAA output can be used as general purpose DAC. Figure 3 shows the application of the crystal oscillator with frequency pulling.

7.7 FM keyed AGC

The AGC detects at the FM mixer input and the IF AGC amplifier input. The AGC threshold for the FM mixer input is programmable via the I²C-bus. When the threshold is exceeded, the AGC sources a current to an external PIN diode circuit, keeping the RF signal level at the FM mixer input constant.

The keyed function shifts the threshold of the AGC if the in-band signal is small. This reduces desensitization by other strong transmitters. The amount of threshold shift is limited to 10 dB. The keyed function can be activated via the I²C-bus and is controlled by in-band level information delivered from IF DSP via pin KAGC.

The AGC can be activated via the I²C-bus to source a fixed current as a local function for search tuning. In AM mode the AGC can be activated to source a constant 10 mA current into the FM PIN diode.

7.8 AM mixer

Fig 4. Separate IF paths for AM and FM mode

The AM mixer has a high dynamic range and converts AM RF to an IF frequency of 10.7 MHz.

The outputs of the AM and FM mixers can be separated to allow the use of different IF filters for AM and FM modes. Figure 4 shows this optional application. By adding the resistor R1 between pins AMIFIN and IFAGCBIAS the input impedance of the IF AGC amplifier is matched to the AM IF filter output impedance.

The input impedance of the AM IF filter is matched to 330 Ω with R2 and R3.

7.9 AM RF AGC

The AM wideband AGC in front of the AM mixer is realized first by a cascoded NPN transistor, which controls the transconductance of the RF amplifier JFET with 10 dB of AGC range. Second, an AM PIN diode stage with 30 dB of AGC range is available. The

9397 750 15042

minimum JFET drain source voltage is controlled by a Direct Current (DC) feedback loop (pin VAMCASFB) in order to limit the cascode AGC range to 10 dB. If the cascode AGC is not required, a simple RF AGC loop is possible by using only a PIN diode. In some conditions, noise behavior will increase. In this case pins VAMCAS and VAMCASFB have to be left open-circuit. In FM mode, the cascode switches off the JFET bias current to reduce the total power consumption.

The AGC detection points for AM RF AGC are at the AM mixer input (threshold programmable via the I²C-bus) and the AM and FM IF AGC amplifier input (fixed threshold).

In FM mode the AM AGC can be activated via the I^2 C-bus to sink a constant current of 1 mA from the PIN diode.

7.10 FM/AM RF AGC buffer

This output current can be used to reduce the gain of active antennas before start of RF AGC.

The output (open-collector) sinks a current which in AM mode is proportional to the voltage at pin TRFAMAGC and in FM mode proportional to the RF level detector voltage (pin TFMAGC) inside the FM AGC.

8. I²C-bus protocol

8.1 I²C-bus specification

SDA and SCL HIGH and LOW levels are specified according to a 3.3 V I^2 C-bus. The bus pins tolerate also thresholds of a 5 V bus.

The standard I²C-bus specification is expanded by the following definitions.

IC addresses:

- 1st IC address C2h: 1100001 R/W
- 2nd IC address C0h: 1100000 R/W
- 3rd IC address C4h: 1100010 R/W.

Structure of the I²C-bus logic: slave transceiver with auto increment.

Subaddresses are not used.

The second I²C-bus address can be selected by connecting pin ADDRSEL via a 120 k Ω resistor to ground. The third I²C-bus address can be selected by connecting pin ADDRSEL via a 33 k Ω resistor to ground.

The maximum bit rate for this device is 100 kbit/s.

The I²C-bus interface is extended with an enable input (pin BUSENABLE). If pin BUSENABLE is HIGH the communication with the device is active; if pin BUSENABLE is LOW the signals on the I²C-bus are ignored so that higher bit rates (> 100 kbit/s) can be used to communicate with other devices on the same I²C-bus. The enable signal must not change while bus communication takes place.

No default settings at power-on reset. I²C-bus transmission is required to program the IC.

8.1.1 Data transfer

Data sequence: address, byte 0, byte 1, byte 2, byte 3, byte 4 and byte 5.

The data transfer has to be in this order. The LSB of the address being logic 0 indicates a write operation.

Bit 7 of each byte is considered the MSB and has to be transferred as the first bit of the byte.

The data becomes valid at the output of the internal latches with the acknowledge of each byte. A STOP condition after any byte can shorten transmission times.

When writing to the transceiver by using the STOP condition before completion of the whole transfer:

- The remaining bytes will contain the old information
- If the transfer of a byte is not completed, this byte is lost and the previous information is available.

8.1.2 Frequency setting

For new frequency setting, in both AM and FM mode, the programmable divider is enabled by setting bit PRESET to logic 1. To select a frequency, two l²C-bus transmissions are necessary:

- First: bit PRESET = 1
- Second: bit PRESET = 0.

8.1.3 Restriction of the I²C-bus characteristic

At -40 °C the start of the acknowledge bit after transmitting the slave address exceeds the general requirement of $t_{HD;DAT} < 3.45 \ \mu$ s. The start of acknowledge is $t_{ST;ACK} < 4.1 \ \mu$ s over the full temperature range from -40 °C to +85 °C. This will not influence the overall system performance, because the required set-up time $t_{SU;DAT} > 250$ ns is fulfilled at any condition.

8.2 I²C-bus protocol

8.2.1 Data transfer mode and IC address

Car radio tuner front-end for digital IF

Table 4: Description of I²C-bus format

Code	Description
S	START condition
Slave address W	see Table 5
Slave address R	see Table 5
ACK-s	acknowledge generated by the slave
ACK-m	acknowledge generated by the master
NA	not acknowledge generated by the master
Data	data byte
Р	STOP condition

Table 5:IC address byte

Address	IC add	IC address [1]							
1	1	1	0	0	0	0	1	R/W	
2	1	1	0	0	0	0	0	R/W	
3	1	1	0	0	0	1	0	R/W	

[1] Pin ADDRSEL left open-circuit activates first IC address; $R_{ext} = 120 k\Omega$ at pin ADDRSEL to ground activates second IC address; $R_{ext} = 33 k\Omega$ at pin ADDRSEL to ground activates third IC address.

- [2] Read or write bit:
 - 0 = write operation to TEF6721HL
 - 1 = read operation from TEF6721HL.

8.2.2 Write mode: data byte 0

Та	ble 6:	Format of data byte 0						
	7	6	5	4	3	2	1	0
	AF	PLL14	PLL13	PLL12	PLL11	PLL10	PLL9	PLL8

Table 7: Description of data byte 0 bitsBitSymbolDescription7AFAlternative frequency. If AF = 0, then normal operation. If AF = 1, then
AF (RDS) update mode.6 to 0PLL[14:8]Setting of programmable counter of synthesizer PLL. Upper byte of
PLL divider word.

8.2.3 Write mode: data byte 1

Table 8:	Format of d	ata byte 1					
7	6	5	4	3	2	1	0
PLL7	PLL6	PLL5	PLL4	PLL3	PLL2	PLL1	PLL0

Table 9:	Descriptio	Description of data byte 1 bits				
Bit	Symbol	Description				
7 to 0	PLL[7:0]	Setting of programmable counter of synthesizer PLL. Lower byte of PLL divider word.				

8.2.4 Write mode: data byte 2

Table 10:Format of data byte 2

7	6	5	4	3	2	1	0
PRESET	DAA6	DAA5	DAA4	DAA3	DAA2	DAA1	DAA0

Table 11:	Descriptio	of data byte 2 bits					
Bit	Symbol	Description					
7	PRESET	Preset. If PRESET = 0, then programmable divider and antenna DAA locked. If PRESET = 1, then writing to programmable divider and antenna DAA enabled.					
6 to 0	DAA[6:0]	Setting of antenna digital auto alignment.					

8.2.5 Write mode: data byte 3

Table 12: Format of data byte 3

7	6	5	4	3	2	1	0
-	FREF2	FREF1	FREF0	-	BND1	BND0	AMFM

Table 13: Description of data byte 3 bits

Bit	Symbol	Description
7	-	This bit is not used and should be set to logic 0.
6 to 4	FREF[2:0]	Reference frequency for synthesizer. These 3 bits determine the reference frequency, see <u>Table 14</u> .
3	-	This bit is not used and should be set to logic 0.
2 and 1	BND[1:0]	Band switch. These 2 bits select the frequency in AM and FM mode, see Table 15 and Table 16.
0	AMFM	AM or FM switch. If AMFM = 0, then FM mode. If AMFM = 1, then AM mode.

Table 14: Reference frequency setting

FREF2	FREF1	FREF0	f _{ref} (kHz)
0	0	0	100
1	0	0	50
0	1	0	25
1	1	0	20
0	0	1	10
1	0	1	10
0	1	1	10
1	1	1	10

Table 15:	FM band selection bits							
BND1	BND0	Frequency band	VCO divider	Charge pump current				
0	0	FM standard	2	130 μA + 3 mA				
0	1	FM Japan	3	130 μA + 3 mA				
1	0	FM East Europe	3	1 mA				
1	1	FM weather	1	300 μA				

Table 16: AM band selection bits [1]

BND1	BND0	Frequency band	VCO divider	Charge pump current
0	Х	AM SW	10	1 mA
1	Х	AM LW/MW	20	1 mA

[1] X = don't care.

8.2.6 Write mode: data byte 4

Table 17: Format of data byte 4

7	6	5	4	3	2	1	0
KAGC	AGC1	AGC0	LODX	FMINJ	-	AGCSW	MIXGAIN

Table 18: Description of data byte 4 bits

Table To:	Description	r of data byte 4 bits
Bit	Symbol	Description
7	KAGC	Keyed FM AGC. If KAGC = 0, then keyed FM AGC is off. If KAGC = 1, then keyed FM AGC is on.
6 and 5	AGC[1:0]	Wideband AGC. These 2 bits set the start value of wideband AGC. For AM, see <u>Table 19</u> and for FM, see <u>Table 20</u> .
4	LODX	Local or distance. If $LODX = 0$, then distance mode is on. If $LODX = 1$, then local mode is on.
3	FMINJ	FM mixer image rejection. If FMINJ = 0, then low injection. If FMINJ = 1, then high injection.
2	-	This bit is not used and should be set to logic 0.
1	AGCSW	AGC switch. If AGCSW = 0, then AM AGC in FM mode and FM AGC in AM mode is off. If AGCSW = 1, then AM AGC PIN diode drive is active in FM mode and FM AGC PIN diode drive is active in AM mode.
0	MIXGAIN	FM mixer gain. If MIXGAIN = 0, then the FM mixer gain is nominal. If MIXGAIN = 1, then the FM mixer gain is $+6$ dB.

Table 19: Setting of wideband AGC for AM (m = 0.3)

AGC1	AGC0	AM mixer input voltage (peak value) (mV)
0	0	275
0	1	375
1	0	500
1	1	625

Car radio tuner front-end for digital IF

AGC1	AGC0	FM RF mixer input voltage (RMS value) (mV)
1	1	8
1	0	12
0	1	16
0	0	20

8.2.7 Write mode: data byte 5

Table 21: Format of data byte 5

7	6	5	4	3	2	1	0
SWPORT2	SWPORT1	-	DAC4	DAC3	DAC2	DAC1	DAC0

Table 22: Description of data byte 5 bits

Bit	Symbol	Description
7	SWPORT2	Software programmable port 2. If SWPORT2 = 0, then pin SWPORT2 is inactive (high-impedance). If SWPORT2 = 1, then pin SWPORT2 is active (pull down to ground).
6	SWPORT1	Software programmable port 1. If SWPORT1 = 0, then pin SWPORT1 is inactive (high-impedance). If SWPORT1 = 1, then pin SWPORT1 is active (pull down to ground).
5	-	This bit is not used and should be set to logic 0.
4 to 0	DAC[4:0]	Setting of crystal frequency DAA. These 5 bits determine the crystal frequency alignment output voltage.

8.2.8 Read mode: data byte 0

Table 23:	Format of first	data byte					
7	6	5	4	3	2	1	0
ID7	ID6	ID5	ID4	ID3	ID2	ID1	ID0

Table 24: Description of data byte 0 bits

Bit	Symbol	Description
7 to 0	ID[7:0]	Chip ID. These bits contain a constant value (0010 0001 = 21h) for chip identification purposes.

9. Internal circuitry

Table 25:	Equivalent pin cir	cuits
Symbol	Pin	Equivalent circuit
i.c.	1	
V _{DDA1}	2	

9397 750 15042 Product data sheet

Philips Semiconductors

Car radio tuner front-end for digital IF

© Koninklijke Philips Electronics N.V. 2005. All rights reserved.

Philips Semiconductors

Symbol	Pin	Equivalent circuit
VAMCAS	17	17 10 kΩ mdb422
VAMCASFB	18	$18 - 1 \times \Omega$
IAMAGC	19	(19) (
TAFAMAGC	20	20 (20 mdb425
TRFAMAGC	21	
VREFFMMIX	22	(22) mdb427

Philips Semiconductors

Car radio tuner front-end for digital IF

9397 750 15042 Product data sheet

TEF6721HL

TEF6721HL

TEF6721HL

Symbol	Pin	Equivalent circuit
BUSENABLE	46	
		J
		(46)- (*
		mdb442
AFSAMPLE	47	
		mdb443
AFHOLD	48	· · · · · ·
		(48)
		↑↓
		mdb444
SDA	49	
		1 κΩ
		(49)
		mdb446
SCL	50	
		$\int \frac{1 k \Omega}{k} k^{k}$
		mdb445
IFAGCLSB	51	
IFAGCMSB	52	
		y Y Y
		\ominus \ominus
SWPORT2	53	
	55	(53)
		□ 7 mdb448
N/	- 1	
VDDA5	54	
V _{DDA5}	54	

Philips Semiconductors

Car radio tuner front-end for digital IF

58

Table 25:	Equivalent pin circ	uits continued
Symbol	Pin	Equivalent circuit
GND	55	
V _{DDA6}	56	
XTAL1	57	
XTAL2	58	27.6 pF
XTALGND	59	

20 kΩ

20 kΩ

IREF

60

61

VDAC

10. Limiting values

Table 26: Limiting values

In accordance with the Absolute Maximum Rating System (IEC 60134).

Symbol	Parameter	Conditions	Min	Max	Unit
V _{DDA1}	analog supply voltage 1 for IF AGC amplifier		<u>[1]</u> –0.3	+10	V
V _{DDA2}	analog supply voltage 2 for FM and AM RF		<u>[1]</u> –0.3	+10	V
V _{DDA3}	analog supply voltage 3 for tuning PLL		[1] -0.3	+10	V
V _{DDA4}	analog supply voltage 4 for VCO		<u>[1]</u> –0.3	+10	V
V _{DDA5}	analog supply voltage 5 for on-chip power supply		<u>[1]</u> –0.3	+10	V
V _{DDA6}	analog supply voltage 6 for on-chip power supply		-0.3	+6.5	V
V _{DDD}	digital supply voltage		-0.3	+6.5	V
T _{stg}	storage temperature		-55	+150	°C
T _{amb}	ambient temperature		-40	+85	°C
V _{esd}	electrostatic discharge voltage		[2] -200	+200	V
			<u>[3]</u> –2000	+2000	V

[1] To avoid damages and wrong operation it is necessary to keep all 8.5 V supply voltages at a higher level than any 5 V supply voltage. This is also necessary during power-on and power-down sequences. Precautions have to be provided in such a way that interferences can not pull down the 8.5 V supply below the 5 V supply.

[2] Machine model (R = 0 Ω , C = 200 pF).

[3] Human body model (R = $1.5 \text{ k}\Omega$, C = 100 pF).

11. Thermal characteristics

Table 27: Thermal characteristics

Symbol	Parameter	Conditions	Тур	Unit
R _{th(j-a)}	thermal resistance from junction to ambient	in free air	58	K/W

12. Static characteristics

Table 28: Static characteristics

 $V_{DDA1} = V_{DDA2} = V_{DDA3} = V_{DDA4} = V_{DD5} = 8.5 V$; $V_{DDA6} = 5 V$; $V_{DDD} = 5 V$; $T_{amb} = 25 °C$; unless otherwise specified.

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
Supply vol	tage					
V _{DDA(n)}	analog supply voltages 1 to 5		8	8.5	9	V
V _{DDA6}	analog supply voltage 6		4.75	5	5.25	V
V _{DDD}	digital supply voltage		4.75	5	5.25	V
Supply cur	rent in FM mode					
I _{DDA1}	analog supply current 1 for AN and FM IF AGC amplifier	1	-	20.5	-	mA
I _{DDA2}	analog supply current 2 for RF	-	-	5.5	-	mA
I _{DDA3}	analog supply current 3 for tuning PLL		-	4.3	-	mA
I _{DDA4}	analog supply current 4 for VC	0	5.2	6.5	7.8	mA

TEF6721HL

Car radio tuner front-end for digital IF

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
I _{DDA5}	analog supply current 5 for on-chip power supply		-	7.8	-	mA
I _{DDA6}	analog supply current 6 for	Europe/US band	-	3	-	mA
	on-chip power supply	Japan/East Europe band	-	3.2	-	mA
I _{DDD}	digital supply current	Europe/US band	-	23	-	mA
		Japan/East Europe band	-	30	-	mA
I _{FMMIXOUT1}	bias current of FM mixer output 1		4.8	6	7.2	mA
I _{FMMIXOUT2}	bias current of FM mixer output 2		4.8	6	7.2	mA
Supply curre	ent in AM mode					
I _{DDA1}	analog supply current 1 for AM and FM IF AGC amplifier		-	19.5	-	μA
I _{DDA2}	analog supply current 2 for RF		-	2	-	mA
I _{DDA3}	analog supply current 3 for tuning PLL		1.7	2.5	3.5	mA
I _{DDA4}	analog supply current 4 for VCO		5	6.5	8	mA
I _{DDA5}	analog supply current 5 for on-chip power supply		-	7.5	-	mA
I _{DDA6}	analog supply current 6 for on-chip power supply		-	14	-	mA
I _{DDD}	digital supply current		17	23	30	mA
I _{AMMIXOUT1}	bias current of AM mixer output 1		4.8	6	7.2	mA
I _{AMMIXOUT2}	bias current of AM mixer output 2		4.8	6	7.2	mA
On-chip pov	ver supply reference current gen	erator: pin IREF				
V _{o(ref)}	output reference voltage		4	4.25	4.5	V
R _o	output resistance		-	10	-	kΩ
I _{o(source)(max)}	maximum output source current		-100	-	+100	nA

Table 28: Static characteristics ... continued $V_{DD41} = V_{DD42} = V_{DD43} = V_{DD44} = V_{DD5} = 8.5 V; V_{D14}$

13. Dynamic characteristics

Table 29: Dynamic characteristics

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
Voltage con	trolled oscillator					
f _{osc}	oscillator frequency		159.9	-	248.2	MHz
C/N	carrier-to-noise ratio	f_{osc} = 200 MHz; Δf = 10 kHz; B = 1 Hz	-	97	-	dBc
RR	ripple rejection $rac{\Delta f_{osc}}{f_{osc}}$	$ f_{ripple} = 100 \text{ Hz}; \\ V_{DDA4(ripple)} = 100 \text{ mV}; \\ f_{osc} = 200 \text{ MHz} $	92	99	-	dB

Table 29: Dynamic characteristics ...continued

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
Crystal oscil	lator					
f _{xtal}	crystal frequency		-	20.5	-	MHz
C/N	carrier-to-noise ratio	f_{xtal} = 20.5 MHz; Δf = 10 kHz	-	112	-	$\frac{dBc}{\sqrt{Hz}}$
Circuit inputs:	pins XTAL1, XTAL2 and XTA	LGND [1]				
V _{xtal}	crystal voltage		80	100	160	mV
V _{XTAL1} , V _{XTAL2}	DC bias voltage		1.7	2.1	2.5	V
R _i real part of input impedance		$V_{XTAL1} - V_{XTAL2} = 1 \text{ mV}$	-250	-	-	Ω
C _i	input capacitance		8	10	12	pF
Synthesizer						
Programmabl	e divider					
N _{prog}	programmable divider ratio		512	-	32767	
ΔN_{step}	programmable divider step size		-	1	-	
Charge pump	: pin CPOUT					
Isink(cp1)I	low charge pump 1 peak sink current	FM weather band mode; 0.4 V < V _{CPOUT} < 7.6 V; $f_{VCO} > f_{ref} \times N_{prog}$	-	300	-	μA
source(cp1)l	low charge pump 1 peak source current	FM weather band mode; 0.4 V < V_{CPOUT} < 7.6 V; f_{VCO} < $f_{ref} \times N_{prog}$	-	-300	-	μA
Isink(cp1)h	high charge pump 1 peak sink current	$0.4 \text{ V} < \text{V}_{\text{CPOUT}} < 7.6 \text{ V};$ $f_{\text{VCO}} > f_{\text{ref}} \times \text{N}_{\text{prog}}$				
		AM mode	-	1	-	mA
		FM East Europe band	-	1	-	mA
Isource(cp1)h	high charge pump 1 peak source current	$0.4 V < V_{CPOUT} < 7.6 V;$ $f_{VCO} < f_{ref} \times N_{prog}$				
		AM mode	-	-1	-	mA
		FM East Europe band	-	-1	-	mA
I _{sink(cp2)}	charge pump 2 peak sink current	FM standard or FM Japan mode; $f_{VCO} > f_{ref} \times N_{prog}$; 0.3 V < V _{CPOUT} < 7.1 V	-	130	-	μA
I _{source(cp2)}	charge pump 2 peak source current	FM standard or FM Japan mode; $f_{VCO} < f_{ref} \times N_{prog}$; 0.3 V < V _{CPOUT} < 7.1 V	-	-130	-	μA
Charge pump	: pin VTUNE					
I _{sink(cp3)}	charge pump 3 peak sink current	FM standard or FM Japan mode; $f_{VCO} > f_{ref} \times N_{prog}$; 0.4 V < V _{VTUNE} < 7.6 V	-	3	-	mA
I _{source(cp3)}	charge pump 3 peak source current	FM standard or FM Japan mode; $f_{VCO} < f_{ref} \times N_{prog}$; 0.4 V < V _{VTUNE} < 7.6 V	-	-3	-	mA

Car radio tuner front-end for digital IF

Table 29: Dynamic characteristics ... continued

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
Antenna Di	gital Auto Alignment (DAA)					
DAA input: p	oin DAAIN					
l _{bias(cp)}	charge pump buffer input bias current	$V_{\text{DAAIN}} = 0.4 \text{ V}$ to 8 V	-10	-	+10	nA
V _{i(cp)}	charge pump buffer input voltage		0	-	8.5	V
DAA output:	pin DAAOUT					
V _{o(AM)}	DAA output voltage in AM mode	I _{DAAOUT} < 100 μA	-	-	0.3	V
V _{o(FM)}	DAA output voltage in	$V_{DAATD} = 0.45 V$				
	FM mode	minimum value; data byte 2 = 1000 0000 (n = 0); V _{DAAIN} = 0.5 V	-	-	0.5	V
		data byte 2 = 1010 1010 (n = 42); V _{DAAIN} = 2 V	1.2	1.4	1.6	V
		data byte 2 = 1101 0101 (n = 85); V _{DAAIN} = 2 V	2 2.3	2.6	2.9	V
		data byte 2 = 1000 0000 (n = 0); V _{DAAIN} = 4 V	[2] _	0.65	-	V
		data byte 2 = 1100 0000 (n = 64); V _{DAAIN} = 4 V	3.8	4	4.2	V
		maximum value; data byte 2 = 1111 1111 (n = 127); V _{DAAIN} = 4.7 V	8	-	8.5	V
V _{o(n)}	DAA output noise voltage	data byte 2 = 1100 0000 (n = 64); FM mode; $V_{DAAIN} = 4 V;$ $V_{DAATD} = 0.45 V;$ B = 300 Hz to 22 kHz	-	30	100	μV
ΔV _{o(T)}	DAA output voltage variation with temperature	$T_{amb} = -40 \text{ °C to } +85 \text{ °C};$ data byte 2 = 1100 0000 (n = 64)	-8	-	+8	mV
∆V _{o(step)}	DAA step accuracy	FM mode; n = 0 to 127; $V_{DAAOUT} = 0.5 V$ to 8 V; $V_{DAAIN} = 2 V$; $V_{DAATD} = 0.45 V$	[3] 0.5V _{LSB}	V_{LSB}	1.5V _{LSB}	mV
∆V _{o(sink)}	DAA output voltage variation caused by sink current	$V_{DAAIN} = 4 V;$ $I_{DAAOUT} = 50 \mu A$	[<u>3]</u> –V _{LSB}	-	$+V_{LSB}$	mV
∆V _{o(source)}	DAA output voltage variation caused by source current	$V_{DAAIN} = 4 V;$ $I_{DAAOUT} = -50 \mu A$	[<u>3]</u> –V _{LSB}	-	+V _{LSB}	mV
st	DAA output settling time	$V_{DAAOUT} = 0.2 V$ to 8.25 V; $C_L = 270 \text{ pF}$	-	20	30	μs

Car radio tuner front-end for digital IF

Table 29: Dynamic characteristics ...continued

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
RR	ripple rejection $\frac{V_{DAAOUT}}{V_{DDA3}}$	data byte 2 = 1010 1011 (n = 43); FM mode; $V_{DAAIN} = 4 V;$ $V_{DAATD} = 0.45 V;$ $f_{ripple} = 100 Hz;$ $V_{DDA3(ripple)} = 100 mV$	-	65	-	dB
-	DAA output load capacitance		-	-	270	pF
DAA temperatu	re compensation: pin DAAT	D				
000.00	compensation diode source current	$V_{DAATD} = 0.2 \text{ V} \text{ to } 1.2 \text{ V}$	-50	-40	-30	μA
C _{source} temperature coefficient of compensation diode source current		$V_{DAATD} = 0.2 V \text{ to } 1.2 V;$ $T_{amb} = -40 \text{ °C to } +85 \text{ °C}$	-300	-	+300	$\frac{10^{-6}}{K}$
I ² C-bus addres	ss select: pin ADDRSEL					
RL	load resistance to ground	1st I ² C-bus address	1	-	-	MΩ
		2nd I ² C-bus address	108	120	132	kΩ
		3rd I ² C-bus address	29.7	33	36.3	kΩ
I ² C-bus enable	e: pin BUSENABLE					
VIL	LOW-level input voltage		-0.3	-	+1	V
V _{IH}	HIGH-level input voltage		2	-	V _{DDD} + 0.3	V
Software prog	rammable ports: pins SW	PORT1 and SWPORT2				
Isink(max)	maximum sink current	bit SWPORT1 = 1	1	-	1.6	mA
		bit SWPORT2 = 1	1	-	1.6	mA
Weather band	flag: pin WBFLAG					
Isource(max)	maximum source current	R = 560 Ω	-	-5	-	mA
(onanc)	internal shunt resistance to ground		-	50	-	kΩ
	maximum output voltage for FM mode	measured with respect to pin RFGND	0	-	0.2	V
	output voltage for weather band mode	measured with respect to pin RFGND	4	-	5	V
AM signal cha	nnel					
AM RF AGC: pi	ns AMMIXIN and AMMIXDE	EC				
	RF input voltage for	$m = 0.3; f_{AF} = 1 \text{ kHz}$				
	wideband AGC start level (peak value)	AGC[1:0] = 00	-	275	-	mV
	(pour value)	AGC[1:0] = 01	-	375	-	mV
		AGC[1:0] = 10	-	500	-	mV
		AGC[1:0] = 11	-	625	-	mV
AM RF AGC IF	stage: pins AMIFIN and IFE	DEC				
V _{i(IF)}	IF input voltage	AGC start level				
		m = 0	42	60	85	mV
		m = 0.8	35	50	71	mV
9397 750 15042				© Koninklijke Phili	ps Electronics N.V. 2005. Al	I rights reser

TEF6721HL

Car radio tuner front-end for digital IF

Table 29: Dynamic characteristics ... continued

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
AM RF AGC	PIN diode drive: pin IAMAGC					
I _{sink(max)}	maximum AGC sink current	V _{IAMAGC} = 2.8 V	11	15	19	mA
l _{sink}	AGC sink current	FM mode; AGCSW = 1	0.8	-	-	mA
Ro	output resistance	$I_{IAMAGC} = 1 \ \mu A$	0.5	-	-	MΩ
Co	output capacitance		-	5	7	pF
AM RF AGC	cascode stage: pin VAMCAS					
V _{cas}	cascode voltage	V _{AMMIXIN-AMMIXDEC} below threshold; maximum gain	-	5	-	V
I _{cas}	cascode transistor base current capability		100	-	-	μA
I _{cas(off)}			-	-	100	nA
AM RF AGC	cascode stage: pin VAMCASF	В				
		V _{AMMIXIN-AMMIXDEC} above threshold; minimum gain	-	0.26	-	V
I _{cas(FB)} cascode feedback sense current			0	-	1	μA
AM RF AGC	transconductance buffer: pin /	AGCBUF [4]				
gm(buf)	buffer transconductance $\Delta I_{ m AGCBUF}$	AM mode; $\Delta V_{TRFAMAGC}$ = 50 mV to 0.4 V	0.85	1.1	1.35	mS
	$\overline{\Delta V}_{TRFAMAGC}$					
I _{sink(max)}	maximum sink current	AM mode; open-collector; $\Delta V_{TRFAMAGC} = 0.8 V$	450	500	560	μA
I _{source(max)}	maximum source current	AM mode; ΔV _{TRFAMAGC} < 50 mV	-	-	-30	μA
V _{o(n)}	buffer output noise voltage	AM mode; $V_{DDA2} - V_{AGCBUF} = 1 V$ (voltage across external pull-up resistor); B = 400 Hz to 20 kHz	-	10	15	μV
AM mixer (IF	^F = 10.7 MHz)					
Mixer inputs	: pins AMMIXIN and AMMIXD	EC				
R _i	input resistance		15	25	40	kΩ
C _i	input capacitance		2.5	5	7.5	pF
VI	DC input voltage		2.3	2.7	3.1	V
V _{i(max)}	maximum input voltage	1 dB compression point of AM mixer output; m = 0	500	-	-	mV
Mixer output	ts: pins AMMIXOUT1 and AMN	/IXOUT2				
Ro	output resistance		100	-	-	kΩ
Co	output capacitance		-	4	7	pF
V _{o(max)(p-p)}	maximum output voltage (peak-to-peak value)		12	15	-	V
I _{bias}	mixer bias current	AM mode	4.8	6	7.2	mA

Car radio tuner front-end for digital IF

Table 29: Dynamic characteristics ... continued

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
Mixer						
gm(conv)	conversion		1.9	2.6	3.4	$\frac{\text{mA}}{\text{V}}$
	transconductance $rac{I_{IF}}{V_{RF}}$					V
gm(conv)(T)	$\frac{\text{conversion}}{\text{transconductance variation}}$ with temperature $\frac{\Delta g_{m(\text{conv})}}{g_{m(\text{conv})} \times \Delta T}$		-	-9×10 ⁻⁴	-	K-1
IP3	3rd-order input intercept point	R _L = 2.6 kΩ (AC load between output pins); Δ f = 300 kHz	135	138	-	dBμV
IP2	2nd-order input intercept point	$R_L = 2.6 k\Omega$ (AC load between output pins)	-	170	-	dBμV
V _{i(n)(eq)}	equivalent input noise voltage	R_{gen} = 750 Ω ; R_L = 2.6 k Ω (AC load between output pins)	-	5.8	8	$\frac{nV}{\sqrt{Hz}}$
F	noise figure of AM mixer		-	4.5	7.1	dB
FM signal c	hannel					
FM RF AGC	(FM distance mode; LODX = 0	0)				
RF input: pir	ns FMMIXIN1 and FMMIXIN2;	KAGC = 0				
V _{i(RF)}	RF input voltage for start of	AGC[1:0] = 11	-	8	-	mV
	wideband AGC	AGC[1:0] = 10	-	12	-	mV
		AGC[1:0] = 01	-	16	-	mV
		AGC[1:0] = 00	-	20	-	mV
IF input: pins	s FMIFIN and IFDEC					
V _{i(IF)}	IF input voltage for start of wideband AGC		-	27.2	-	mV
FM RF AGC	time constant: pin TFMAGC					
R _{source}	source resistance		4	5	6	kΩ
V _{O(ref)}	DC output reference voltage	AGC[1:0] = 00; KAGC = 0; V _{FMMIXIN1-FMMIXIN2} = 0 V	3.9	4.4	4.9	V
FM RF AGC	PIN diode drive output: pin IF	MAGC				
I _{sink(max)}	maximum AGC sink current	$\label{eq:VIFMAGC} \begin{split} V_{\text{IFMAGC}} &= 2.5 \text{ V};\\ V_{\text{TFMAGC}} &= V_{\text{O}(\text{ref})} - 0.5 \text{ V};\\ \text{AGC}[1:0] &= 00; \text{ KAGC} = 0 \end{split}$	8	11.5	15	mA
I _{source(max)}	maximum AGC source current	$V_{IFMAGC} = 2.5 V;$ $V_{TFMAGC} = V_{O(ref)} + 0.5 V;$ AGC[1:0] = 00; KAGC = 0	-15	-11.5	-8	mA
Isource(AGC)	AGC source current	AM mode; AGCSW = 1	-15	-11.5	-8	mA
		V _{IFMAGC} = 2.5 V; LODX = 1	-0.65	-0.5	-0.35	mA

Table 29: Dynamic characteristics ... continued

Symbol	Parameter	Conditions	Min	Тур	Max	Unit	
FM keyed A	GC: pin KAGC						
V _{th}	threshold voltage for narrow-band AGC	$\label{eq:KAGC} \begin{array}{l} KAGC = 1; \\ V_{TFMAGC} = V_{O(ref)} + 0.3 \; V \end{array}$	0.5	0.95	1.4	V	
FM RF AGC	transconductance buffer: pin A	AGCBUF					
gm(buf)	buffer transconductance	FM mode; $V_{TFMAGC} = V_{O(ref)}$ to $V_{O(ref)}$ + 80 mV	3.2	5.0	6.4	mS	
sink(max)	maximum sink current	FM mode; open-collector; $V_{TFMAGC} = V_{O(ref)} + 0.15 V$	450	500	560	μA	
I _{source(max)}	maximum source current	FM mode; $V_{TFMAGC} = V_{O(ref)}$	-	-	-30	μA	
V _{o(n)} buffer output noise voltage		FM mode; V _{VDDA2-AGCBUF} = 1 V (voltage across external pull-up resistor); B = 400 Hz to 20 kHz	-	10	15	μV	
FM RF mixe	r						
Reference v	oltage: pin VREFFMMIX						
V _{ref}	reference voltage	FM mode	6.6	7.3	8	V	
		AM mode	2.7	3.1	3.4	V	
Inputs: pins	FMMIXIN1 and FMMIXIN2						
R _i	input resistance	MIXGAIN = 0	-	3.5	-	kΩ	
		MIXGAIN = 1	-	1.8	-	kΩ	
C _i	input capacitance		-	5	7	pF	
V _{BIAS}	DC bias voltage	FM mode	2.2	2.7	3.2	V	
V _{i(RF)(p)}	RF input voltage (peak value)	1 dB compression point of FM mixer output					
		MIXGAIN = 0	70	100	-	mV	
		MIXGAIN = 1	35	50	-	mV	
Outputs: pin	s FMMIXOUT1 and FMMIXOU	JT2					
Ro	output resistance		100	-	-	kΩ	
Co	output capacitance		2	3.5	5	pF	
V _{o(max)(p-p)}	maximum output voltage (peak-to-peak value)		3	-	-	V	
l _{bias}	mixer bias current	FM mode	4.8	6	7.2	mA	
FM mixer							
gm(conv)	conversion transconductance $\frac{I_{IF}}{I_{IF}}$	MIXGAIN = 0	8.5	12.5	18	$\frac{mA}{V}$	
	transconductance $\frac{IF}{V_{RF}}$	MIXGAIN = 1	17	25	36	$\frac{\text{mA}}{\text{V}}$	

Car radio tuner front-end for digital IF

Table 29: Dynamic characteristics ... continued

$V_{FMMIXOUT1} = V_{AMMIXOUT1} = V_{FMMIXOUT2} = V_{AMMIXOUT2} = V_{DDA1} = V_{DDA2} = V_{DDA3} = V_{DDA4} = V_{DDA5} = 8.5 V; V_{DDA6} = 5 V;$
V _{DDD} = 5 V; T _{amb} = 25 °C; see Figure 9; all AC values are given in RMS; unless otherwise specified.

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
gm(conv)(T)	conversion transconductance variation with temperature	MIXGAIN = 0	-	-1 × 10 ⁻	-3 _	K ^{−1}
	$\frac{\Delta g_{m(conv)}}{g_{m(conv)} \times \Delta T}$					
F	noise figure	MIXGAIN = 0	-	3.5	4.6	dB
		MIXGAIN = 1	-	2.4	-	dB
IP3	3rd-order input intercept	MIXGAIN = 0	113	117	-	dBμV
	point	MIXGAIN = 1	-	108	-	dBμV
IRR	image rejection ratio	FMINJ = 1	[5]			
		f _{RFwanted} = 87.5 MHz; f _{RFimage} = 108.9 MHz	25	30	-	dB
		data byte 3 = X010 X110; f _{RFwanted} = 162.475 MHz; f _{RFimage} = 183.875 MHz	22	30	-	dB
V _{i(n)(eq)}	equivalent input noise	R_{gen} = 200 Ω ; R_L = 2.6 k Ω				
	voltage (pin FMMIXIN1 to FMMIXIN2)	MIXGAIN = 0	-	2.9	3.1	$\frac{nV}{\sqrt{Hz}}$
		MIXGAIN = 1	-	2.6	-	$\frac{nV}{\sqrt{Hz}}$
R _{gen(opt)}	optimum generator resistance		-	200	-	Ω
IF AGC amp	lifier					
Outputs: pins	s IFOUT1 and IFOUT2					
V _{o(max)(p)}	maximum output voltage (peak value)		-	1.4	-	V
Ro	output resistance		-	500	-	Ω
FM mode						
Inputs: pins I	FMIFIN and IFDEC					
R _i	input resistance		270	330	390	Ω
Ci	input capacitance		-	5	7	pF
G	gain	$\label{eq:ViFAGCMSB} \begin{array}{l} V_{IFAGCMSB} = 0.2 \ V; \\ V_{IFAGCLSB} = 0.2 \ V; \\ C_{L} = 0.5 \ pF \end{array}$	-	37.3	-	dB
		$\label{eq:VIFAGCMSB} \begin{array}{l} V_{IFAGCMSB} = 0.2 \ V; \\ V_{IFAGCLSB} = 2.8 \ V; \\ C_{L} = 0.5 \ pF \end{array}$	-	31.3	-	dB
		$V_{IFAGCMSB} = 2.8 V;$ $V_{IFAGCLSB} = 2.8 V;$ $C_L = 0.5 pF$	-	25.3	-	dB
		$V_{IFAGCMSB} = 2.8 V;$ $V_{IFAGCLSB} = 0.2 V;$ $C_L = 0.5 pF$	-	19.3	-	dB

Car radio tuner front-end for digital IF

Table 29: Dynamic characteristics ... continued

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
F	noise figure	$R_{gen} = 330 \ \Omega$	-	8.5	-	dB
IP3	3rd-order input intercept point		-	117	-	dBμV
V _{i(max)(p)}	maximum input voltage (peak value)	1 dB compression point of IF AGC amplifier output voltage				
		V _{IFAGCMSB} = 0.2 V; V _{IFAGCLSB} = 0.2 V	40	-	-	mV
		V _{IFAGCMSB} = 0.2 V; V _{IFAGCLSB} = 2.8 V	70	-	-	mV
		V _{IFAGCMSB} = 2.8 V; V _{IFAGCLSB} = 2.8 V	134	-	-	mV
		V _{IFAGCMSB} = 2.8 V; V _{IFAGCLSB} = 0.2 V	60	-	-	mV
AM mode						
nputs: pins	AMIFIN and IFDEC					
Ri	input resistance		270	330	390	Ω
C _i	input capacitance		-	5	7	pF
3	gain	$V_{IFAGCMSB} = 0.2 V;$ $V_{IFAGCLSB} = 0.2 V;$ $C_L = 0.5 pF$	-	27.4	-	dB
		$V_{IFAGCMSB} = 0.2 V;$ $V_{IFAGCLSB} = 2.8 V;$ $C_L = 0.5 pF$	-	21.4	-	dB
		$V_{IFAGCMSB} = 2.8 V;$ $V_{IFAGCLSB} = 2.8 V;$ $C_L = 0.5 pF$	-	15.4	-	dB
		$V_{IFAGCMSB} = 2.8 V;$ $V_{IFAGCLSB} = 0.2 V;$ $C_L = 0.5 pF$	-	9.4	-	dB
=	noise figure	$R_{gen} = 330 \ \Omega$	-	14.6	-	dB
P3	3rd-order input intercept point	$V_{IFAGCMSB} = 0.2 V;$ $V_{IFAGCLSB} = 0.2 V$	-	127	-	dBμV
		V _{IFAGCMSB} = 0.2 V; V _{IFAGCLSB} = 2.8 V	-	132	-	dBμV
		V _{IFAGCMSB} = 2.8 V; V _{IFAGCLSB} = 2.8 V	-	135	-	dBμV
		V _{IFAGCMSB} = 2.8 V; V _{IFAGCLSB} = 0.2 V	-	136	-	dBμV

TEF6721HL

Car radio tuner front-end for digital IF

Table 29: Dynamic characteristics ... continued

 $V_{FMMIXOUT1} = V_{AMMIXOUT1} = V_{FMMIXOUT2} = V_{AMMIXOUT2} = V_{DDA1} = V_{DDA2} = V_{DDA3} = V_{DDA4} = V_{DDA5} = 8.5 V; V_{DDA6} = 5 V; V_{DDD} = 5 V; T_{amb} = 25 °C;$ see Figure 9; all AC values are given in RMS; unless otherwise specified.

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
V _{i(max)(p)}	maximum input voltage (peak value)	1 dB compression point of IF AGC amplifier output voltage				
		V _{IFAGCMSB} = 0.2 V; V _{IFAGCLSB} = 0.2 V	120	-	-	mV
		V _{IFAGCMSB} = 0.2 V; V _{IFAGCLSB} = 2.8 V	220	-	-	mV
		V _{IFAGCMSB} = 2.8 V; V _{IFAGCLSB} = 2.8 V	440	-	-	mV
		V _{IFAGCMSB} = 2.8 V; V _{IFAGCLSB} = 0.2 V	600	-	-	mV
Crystal fre	quency Digital Auto Alignme	nt (DAA)				
Output: pin	VDAC					
V _{o(max)}	maximum output voltage	data byte 5 = XXX0 0000 (n = 0)	7.4	-	-	V
V _{o(min)}	minimum output voltage	data byte 5 = XXX1 1111 (n = 31)	-	-	1.7	V
$\Delta V_{o(step)}$	DAA step accuracy	n = 0 to 31	100	200	300	mV
V _{o(n)}	DAA output noise voltage	B = 300 Hz to 22 kHz	-	100	130	μV

[1] Measured between pins XTAL1 and XTAL2.

[2] DAA conversion gain formula:
$$V_{DAAOUT} = \left[2 \times \left(0.75 \times \frac{n}{128} + 0.125\right) \times (V_{DAAIN} + V_{DAATD})\right] - V_{DAATD}$$
; where

n = 0 to 127.

 $[3] V_{LSB} = V_{DAAOUT(n+1)} - V_{DAAOUT(n)}$

[4] The AM AGC transconductance buffer delivers a sink current which is proportional to the voltage change at pin TRFAMAGC. $\Delta V_{TRFAMAGC} = V_{TRFAMAGC} - V_{TRFAMAGC} \Big|_{(V_{AMMIXIN} - V_{AMMIXDEC}) < 10 mV}$

[5] Image rejection ratio: IRR =
$$\frac{V_{(FMMIXOUT1-FMMIXOUT2)wanted}}{V_{(FMMIXOUT1-FMMIXOUT2)image}}$$

Car radio tuner front-end for digital IF

AFHOLD signal is used to hold the quality information for signal processing of the main channel during the alternative frequency jumps. PLL registers are loaded during load PLL = 1, but actual frequency jumps take place at the falling edge of this signal. IF counting is carried out during AFSAMPLE = 1. 10 μ s after falling edge of AFSAMPLE result is valid for AF and remains valid until read by microcontroller. Quality tests in IF DSP should take place during the HIGH phase of AFSAMPLE.

 t_1 is the internal TEF6721HL clock related logic delay: 100 $\mu s.$

 t_2 should be > 1.1 ms to ensure correct loading of PLL for the main channel.

 t_3 should be > 0 to ensure inaudible update.

 $t_4 = 500 \ \mu s.$

Fig 7. Inaudible AF update timing diagram

TEF6721HL

Product data sheet

Rev. 03 19 July 2005

36 of 45

Application information

14.

Philips

Semiconductors

TEF6721HL

Car radio tuner front-end for digital IF

Table 30: List of components

Symbol	Parameter	Туре	Manufacturer
C1	capacitor for VCO tuning	270 pF; type NP0	
L1	10.7 MHz IF coil	P7 PSG P826RC 5134N=S	TOKO
L2	AM input	388BN-1211Z	TOKO
L3	oscillator coil	E543SNAS-02010	TOKO
L4	FM image rejection	611SNS-1066Y	TOKO
L5	FM input transformer	369INS-3076X	TOKO
L6	FM antenna coil	LQN1HR50; 215 nH	MURATA
L7	PIN diode bias	LQN1HR21; 500 nH	MURATA
L8	connection image reject	wire 10 mm/printed coil	
	crystal 20.5 MHz	LN-G102-587	NDK

15. Test information

	-	ng points					
Symbol	Pin	Unloaded D	C voltage (/)凹			
		AM mode			FM mode		
		Min	Тур	Max	Min	Тур	Max
i.c.	1	-	5.6	-	-	5.6	-
V _{DDA1}	2	-	8.1	-	-	8.1	-
AMIFIN	3	-	2.1	-	-	2.1	-
FMIFIN	4	-	2.1	-	-	2.1	-
IFDEC	5	-	2.1	-	-	2.1	-
IFGND	6	external 0			external 0		
IFAGCBIAS	7	-	2.1	-	-	2.1	-
i.c.	8	external 0			external 0		
FMMIXOUT1	9	-	8.2	-	-	8.2	-
AMMIXOUT1	10	-	8.2	-	-	8.2	-
FMMIXOUT2	11	-	8.2	-	-	8.2	-
AMMIXOUT2	12	-	8.2	-	-	8.2	-
V _{DDA2}	13	-	8.4	-	-	8.2	-
SWPORT1	14	external bias	sing (open-co	ollector)	external bi	asing (open-collect	or)
AMMIXDEC	15	-	2.8	-	floating		
AMMIXIN	16	2.8 (external	biasing)		floating		
VAMCAS	17	-	4.8	-	0	0.1	0.2
VAMCASFB	18	-	4.1	-	0	0.1	1
IAMAGC	19	6.9 (external	biasing)		4.1 (extern	nal biasing)	
TAFAMAGC	20	-	0.3	-	0	0.3	0.5
TRFAMAGC	21	-	2.9	-	floating		
VREFFMMIX	22	-	3.2	-	-	7.3	-
FMMIXIN1	23	-	1.65	-	-	2.75	-
RFGND	24	external 0			external 0		

9397 750 15042 Product data sheet

TEF6721HL

Car radio tuner front-end for digital IF

Symbol	Pin	Unloaded DC voltage (V) ^[1]						
		AM mode			FM mode			
		Min	Тур	Max	Min	Тур	Max	
.C.	25	external 0			external 0			
-MMIXIN2	26	-	1.65	-	-	2.75	-	
WBFLAG	27	0			0	-	0.5	
IFMAGC	28	4 (external	biasing)		0.1 (external biasing)	-	4 (external biasing)	
AGCBUF	29	8.5 (externa	al biasing)		8.5 (external biasing)			
DAAOUT	30	-	0.2	0.3	0.2	-	8.25	
KAGCADJ	31	-	8.4	-	-	8	-	
TFMAGC	32	-	7.9	-	-	4.4	-	
KAGC	33	0 to 3.3 (ex	ternal biasing)		0 to 3.3 (extern	al biasing)		
DAATD	34	floating		1.5	0.2	0.45	1.5	
DAAIN	35	0	-	8.5	0	-	8.5	
VTUNE	36	0	-	8.5	0	-	8.5	
CPOUT	37	0	-	8.5	0	-	8.5	
V _{DDA3}	38	-	8.44	-	-	8.4	-	
DGND	39	external 0			external 0	external 0		
V _{DDD}	40	5 (external biasing)			5 (external bias	5 (external biasing)		
VCOGND	41	external 0			external 0	external 0		
OSCFDB	42	2.2	2.8	3.4	2.2	2.8	3.4	
OSCTNK	43	5	5.8	7.2	5	5.8	7.2	
V _{DDA4}	44	-	8.35	-	-	8.35	-	
ADDRSEL	45	-	3.7	-	-	3.7	-	
BUSENABLE	46	3.3 (external biasing)			3.3 (external bi	3.3 (external biasing)		
AFSAMPLE	47	open-collector			open-collector	open-collector		
AFHOLD	48	open-collec	open-collector			open-collector		
SDA	49	0 to 5 (exte	rnal biasing)		0 to 5 (external	0 to 5 (external biasing)		
SCL	50	0 to 5 (exte	rnal biasing)		0 to 5 (external	0 to 5 (external biasing)		
IFAGCLSB	51	0 to 3.3 (ex	ternal biasing)			0 to 3.3 (external biasing)		
IFAGCMSB	52		ternal biasing)		0 to 3.3 (external biasing)			
SWPORT2	53	-	-	0.3	-	-	0.3	
V _{DDA5}	54	external 8.5	5		external 8.5			
GND	55	external 0			external 0			
V _{DDA6}	56	external 5			external 5			
XTAL1	57	1.7	2.1	2.5	1.7	2.1	2.5	
XTAL2	58	1.7	2.1	2.5	1.7	2.1	2.5	
XTALGND	59	external 0			external 0			
VDAC	60	2	4.8	7.8	2	4.64	7.8	
IREF	61	4	4.25	4.5	4	4.25	4.5	

Table 31: DC operating points ...continued

9397 750 15042 Product data sheet

Symbol	Pin	Unloaded DC voltage (V) ^[1]					
		AM mode			FM mode		
		Min	Тур	Max	Min	Тур	Max
i.c.	62	external 0			external 0		
IFOUT1	63	-	6.7	-	-	6.7	-
IFOUT2	64	-	6.7	-	-	6.7	-

Table 31: DC operating points ...continued

[1] After initialization via I²C-bus using settings shown in Table 32.

Table 32: Default settings of I²C-bus transmission to 1st IC address (C2h) for AM and FM mode

Function	АМ	FM
Alternative frequency	AF = 0 (no start of RDS update)	AF = 0 (no start of RDS update)
Programmable counter PLL	PLL[14:0] = 11700 (f _{RF} = 1 MHz)	PLL[14:0] = 3918 (f _{RF} = 76 MHz)
Preset	PRESET = 1 (writing to programmable divider and antenna DAA enabled)	PRESET = 1 (writing to programmable divider and antenna DAA enabled)
Setting antenna DAA	DAA[6:0] = 64	DAA[6:0] = 64
Reference frequency for synthesizer	FREF[2:0] = 110 (f _{ref} = 20 kHz; f _{VCO} = 234 MHz)	FREF[2:0] = 100 (f _{ref} = 50 kHz; f _{VCO} = 195.9 MHz)
Band select	BND[1:0] = 10; AMFM = 1 (VCO divider = 20; I _{cp} = 1 mA)	BND[1:0] = 01; AMFM = 0 (VCO divider = 3; I _{cp} = 130 μA + 3 mA)
Keyed FM AGC	KAGC = 0 (off)	KAGC = 1 (on)
Wideband AGC	AGC[1:0] = 01 (375 mV)	AGC[1:0] = 01 (16 mV)
Local or distance	LODX = 0 (distance)	LODX = 1 (local)
FM mixer image rejection	FMINJ = 0 (low injection)	FMINJ = 0 (low injection)
AGC switch	AGCSW = 1 (FM RF AGC PIN diode drive sources 10 mA)	AGCSW = 1 (FM RF AGC PIN diode drive sinks 1 mA)
FM mixer gain	MIXGAIN = 0 (nominal)	MIXGAIN = 0 (nominal)
Software programmable port 2	SWPORT2 = 1 (LOW)	SWPORT2 = 1 (LOW)
Software programmable port 1	SWPORT1 = 0 (open-collector)	SWPORT1 = 0 (open-collector)
Setting of crystal frequency DAA	DAC[4:0] = 15 (4.6 V)	DAC[4:0] = 16 (4.4 V)
I ² C-bus transmission	C2 2D B4 C0 65 22 8F	C2 0F 4E C0 42 B2 90

TEF6721HL

Car radio tuner front-end for digital IF

16. Package outline

Fig 10. Package outline SOT314-2 (LQFP64)

17. Soldering

17.1 Introduction to soldering surface mount packages

This text gives a very brief insight to a complex technology. A more in-depth account of soldering ICs can be found in our *Data Handbook IC26; Integrated Circuit Packages* (document order number 9398 652 90011).

There is no soldering method that is ideal for all surface mount IC packages. Wave soldering can still be used for certain surface mount ICs, but it is not suitable for fine pitch SMDs. In these situations reflow soldering is recommended.

17.2 Reflow soldering

Reflow soldering requires solder paste (a suspension of fine solder particles, flux and binding agent) to be applied to the printed-circuit board by screen printing, stencilling or pressure-syringe dispensing before package placement. Driven by legislation and environmental forces the worldwide use of lead-free solder pastes is increasing.

Several methods exist for reflowing; for example, convection or convection/infrared heating in a conveyor type oven. Throughput times (preheating, soldering and cooling) vary between 100 seconds and 200 seconds depending on heating method.

Typical reflow peak temperatures range from 215 °C to 270 °C depending on solder paste material. The top-surface temperature of the packages should preferably be kept:

- below 225 °C (SnPb process) or below 245 °C (Pb-free process)
 - for all BGA, HTSSON..T and SSOP..T packages
 - for packages with a thickness \geq 2.5 mm
 - for packages with a thickness < 2.5 mm and a volume ≥ 350 mm³ so called thick/large packages.
- below 240 °C (SnPb process) or below 260 °C (Pb-free process) for packages with a thickness < 2.5 mm and a volume < 350 mm³ so called small/thin packages.

Moisture sensitivity precautions, as indicated on packing, must be respected at all times.

17.3 Wave soldering

Conventional single wave soldering is not recommended for surface mount devices (SMDs) or printed-circuit boards with a high component density, as solder bridging and non-wetting can present major problems.

To overcome these problems the double-wave soldering method was specifically developed.

If wave soldering is used the following conditions must be observed for optimal results:

- Use a double-wave soldering method comprising a turbulent wave with high upward pressure followed by a smooth laminar wave.
- For packages with leads on two sides and a pitch (e):
 - larger than or equal to 1.27 mm, the footprint longitudinal axis is preferred to be parallel to the transport direction of the printed-circuit board;

9397 750 15042

- smaller than 1.27 mm, the footprint longitudinal axis **must** be parallel to the transport direction of the printed-circuit board.

The footprint must incorporate solder thieves at the downstream end.

• For packages with leads on four sides, the footprint must be placed at a 45° angle to the transport direction of the printed-circuit board. The footprint must incorporate solder thieves downstream and at the side corners.

During placement and before soldering, the package must be fixed with a droplet of adhesive. The adhesive can be applied by screen printing, pin transfer or syringe dispensing. The package can be soldered after the adhesive is cured.

Typical dwell time of the leads in the wave ranges from 3 seconds to 4 seconds at 250 °C or 265 °C, depending on solder material applied, SnPb or Pb-free respectively.

A mildly-activated flux will eliminate the need for removal of corrosive residues in most applications.

17.4 Manual soldering

Fix the component by first soldering two diagonally-opposite end leads. Use a low voltage (24 V or less) soldering iron applied to the flat part of the lead. Contact time must be limited to 10 seconds at up to 300 $^{\circ}$ C.

When using a dedicated tool, all other leads can be soldered in one operation within 2 seconds to 5 seconds between 270 $^\circ C$ and 320 $^\circ C.$

17.5 Package related soldering information

Table 33: Suitability of surface mount IC packages for wave and reflow soldering methods
--

Package [1]	Soldering method		
	Wave	Reflow ^[2]	
BGA, HTSSONT ^[3] , LBGA, LFBGA, SQFP, SSOPT ^[3] , TFBGA, VFBGA, XSON	not suitable	suitable	
DHVQFN, HBCC, HBGA, HLQFP, HSO, HSOP, HSQFP, HSSON, HTQFP, HTSSOP, HVQFN, HVSON, SMS	not suitable ^[4]	suitable	
PLCC ^[5] , SO, SOJ	suitable	suitable	
LQFP, QFP, TQFP	not recommended [5] [6]	suitable	
SSOP, TSSOP, VSO, VSSOP	not recommended [7]	suitable	
CWQCCNL ^[8] , PMFP ^[9] , WQCCNL ^[8]	not suitable	not suitable	

 For more detailed information on the BGA packages refer to the (LF)BGA Application Note (AN01026); order a copy from your Philips Semiconductors sales office.

- [2] All surface mount (SMD) packages are moisture sensitive. Depending upon the moisture content, the maximum temperature (with respect to time) and body size of the package, there is a risk that internal or external package cracks may occur due to vaporization of the moisture in them (the so called popcorn effect). For details, refer to the Drypack information in the Data Handbook IC26; Integrated Circuit Packages; Section: Packing Methods.
- [3] These transparent plastic packages are extremely sensitive to reflow soldering conditions and must on no account be processed through more than one soldering cycle or subjected to infrared reflow soldering with peak temperature exceeding 217 °C ± 10 °C measured in the atmosphere of the reflow oven. The package body peak temperature must be kept as low as possible.

Car radio tuner front-end for digital IF

- [4] These packages are not suitable for wave soldering. On versions with the heatsink on the bottom side, the solder cannot penetrate between the printed-circuit board and the heatsink. On versions with the heatsink on the top side, the solder might be deposited on the heatsink surface.
- [5] If wave soldering is considered, then the package must be placed at a 45° angle to the solder wave direction. The package footprint must incorporate solder thieves downstream and at the side corners.
- [6] Wave soldering is suitable for LQFP, QFP and TQFP packages with a pitch (e) larger than 0.8 mm; it is definitely not suitable for packages with a pitch (e) equal to or smaller than 0.65 mm.
- [7] Wave soldering is suitable for SSOP, TSSOP, VSO and VSSOP packages with a pitch (e) equal to or larger than 0.65 mm; it is definitely not suitable for packages with a pitch (e) equal to or smaller than 0.5 mm.
- [8] Image sensor packages in principle should not be soldered. They are mounted in sockets or delivered pre-mounted on flex foil. However, the image sensor package can be mounted by the client on a flex foil by using a hot bar soldering process. The appropriate soldering profile can be provided on request.
- [9] Hot bar soldering or manual soldering is suitable for PMFP packages.

18. Revision history

Table 34:Revision history

Document ID	Release date	Data sheet status	Change notice	Doc. number	Supersedes
TEF6721HL_3	20050719	Product data sheet	-	9397 750 15042	TEF6721HL_2
Modifications:	informatio • <u>Table 3</u> : C • <u>Table 31</u> : (• <u>Figure 9</u> : (t of this data sheet has been n standard of Philips Semion hanged description of pin 3 Changed values of pin 8. Connected pins 8, 25 and 6 Changed AM PIN diode cire	conductors. 31. 62 to ground, chang	ged pin 31 to leave	open-circuit.
TEF6721HL_2	20040629	Product specification	-	9397 750 13472	TEF6721HL_1
TEF6721HL 1	20031021	Preliminary specification	-	9397 750 11379	-

Car radio tuner front-end for digital IF

19. Data sheet status

Level	Data sheet status [1]	Product status [2] [3]	Definition
I	Objective data	Development	This data sheet contains data from the objective specification for product development. Philips Semiconductors reserves the right to change the specification in any manner without notice.
II	Preliminary data	Qualification	This data sheet contains data from the preliminary specification. Supplementary data will be published at a later date. Philips Semiconductors reserves the right to change the specification without notice, in order to improve the design and supply the best possible product.
III	Product data	Production	This data sheet contains data from the product specification. Philips Semiconductors reserves the right to make changes at any time in order to improve the design, manufacturing and supply. Relevant changes will be communicated via a Customer Product/Process Change Notification (CPCN).

[1] Please consult the most recently issued data sheet before initiating or completing a design.

[2] The product status of the device(s) described in this data sheet may have changed since this data sheet was published. The latest information is available on the Internet at URL http://www.semiconductors.philips.com.

[3] For data sheets describing multiple type numbers, the highest-level product status determines the data sheet status.

20. Definitions

Short-form specification — The data in a short-form specification is extracted from a full data sheet with the same type number and title. For detailed information see the relevant data sheet or data handbook.

Limiting values definition — Limiting values given are in accordance with the Absolute Maximum Rating System (IEC 60134). Stress above one or more of the limiting values may cause permanent damage to the device. These are stress ratings only and operation of the device at these or at any other conditions above those given in the Characteristics sections of the specification is not implied. Exposure to limiting values for extended periods may affect device reliability.

Application information — Applications that are described herein for any of these products are for illustrative purposes only. Philips Semiconductors make no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

21. Disclaimers

Life support — These products are not designed for use in life support appliances, devices, or systems where malfunction of these products can reasonably be expected to result in personal injury. Philips Semiconductors

23. Contact information

customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify Philips Semiconductors for any damages resulting from such application.

Right to make changes — Philips Semiconductors reserves the right to make changes in the products - including circuits, standard cells, and/or software - described or contained herein in order to improve design and/or performance. When the product is in full production (status 'Production'), relevant changes will be communicated via a Customer Product/Process Change Notification (CPCN). Philips Semiconductors assumes no responsibility or liability for the use of any of these products, conveys no license or title under any patent, copyright, or mask work right to these products, and makes no representations or warranties that these products are free from patent, copyright, or mask work right infringement, unless otherwise specified.

22. Trademarks

For additional information, please visit: http://www.semiconductors.philips.com For sales office addresses, send an email to: sales.addresses@www.semiconductors.philips.com

TEF6721HL

Car radio tuner front-end for digital IF

24. Contents

1	General description 1
2	Features 1
3	Quick reference data 2
4	Ordering information 3
5	Block diagram 4
6	Pinning information 5
6.1	Pinning
6.2	Pin description
7	Functional description
7.1	FM in-phase/quadrature-phase mixer
7.2	Buffer output for weather band flag
7.3	VCO
7.4	Crystal oscillator 7
7.5	PLL
7.6	DAA 8
7.7	FM keyed AGC
7.8	AM mixer
7.9	AM RF AGC 9
7.10	FM/AM RF AGC buffer 10
8	I ² C-bus protocol 10
8.1	I ² C-bus specification 10
8.1.1	Data transfer
8.1.2	Frequency setting 11
8.1.3	Restriction of the I ² C-bus characteristic 11
8.2	I ² C-bus protocol 11
8.2.1	Data transfer mode and IC address 11
8.2.2	Write mode: data byte 0
8.2.3	Write mode: data byte 1
8.2.4 8.2.5	Write mode: data byte 2 13 Write mode: data byte 3 13
8.2.5 8.2.6	Write mode: data byte 3 13 Write mode: data byte 4 14
8.2.7	Write mode: data byte 4 14 Write mode: data byte 5 15
8.2.8	Read mode: data byte 0
9	Internal circuitry
10	Limiting values
11	Thermal characteristics
12	Static characteristics
13	Dynamic characteristics
14	Application information
15	Test information
16	Package outline 40
17	Soldering 41
17.1	Introduction to soldering surface mount
	packages 41
17.2	Reflow soldering 41

17.3 17.4	Wave soldering
17.5	Package related soldering information 42
18	Revision history 43
19	Data sheet status 44
20	Definitions 44
21	Disclaimers 44
22	Trademarks 44
23	Contact information 44

© Koninklijke Philips Electronics N.V. 2005

All rights are reserved. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner. The information presented in this document does not form part of any quotation or contract, is believed to be accurate and reliable and may be changed without notice. No liability will be accepted by the publisher for any consequence of its use. Publication thereof does not convey nor imply any license under patent- or other industrial or intellectual property rights.

Date of release: 19 July 2005 Document number: 9397 750 15042

Published in The Netherlands

PHILIPS