

BUS-CONTROLLED AUDIO MATRIX SWITCH

- 5 Stereo Inputs
- 4 Stereo Ouputs
- Gain Control 0/2/4/6dB/Mute for each Output
- cascadable (2 different addresses)
- Serial Bus Controlled
- Very low Noise
- Very low Distorsion

DESCRIPTION

The TEA6420 switches 5 stereo audio inputs on 4stereo outputs.

All the switching possibilities are changed through the $\mathrm{l}^2\mathrm{C}$ bus.

Figure 1. PIN CONNECTIONS

		_			-
GND	1 24	SDA	GND	1 28	SDA
	2 23	SCL		2 27	
V _s	3 22	ADDR	V _S	3 26	
		E.	L1	4 25	R1
L1	4 21	R1	L2	5 24	R2
L2	5 20	R2	L3	6 23	R3
L3	6 19	R3	NC	7 22	
L4	7 18	R4	NC	8 21	
L5	8 17	R5	L4	9 20	R4
LOUT1	9 16	ROUT4	L5	10 19	R5 87
ROUT1	10 15	LOUT4	LOUT1	11 18	
			ROUT1	12 17	LOUT4 🙀
LOUT2	11 14		LOUT2	13 16	
ROUT2	12 13	LOUT3	ROUT2	14 15	R5 8000000000000000000000000000000000000
					L

Figure 2. BLOCK DIAGRAM

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Value	Unit
V _{CC}	Supply Voltage (Pin 9)	12	V
T _{OPER}	Operating Ambient Temperature Range	0 to +70	°C
T _{stg}	Storage Temperature Range	-20 to +150	°C

THERMAL DATA

Symbol	Parameter+	Value	Unit	
R _{th} (j-a)	Junction-Ambient Thermal Resistance	SDIP24	75	°C/W
i thu a)		SO28	75	0/11

ELECTRICAL CHARACTERISTICS

 T_A = 25°C, V_S = 10V, R_L = 10kΩ, R_G = 600Ω, f = 1kHz (unless otherwise specified)

Symbol	Parameter Test Conditions			Тур.	Max.	Unit
SUPPLY	•	·	•			
VS	Supply Voltage		8	9	10.2	V
۱ _S	Supply Current			5	8	mA
SVR	Ripple Rejection	V _{IN} = 500mV _{RMS} , BW = 20 - 20kHz	70	80		dB
MATRIX						•
V _{IN}	Input DC Level		4.5	5	5.5	V
R _I	Input Resistance		30	50	100	kΩ
C _S	Channel Separation	V _{IN} = 2V _{RMS} Gain = 0dB f = 1kHz Gain = 6dB	80 70	90 82		dB dB
OUTPUT BUF	FER					
V _{OUT}	Output DC Level		4.5	5	5.5	V
R _{OUT}	Output Resistance			70	200	W
e _{NI}	Input Noise	BW = 20 - 20kHz, flat		3		μV
S/N	Signal to Noise Ratio	$V_{IN} = V_{OUT} = 1V_{RMS}$		110		dB
G _{min}	Min. Gain		-1	0	+ 1	dB
G _{max}	Max. Gain		5	6	7	dB
d	Distortion	$V_{IN} = V_{OUT} = 1V_{RMS}$		0.01	0.05	%
V _{CL}	Clipping Level	d = 0.3%	2	2.5		V _{RMS}
R _L	Output Load Resistance		2			kΩ
BUS INPUT	•		•			
V _{IL}	Input Low Voltage				1.5	V
V _{IN}	Input High Voltage		3			V
l _l	Input Current		- 10		10	μA
Vo	Output Voltage	I _O = 3mA ; SDA Acknowledge pin			0.4	V
R _{pu}	ADDR Pullup Resistor	Note	40	50		kΩ

SOFTWARE SPECIFICATION

1. Chip address

Address	HEX	ADDR		
1001 1000	98	0		
1001 1010	9A	1		

2. Data bytes

Output select									
X	0 0 1 1	0 1 0 1	G ₁	G ₀	I ₂	I ₁	Ι _Ο	Output 1 Output 2 Output 3 Output 4	
Input sel	Input select								
×	Q ₁	Q0	G ₁	G ₀	0 0 0 1 1	0 0 1 1 0 0	0 1 0 1 0 1	Input 1 Input 2 Input 3 Input 4 Input 5 Mute	
Gain select									
X	Q ₁	QO	0 0 1 1	0 1 0 1	l ₂	I ₁	Ι _Ο	Gain = 6 dB Gain = 4 dB Gain = 2 dB Gain = 0 dB	

X = don't care - MSB is transmitted first

Example : X1001100 connects output 3 with input 5 at a gain of 4dB

The following are selected after power-on reset : input 5 selected for all outputs ; gain = 0dB.

TYPICAL APPLICATION

Figure 3.

PACKAGE MECHANICAL DATA

24 PINS - PLASTIC DIP

Figure 4. 24-Pin Package

28 PINS - PLASTIC SO

Figure 5. 28-Pin Package

57

Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems without the express written approval of STMicroelectronics.

The ST logo is a registered trademark of STMicroelectronics

©2006 STMicroelectronics - All Rights Reserved.

 $\label{eq:purchase} \begin{array}{l} \mathsf{Purchase} \text{ of } \mathsf{I}^2\mathsf{C} \text{ Components by STMicroelectronics conveys a license under the Philips } \mathsf{I}^2\mathsf{C} \text{ Patent. Rights to use these components in an} \\ \mathsf{I}^2\mathsf{C} \text{ system is granted provided that the system conforms to the } \mathsf{I}^2\mathsf{C} \text{ Standard Specification as defined by Philips.} \end{array}$

STMicroelectronics Group of Companies

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan -Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America.

http://www.st.com

57