


## **TDA7563A**

# 4 x 50W multifunction quad power amplifier with built-in diagnostics feature

### **Features**

- Multipower BCD technology
- MOSFET output power stage
- DMOS power output
- New high efficiency (class SB)
- High output power capability 4x28W/4Ω @ 14.4V, 1kHz, 10% THD, 4x50W max power
- Max. output power 4x72W/2Ω
- Full I<sup>2</sup>C bus driving:
  - Standby
  - Independent front/rear soft play/mute
  - Selectable gain 26dB /12dB (for low noise line output function)
  - High efficiency enable/disable
  - I<sup>2</sup>C bus digital diagnostics (including DC and AC load detection)
- Full fault protection
- DC offset detection
- Four independent short circuit protection
- Clipping detector pin with selectable threshold (2%/10%)
- Standby/mute pin
- Linear thermal shutdown with multiple thermal warning
- ESD protection



### **Description**

The TDA7563A is a new BCD technology Quad Bridge type of car radio amplifier in Flexiwatt27 & PowerSO36 packages specially intended for car radio applications.

Thanks to the DMOS output stage the TDA7563A has a very low distortion allowing a clear powerful sound. Among the features, its superior efficiency performance coming from the internal exclusive structure, makes it the most suitable device to simplify the thermal management in high power sets.

The dissipated output power under average listening condition is in fact reduced up to 50% when compared to the level provided by conventional class AB solutions.

This device is equipped with a full diagnostics array that communicates the status of each speaker through the I<sup>2</sup>C bus.

Table 1. Device summary

| Order code   | Package                  | Packing       |  |  |
|--------------|--------------------------|---------------|--|--|
| TDA7563A     | Flexiwatt27 (vertical)   | Tube          |  |  |
| TDA7563AH    | Flexiwatt27 (horizontal) | Tube          |  |  |
| TDA7563ASM   | Flexiwatt27 (SMD)        | Tube          |  |  |
| TDA7563ASMTR | Flexiwatt27 (SMD)        | Tape and reel |  |  |
| TDA7563APD   | PowerSO36 (slug up)      | Tube          |  |  |

Contents TDA7563A

## **Contents**

|        |                                                 | k, pins connection and application diagrams                                                                         | . J                                          |  |  |  |
|--------|-------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|----------------------------------------------|--|--|--|
| 2      | Electrical specifications                       |                                                                                                                     |                                              |  |  |  |
|        | 2.1                                             | Absolute maximum ratings                                                                                            | . 7                                          |  |  |  |
|        | 2.2                                             | Thermal data                                                                                                        | . 7                                          |  |  |  |
|        | 2.3                                             | Electrical characteristics                                                                                          | . 7                                          |  |  |  |
|        | 2.4                                             | Electrical characteristics curves                                                                                   | 10                                           |  |  |  |
| 3      | Diag                                            | nostics functional description                                                                                      | 13                                           |  |  |  |
|        | 3.1                                             | Turn-on diagnostic                                                                                                  | 13                                           |  |  |  |
|        | 3.2                                             | Permanent diagnostics                                                                                               | 15                                           |  |  |  |
| 4      | Outp                                            | out DC offset detection                                                                                             | 17                                           |  |  |  |
|        | 4.1                                             | AC diagnostic                                                                                                       | 17                                           |  |  |  |
|        | 4.2                                             | Multiple faults                                                                                                     | 18                                           |  |  |  |
|        | 4.3                                             | Faults availability                                                                                                 | 19                                           |  |  |  |
| 5      | Ther                                            | mal protection                                                                                                      | 20                                           |  |  |  |
|        |                                                 | muting                                                                                                              | 21                                           |  |  |  |
| 6      | Fast                                            | muting                                                                                                              |                                              |  |  |  |
| 6<br>7 |                                                 | ous                                                                                                                 |                                              |  |  |  |
|        |                                                 |                                                                                                                     | 22                                           |  |  |  |
|        | I2C I                                           | ous                                                                                                                 | <b>22</b>                                    |  |  |  |
|        | <b>I2C I</b>                                    | Dus                                                                                                                 | <b>22</b><br>22                              |  |  |  |
|        | <b>12C I</b> 7.1 7.2                            | I2C programming/reading sequences                                                                                   | 22<br>22<br>22<br>22                         |  |  |  |
|        | 7.1<br>7.2<br>7.3                               | I2C programming/reading sequences I2C bus interface Data validity                                                   | 22<br>22<br>22<br>22                         |  |  |  |
|        | 7.1<br>7.2<br>7.3<br>7.4                        | I2C programming/reading sequences I2C bus interface Data validity Start and stop conditions                         | 22<br>22<br>22<br>22<br>22                   |  |  |  |
|        | 7.1<br>7.2<br>7.3<br>7.4<br>7.5<br>7.6          | I2C programming/reading sequences I2C bus interface Data validity Start and stop conditions Byte format             | 22<br>22<br>22<br>22<br>22<br>22<br>23       |  |  |  |
| 7      | 7.1<br>7.2<br>7.3<br>7.4<br>7.5<br>7.6<br>Soft  | I2C programming/reading sequences I2C bus interface Data validity Start and stop conditions Byte format Acknowledge | 22<br>22<br>22<br>22<br>22<br>22<br>23<br>24 |  |  |  |
| 7      | 7.1<br>7.2<br>7.3<br>7.4<br>7.5<br>7.6<br>Softe | I2C programming/reading sequences I2C bus interface Data validity Start and stop conditions Byte format Acknowledge | 22<br>22<br>22<br>22<br>22<br>23<br>24<br>29 |  |  |  |

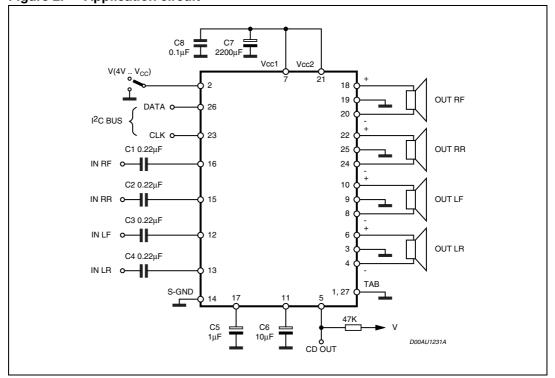
TDA7563A List of tables

## List of tables

| Table 1.  | Device summary                            | . 1 |
|-----------|-------------------------------------------|-----|
| Table 1.  | Absolute maximum ratings                  | . 7 |
| Table 2.  | Thermal data                              | . 7 |
| Table 3.  | Electrical characteristics                | . 7 |
| Table 4.  | Double fault table for turn on diagnostic |     |
| Table 5.  | Chip address:                             |     |
| Table 6.  | IB1                                       |     |
| Table 7.  | IB2                                       |     |
| Table 8.  | DB1                                       |     |
| Table 9.  | DB2                                       | 26  |
| Table 10. | DB3                                       | 27  |
| Table 11. | DB4                                       | 28  |
| Table 12  | Document revision history                 | 34  |

List of figures TDA7563A

## **List of figures**


| Figure 1.  | Block diagram                                                                 |
|------------|-------------------------------------------------------------------------------|
| Figure 2.  | Application circuit                                                           |
| Figure 3.  | Pin connections - Flexiwatt27 (Top view)                                      |
| Figure 4.  | Pin connections - PowerSO36 (Top view)                                        |
| Figure 5.  | Quiescent current vs. supply voltage                                          |
| Figure 6.  | Output power vs. supply voltage (4W)                                          |
| Figure 7.  | Output power vs. supply voltage (2W)                                          |
| Figure 8.  | Distortion vs. output power (4W, STD)                                         |
| Figure 9.  | Distortion vs. output power (4 $\Omega$ , HI-EFF)                             |
| Figure 10. | Distortion vs. output power (2 $\Omega$ , STD)                                |
| Figure 11. | Distortion vs. frequency (4W)                                                 |
| Figure 12. | Distortion vs. frequency (2W)                                                 |
| Figure 13. | Crosstalk vs. frequency                                                       |
| Figure 14. | Supply voltage rejection vs. frequency                                        |
| Figure 15. | Power dissipation and efficiency vs. output power (4W, STD, SINE)12           |
| Figure 16. | Power dissipation and efficiency vs. output power (4 $\Omega$ , HI-EFF, SINE) |
| Figure 17. | Power dissipation vs. average output power (audio program simulation, 4W)12   |
| Figure 18. | Power dissipation vs. average output power (audio program simulation, 2W)12   |
| Figure 19. | Turn-on diagnostic: working principle                                         |
| Figure 20. | SVR and output behavior (case 1: without turn-on diagnostic)14                |
| Figure 21. | SVR and output pin behavior (case 2: with turn-on diagnostic)                 |
| Figure 22. | Thresholds for short to GND/V <sub>S</sub>                                    |
| Figure 23. | Thresholds for short across the speaker/open speaker                          |
| Figure 24. | Thresholds for line-drivers                                                   |
| Figure 25. | Restart timing without diagnostic enable (permanent)                          |
| Figure 26. | Restart timing with diagnostic enable (permanent)16                           |
| Figure 27. | Current detection: Load impedance  Z  vs. output peak voltage                 |
| Figure 28. | Thermal foldback diagram                                                      |
| Figure 29. | Data validity on the I2C bus                                                  |
| Figure 30. | Timing diagram on the I2C bus                                                 |
| Figure 31. | Timing acknowledge clock pulse                                                |
| Figure 32. | PowerSO36 (slug up) mechanical data and package dimensions                    |
| Figure 33. | Flexiwatt27 (SMD) mechanical data and package dimensions                      |
| Figure 34. | Flexiwatt27 (vertical) mechanical data and package dimensions                 |
| Figure 35. | Flexiwatt27 (horizontal) mechanical data and package dimensions               |

## 1 Block, pins connection and application diagrams

Figure 1. Block diagram



Figure 2. Application circuit



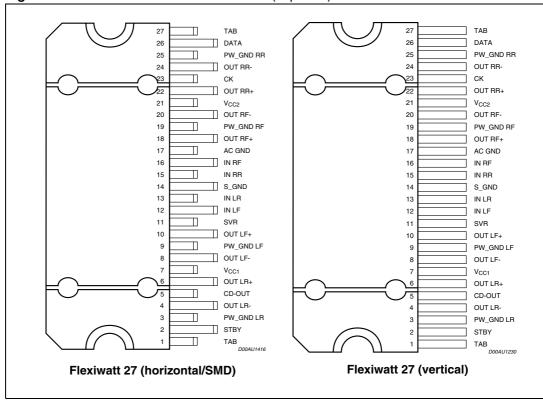
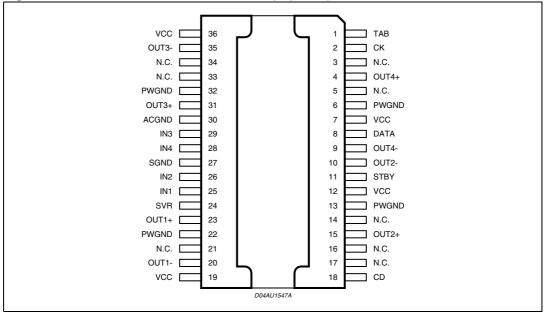




Figure 3. Pin connections - Flexiwatt27 (Top view)





## 2 Electrical specifications

## 2.1 Absolute maximum ratings

Table 1. Absolute maximum ratings

| Symbol                            | Parameter                                      | Value      | Unit |
|-----------------------------------|------------------------------------------------|------------|------|
| V <sub>op</sub>                   | Operating supply voltage                       | 18         | V    |
| V <sub>S</sub>                    | DC supply voltage                              | 28         | V    |
| V <sub>peak</sub>                 | Peak supply voltage (for t = 50ms)             | 50         | V    |
| V <sub>CK</sub>                   | CK pin voltage                                 | 6          | V    |
| V <sub>DATA</sub>                 | Data pin voltage                               | 6          | V    |
| Io                                | Output peak current (not repetitive t = 100ms) | 8          | Α    |
| Io                                | Output peak current (repetitive f > 10Hz)      | 6          | Α    |
| P <sub>tot</sub>                  | Power dissipation T <sub>case</sub> = 70°C     | 85         | W    |
| T <sub>stg</sub> , T <sub>j</sub> | Storage and junction temperature               | -55 to 150 | °C   |

## 2.2 Thermal data

Table 2. Thermal data

| Symbol                 | Parameter                               | PowerSO36 | Flexiwatt 27 | Unit |
|------------------------|-----------------------------------------|-----------|--------------|------|
| R <sub>th j-case</sub> | Thermal resistance junction to case Max | 1         | 1            | °C/W |

## 2.3 Electrical characteristics

Table 3. Electrical characteristics

(Refer to the test circuit,  $V_S = 14.4V$ ; f=1kHz;  $R_L=4\Omega$ ;  $T_{amb}=25^{\circ}C$  unless otherwise specified)

| Symbol Parameter |                               | Parameter Test condition                                                                                                         |                      | Тур.                 | Max. | Unit        |
|------------------|-------------------------------|----------------------------------------------------------------------------------------------------------------------------------|----------------------|----------------------|------|-------------|
| Power an         | nplifier                      |                                                                                                                                  |                      |                      |      |             |
| Vs               | Supply voltage range          |                                                                                                                                  | 8                    |                      | 18   | V           |
| I <sub>d</sub>   | Total quiescent drain current |                                                                                                                                  |                      | 170                  | 300  | mA          |
|                  | P <sub>O</sub> Output power   | Max. power (V <sub>S</sub> = 15.2V, square wave input (2Vrms))                                                                   |                      | 50                   |      | W           |
| D.               |                               | THD = 10%<br>THD = 1%                                                                                                            | 25<br>20             | 28<br>22             |      | W<br>W      |
| ' 0              |                               | $R_L = 2\Omega$ ; EIAJ ( $V_S = 13.7V$ )<br>$R_L = 2\Omega$ ; THD 10%<br>$R_L = 2\Omega$ ; THD 1%<br>$R_1 = 2\Omega$ ; max power | 55<br>40<br>32<br>60 | 68<br>50<br>40<br>75 |      | W<br>W<br>W |

**\** 

Table 3. Electrical characteristics (continued) (Refer to the test circuit,  $V_S = 14.4V$ ; f=1kHz;  $R_L=4\Omega$ ;  $T_{amb}=25^{\circ}C$  unless otherwise specified)

| Symbol            | Parameter                      | S = 14.4V; t=1KHz; H <sub>L</sub> =4Ω; I <sub>amb</sub> = 2  Test condition | Min. | Тур.  | Max. | Unit |
|-------------------|--------------------------------|-----------------------------------------------------------------------------|------|-------|------|------|
| -                 |                                | P <sub>O</sub> = 1 to 10W; STD MODE                                         |      | 0.015 | 0.1  | %    |
|                   |                                | HE MODE; $P_0 = 1.5W$                                                       |      | 0.01  | 0.1  | %    |
| THD               |                                | HE MODE; P <sub>O</sub> = 8W                                                |      | 0.1   | 0.5  | %    |
| THD               | Total harmonic distortion      | P <sub>O</sub> = 1-10W, f = 10kHz; STD mode                                 |      | 0.15  | 0.5  | %    |
|                   |                                | $R_L = 2\Omega$ ; HE MODE; Po = 3W                                          |      | 0.02  | 0.5  | %    |
|                   |                                | G <sub>V</sub> = 12dB; STD mode                                             |      | 0.015 | 0.1  | %    |
|                   |                                | $V_O = 0.1 \text{ to 5 } V_{RMS}$                                           |      | 0.010 | 0.1  | ,,,  |
| C <sub>T</sub>    | Cross talk                     | $f = 1 \text{kHz to } 10 \text{kHz}, R_g = 600\Omega$                       | 50   | 60    |      | dB   |
| R <sub>IN</sub>   | Input impedance                |                                                                             | 60   | 100   | 130  | ΚΩ   |
| G <sub>V1</sub>   | Voltage gain 1 (default)       |                                                                             | 25   | 26    | 27   | dB   |
| $\Delta G_{V1}$   | Voltage gain match 1           |                                                                             | -1   |       | 1    | dB   |
| G <sub>V2</sub>   | Voltage gain 2                 |                                                                             | 11   | 12    | 13   | dB   |
| ∆G <sub>V2</sub>  | Voltage gain match 2           |                                                                             | -1   |       | 1    | dB   |
| F                 | Output noise voltage 1         | Rg = $600\Omega$ ;                                                          |      | 35    |      | μV   |
| E <sub>IN1</sub>  | Output Hoise voltage 1         | filter 20 Hz to 22 kHz                                                      |      | 33    |      | μν   |
| E <sub>IN2</sub>  | Output noise voltage 2         | $Rg = 600\Omega$ ; $G_V = 12dB$                                             |      | 11    | u    | μV   |
| -IINZ             | Carpan noise remage _          | filter 20 Hz to 22 kHz                                                      |      |       |      | P    |
| SVR               | Supply voltage rejection       | $f = 100Hz$ to $10kHz$ ; $V_r = 1Vpk$ ; $R_g = 600\Omega$                   | 50   | 70    |      | dB   |
| BW                | Power bandwidth                |                                                                             | 100  |       |      | kHz  |
| A <sub>SB</sub>   | Standby attenuation            |                                                                             | 90   | 110   |      | dB   |
| I <sub>SB</sub>   | Standby current                | $V_{\text{standby}} = 0$                                                    |      | 1     | 10   | μΑ   |
| A <sub>M</sub>    | Mute attenuation               |                                                                             | 80   | 100   |      | dB   |
| V <sub>OS</sub>   | Offset voltage                 | Mute & Play                                                                 | -60  | 0     | 60   | mV   |
| V <sub>AM</sub>   | Min. supply mute threshold     |                                                                             | 7    | 7.5   | 8    | V    |
| T <sub>ON</sub>   | Turn on delay                  | D2/D1 (IB1) 0 to 1                                                          |      | 5     | 20   | ms   |
| T <sub>OFF</sub>  | Turn off delay                 | D2/D1 (IB1) 1 to 0                                                          |      | 5     | 20   | ms   |
| V <sub>SBY</sub>  | Standby/mute pin for standby   |                                                                             | 0    |       | 1.5  | V    |
| V <sub>MU</sub>   | Standby/mute pin for mute      |                                                                             | 3.5  |       | 5    | V    |
| CMRR              | Input CMRR                     | $V_{CM} = 1Vpk-pk; Rg = 0 \Omega$                                           |      | 55    |      | dB   |
| V <sub>OP</sub>   | Standby/mute pin for operating |                                                                             | 7    |       | Vs   | V    |
|                   | 0. "                           | V <sub>standby/mute</sub> = 8.5V                                            |      | 20    | 40   | μΑ   |
| I <sub>MU</sub>   | Standby/mute pin current       | V <sub>standby/mute</sub> < 1.5V                                            |      | 0     | 5    | μΑ   |
| CD <sub>LK</sub>  | Clip det. high leakage current | CD off / V <sub>CD</sub> = 6V                                               |      | 0     | 5    | μΑ   |
| CD <sub>SAT</sub> | Clip det. saturation voltage   | CD on; I <sub>CD</sub> = 1mA                                                |      |       | 300  | mV   |

Table 3. Electrical characteristics (continued) (Refer to the test circuit,  $V_S = 14.4V$ ; f=1kHz;  $R_L=4\Omega$ ;  $T_{amb}=25$ °C unless otherwise specified)

| Symbol                                | Parameter                                                                                          | Test condition                                                                   | Min.    | Тур. | Max.    | Unit |
|---------------------------------------|----------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|---------|------|---------|------|
| CD                                    | Clip dot THD lovel                                                                                 | D0 (IB1) = 1                                                                     | 5       | 10   | 15      | %    |
| CD <sub>THD</sub> Clip det. THD level |                                                                                                    | D0 (IB1) = 0                                                                     | 1       | 2    | 3       | %    |
| Turn on o                             | liagnostics 1 (Power amplifier r                                                                   | node)                                                                            |         |      |         |      |
| Pgnd                                  | Short to GND det. (below this limit, the output is considered in short circuit to GND)             |                                                                                  |         |      | 1.2     | ٧    |
| Pvs                                   | Short to Vs det. (above this limit, the output is considered in short circuit to VS)               |                                                                                  | Vs -1.2 |      |         | ٧    |
| Pnop                                  | Normal operation thresholds.<br>(within these limits, the output<br>is considered without faults). | Power amplifier in standby                                                       | 1.8     |      | Vs -1.8 | ٧    |
| Lsc                                   | Shorted load det.                                                                                  |                                                                                  |         |      | 0.5     | Ω    |
| Lop                                   | Open load det.                                                                                     |                                                                                  | 130     |      |         | Ω    |
| Lnop                                  | Normal load det.                                                                                   |                                                                                  | 1.5     |      | 70      | Ω    |
| Turn on o                             | liagnosticS 2 (Line driver mode                                                                    | )                                                                                |         |      |         |      |
| Pgnd                                  | Short to GND det. (below this limit, the output is considered in short circuit to GND)             | Power amplifier in standby                                                       |         |      | 1.2     | ٧    |
| Pvs                                   | Short to Vs det. (above this limit, the output is considered in short circuit to VS)               |                                                                                  | Vs -1.2 |      |         | ٧    |
| Pnop                                  | Normal operation thresholds. (within these limits, the output is considered without faults).       |                                                                                  | 1.8     |      | Vs -1.8 | ٧    |
| Lsc                                   | Shorted load det.                                                                                  |                                                                                  |         |      | 1.5     | Ω    |
| Lop                                   | Open load det.                                                                                     |                                                                                  | 400     |      |         | Ω    |
| Lnop                                  | Normal load det.                                                                                   |                                                                                  | 4.5     |      | 200     | Ω    |
| Permane                               | nt diagnostics 2 (Power amplifi                                                                    | er mode or line driver mode)                                                     |         |      |         |      |
| Pgnd                                  | Short to GND det. (below this limit, the output is considered in short circuit to GND)             |                                                                                  |         |      | 1.2     | ٧    |
| Pvs                                   | Short to Vs det. (above this limit, the output is considered in short circuit to Vs)               | Power amplifier in mute or play, one or more short circuits protection activated | Vs -1.2 |      |         | V    |
| Pnop                                  | Normal operation thresholds. (within these limits, the output is considered without faults).       |                                                                                  | 1.8     |      | Vs -1.8 | V    |
| ادء                                   | Shorted load det.                                                                                  | Power amplifier mode                                                             |         |      | 0.5     | Ω    |
| L <sub>SC</sub>                       | Shorted load det.                                                                                  | Line driver mode                                                                 |         |      | 1.5     | Ω    |

 Table 3.
 Electrical characteristics (continued)

(Refer to the test circuit,  $V_S = 14.4V$ ; f=1kHz;  $R_L=4\Omega$ ;  $T_{amb}=25^{\circ}C$  unless otherwise specified)

| Symbol                                      | Parameter                     | Parameter Test condition                               |      | Тур. | Max. | Unit |  |
|---------------------------------------------|-------------------------------|--------------------------------------------------------|------|------|------|------|--|
| V <sub>O</sub> Offset detection             |                               | Power amplifier in play, STD mode AC input signals = 0 | ±1.5 | ±2   | ±2.5 | V    |  |
| I <sub>NL</sub>                             | Normal load current detection | V <sub>O</sub> < (V <sub>S</sub> -5)pk                 | 500  |      |      | mA   |  |
| I <sub>OL</sub> Open load current detection |                               | 1 00 < (08-2)bk                                        |      |      | 250  | mA   |  |
| I <sup>2</sup> C bus interface              |                               |                                                        |      |      |      |      |  |
| S <sub>CL</sub>                             | Clock frequency               |                                                        |      |      | 400  | kHz  |  |
| V <sub>IL</sub>                             | Input low voltage             |                                                        |      |      | 1.5  | V    |  |
| V <sub>IH</sub>                             | Input high voltage            |                                                        | 2.3  |      |      | V    |  |

### 2.4 Electrical characteristics curves

Figure 5. Quiescent current vs. supply voltage Figure 6. Output power vs. supply voltage ( $4\Omega$ )

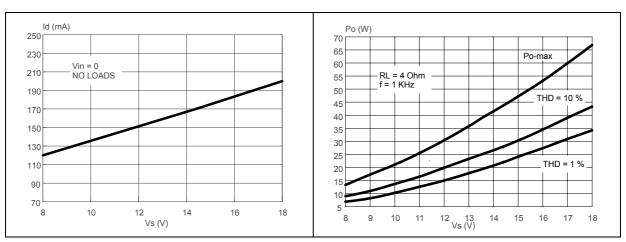



Figure 7. Output power vs. supply voltage (2 $\Omega$ ) Figure 8. Distortion vs. output power (4 $\Omega$ , STD)

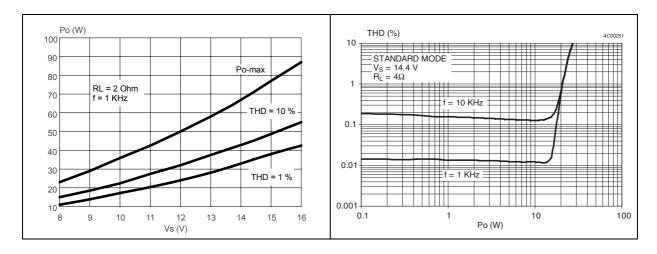



Figure 9. Distortion vs. output power (4 $\Omega$ , HI- Figure 10. Distortion vs. output power (2 $\Omega$ , EFF)

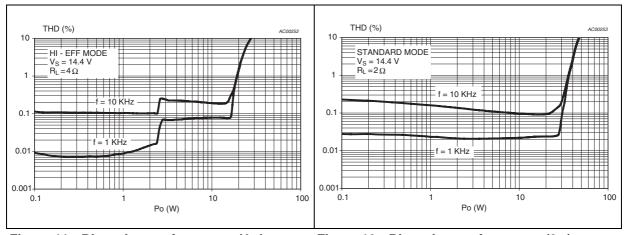



Figure 11. Distortion vs. frequency (4 $\Omega$ )

Figure 12. Distortion vs. frequency (2 $\Omega$ )

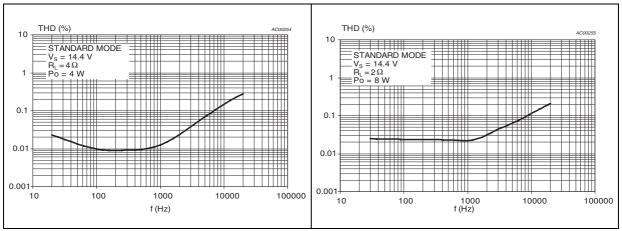
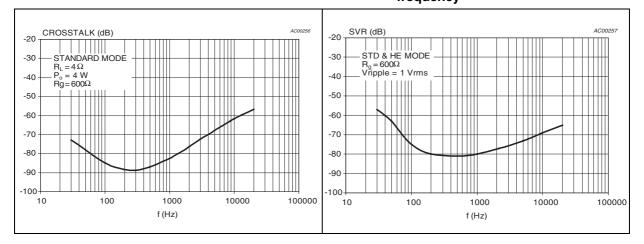
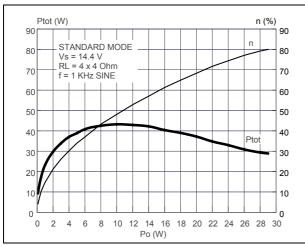
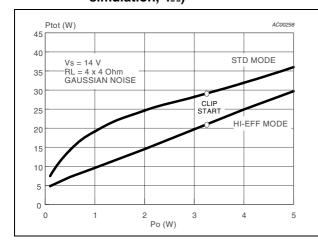
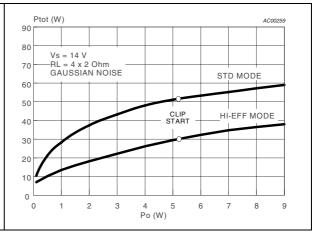



Figure 13. Crosstalk vs. frequency

Figure 14. Supply voltage rejection vs. frequency



Figure 15. Power dissipation and efficiency vs. Figure 16. Power dissipation and efficiency vs. output power ( $4\Omega$ , STD, SINE) output power ( $4\Omega$ , HI-EFF, SINE)




Ptot (W) 90 HI-EFF MODE 80 Vs = 14.4 V RL = 4 x 4 Ohm 80 n 70 70 f = 1 KHz SINE 60 60 50 Ptot 40 40 30 30 20 20 10 0.1 10

Figure 17. Power dissipation vs. average output power (audio program simulation,  $4\Omega$ )

Figure 18. Power dissipation vs. average output power (audio program simulation,  $2\Omega$ )





## 3 Diagnostics functional description

### 3.1 Turn-on diagnostic

It is activated at the turn-on (standby out) under I<sup>2</sup>C bus request. Detectable output faults are:

- SHORT TO GND
- SHORT TO Vs
- SHORT ACROSS THE SPEAKER
- OPEN SPEAKER

To verify if any of the above misconnections are in place, a subsonic (inaudible) current pulse (*Figure 19*) is internally generated, sent through the speaker(s) and sunk back. The Turn On diagnostic status is internally stored until a successive diagnostic pulse is requested (after a I<sup>2</sup>C reading).

If the "standby out" and "diagnostic enable" commands are both given through a single programming step, the pulse takes place first (power stage still in standby mode, low, outputs = high impedance).

Afterwards, when the amplifier is biased, the PERMANENT diagnostic takes place. The previous Turn On state is kept until a short appears at the outputs.

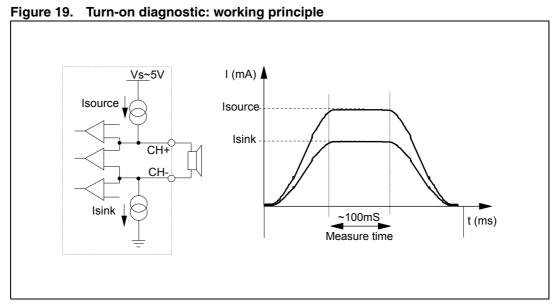
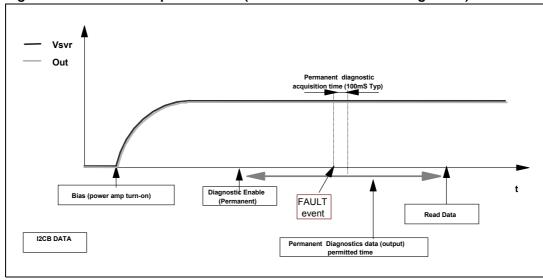
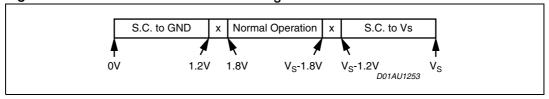



Figure 20 and 21 show SVR and OUTPUT waveforms at the turn-on (standby out) with and without TURN-ON DIAGNOSTIC.






Figure 20. SVR and output behavior (case 1: without turn-on diagnostic)





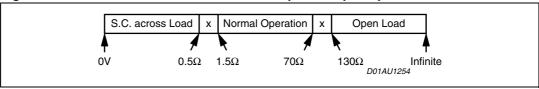

The information related to the outputs status is read and memorized at the end of the current pulse top. The acquisition time is 100 ms (typ.). No audible noise is generated in the process. As for SHORT TO GND /  $V_{\rm S}$  the fault-detection thresholds remain unchanged from 26 dB to 12 dB gain setting. They are as follows:TDA7563A

Figure 22. Thresholds for short to GND/V<sub>S</sub>



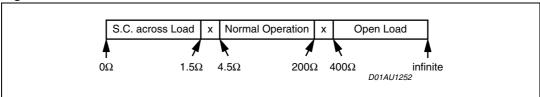

Concerning SHORT ACROSS THE SPEAKER / OPEN SPEAKER, the threshold varies from 26 dB to 12 dB gain setting, since different loads are expected (either normal speaker's impedance or high impedance). The values in case of 26 dB gain are as follows:

Figure 23. Thresholds for short across the speaker/open speaker



If the Line-Driver mode (Gv= 12 dB and Line Driver Mode diagnostic = 1) is selected, the same thresholds will change as follows:

Figure 24. Thresholds for line-drivers



## 3.2 Permanent diagnostics

Detectable conventional faults are:

- Short to GND
- Short to Vs
- Short across the speaker

The following additional features are provided:

Output offset detection

The TDA7563A has 2 operating statuses:

- 1. RESTART mode. The diagnostic is not enabled. Each audio channel operates independently from each other. If any of the a.m. faults occurs, only the channel(s) interested is shut down. A check of the output status is made every 1 ms (*Figure 25*). Restart takes place when the overload is removed.
- 2. DIAGNOSTIC mode. It is enabled via I<sup>2</sup>C bus and self activates if an output overload (such to cause the intervention of the short-circuit protection) occurs to the speakers outputs. Once activated, the diagnostics procedure develops as follows (*Figure 26*):
  - To avoid momentary re-circulation spikes from giving erroneous diagnostics, a check of the output status is made after 1ms: if normal situation (no overloads) is detected, the diagnostic is not performed and the channel returns back active.
  - Instead, if an overload is detected during the check after 1 ms, then a diagnostic cycle having a duration of about 100 ms is started.
  - After a diagnostic cycle, the audio channel interested by the fault is switched to RESTART mode. The relevant data are stored inside the device and can be read by the microprocessor. When one cycle has terminated, the next one is activated

- by an  $I^2C$  reading. This is to ensure continuous diagnostics throughout the carradio operating time.
- To check the status of the device a sampling system is needed. The timing is chosen at microprocessor level (over half a second is recommended).

Figure 25. Restart timing without diagnostic enable (permanent) - Each 1ms time, a sampling of the fault is done

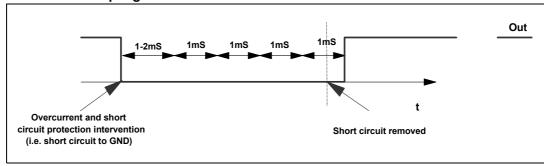
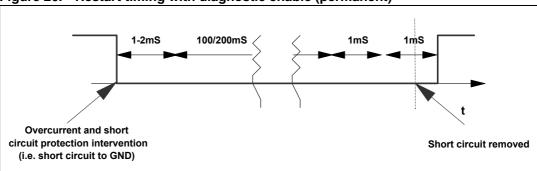




Figure 26. Restart timing with diagnostic enable (permanent)



## 4 Output DC offset detection

Any DC output offset exceeding +/- 2 V are signalled out. This inconvenient might occur as a consequence of initially defective or aged and worn-out input capacitors feeding a DC component to the inputs, so putting the speakers at risk of overheating.

This diagnostic has to be performed with low-level output AC signal (or Vin = 0).

The test is run with selectable time duration by microprocessor (from a "start" to a "stop" command):

- START = Last reading operation or setting IB1 D5 (OFFSET enable) to 1
- STOP = Actual reading operation

Excess offset is signalled out if persistent throughout the assigned testing time. This feature is disabled if any overloads leading to activation of the short-circuit protection occurs in the process.

### 4.1 AC diagnostic

It is targeted at detecting accidental disconnection of tweeters in 2-way speaker and, more in general, presence of capacitively (AC) coupled loads.

This diagnostic is based on the notion that the overall speaker's impedance (woofer + parallel tweeter) will tend to increase towards high frequencies if the tweeter gets disconnected, because the remaining speaker (woofer) would be out of its operating range (high impedance). The diagnostic decision is made according to peak output current thresholds, as follows:

lout > 500mApk = NORMAL STATUS
lout < 250mApk = OPEN TWEETER</pre>

To correctly implement this feature, it is necessary to briefly provide a signal tone (with the amplifier in "play") whose frequency and magnitude are such to determine an output current higher than 500mApk with in normal conditions and lower than 250mApk should the parallel tweeter be missing.

The test has to last for a minimum number of 3 sine cycles starting from the activation of the AC diagnostic function IB2<D2>) up to the I<sup>2</sup>C reading of the results (measuring period). To confirm presence of tweeter, it is necessary to find at least 3 current pulses over 500mA over all the measuring period, else an "open tweeter" message will be issued.

The frequency / magnitude setting of the test tone depends on the impedance characteristics of each specific speaker being used, with or without the tweeter connected (to be calculated case by case). High-frequency tones (> 10 kHz) or even ultrasonic signals are recommended for their negligible acoustic impact and also to maximize the impedance module's ratio between with tweeter-on and tweeter-off.

*Figure 27* shows the Load Impedance as a function of the peak output voltage and the relevant diagnostic fields.

This feature is disabled if any overloads leading to activation of the short-circuit protection occurs in the process.

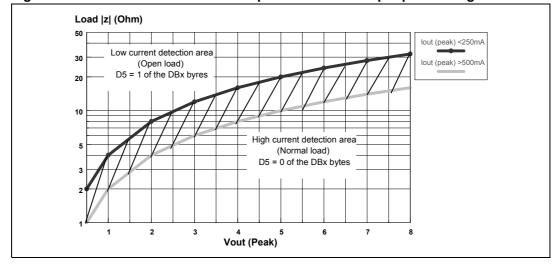



Figure 27. Current detection: Load impedance |Z| vs. output peak voltage

## 4.2 Multiple faults

When more misconnections are simultaneously in place at the audio outputs, it is guaranteed that at least one of them is initially read out. The others are notified after successive cycles of I<sup>2</sup>C reading and faults removal, provided that the diagnostic is enabled. This is true for both kinds of diagnostic (Turn on and Permanent).

The table below shows all the couples of double-fault possible. It should be taken into account that a short circuit with the 4 ohm speaker unconnected is considered as double fault.

| table 4. Double fault table for turn on diagnostic |             |             |       |                |             |        |             |  |  |
|----------------------------------------------------|-------------|-------------|-------|----------------|-------------|--------|-------------|--|--|
|                                                    | S. GND (so) | S. GND (sk) | S. Vs | S. Across L.   | Open L.     |        |             |  |  |
| S. GND (so)                                        | S. GND      |             |       | S. GND         | S. GND      |        |             |  |  |
| S. GND (sk)                                        | /           |             |       | / S. GND S. Vs |             | S. GND | Open L. (*) |  |  |
| S. Vs                                              | /           | /           | S. Vs | S. Vs          | S. Vs       |        |             |  |  |
| S. Across L.                                       | /           | /           | /     | S. Across L.   | N.A.        |        |             |  |  |
| Open L.                                            | /           | /           | /     | /              | Open L. (*) |        |             |  |  |

Table 4. Double fault table for turn on diagnostic

S. GND (so) / S. GND (sk) in the above table make a distinction according to which of the 2 outputs is shorted to ground (test-current source side= so, test-current sink side = sk). More precisely, in Channels LF and RR, so = CH+, sk = CH-; in Channels LR and RF, so = CH-, sk = CH+.

In Permanent Diagnostic the table is the same, with only a difference concerning Open Load(\*), which is not among the recognizable faults. Should an Open Load be present during the device's normal working, it would be detected at a subsequent Turn on Diagnostic cycle (i.e. at the successive Car Radio Turn on).

## 4.3 Faults availability

All the results coming from I<sup>2</sup>C bus, by read operations, are the consequence of measurements inside a defined period of time. If the fault is stable throughout the whole period, it will be sent out.

To guarantee always resident functions, every kind of diagnostic cycles (Turn on, Permanent, Offset) will be reactivate after any I<sup>2</sup>C reading operation. So, when the micro reads the I<sup>2</sup>C, a new cycle will be able to start, but the read data will come from the previous diag. cycle (i.e. The device is in Turn On state, with a short to Gnd, then the short is removed and micro reads I<sup>2</sup>C. The short to Gnd is still present in bytes, because it is the result of the previous cycle. If another I<sup>2</sup>C reading operation occurs, the bytes do not show the short). In general to observe a change in Diagnostic bytes, two I<sup>2</sup>C reading operations are necessary.

Thermal protection **TDA7563A** 

#### 5 Thermal protection

Thermal protection is implemented through thermal foldback (Figure 28).

Thermal foldback begins limiting the audio input to the amplifier stage as the junction temperatures rise above the normal operating range. This effectively limits the output power capability of the device thus reducing the temperature to acceptable levels without totally interrupting the operation of the device.

The output power will decrease to the point at which thermal equilibrium is reached. Thermal equilibrium will be reached when the reduction in output power reduces the dissipated power such that the die temperature falls below the thermal foldback threshold. Should the device cool, the audio level will increase until a new thermal equilibrium is reached or the amplifier reaches full power. Thermal foldback will reduce the audio output level in a linear manner.

Three Thermal warning are available through the I<sup>2</sup>C bus data.

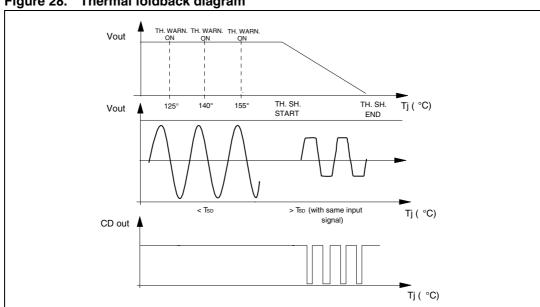



Figure 28. Thermal foldback diagram

TDA7563A Fast muting

## 6 Fast muting

The muting time can be shortened to less than 1.5ms by setting (IB2) D5 = 1. This option can be useful in transient battery situations (i.e. during car engine cranking) to quickly turnoff the amplifier for avoiding any audible effects caused by noise/transients being injected by preamp stages. The bit must be set back to "0" shortly after the mute transition.

I2C bus TDA7563A

## 7 $I^2C$ bus

## 7.1 I<sup>2</sup>C programming/reading sequences

A correct turn on/off sequence respectful of the diagnostic timings and producing no audible noises could be as follows (after battery connection):

TURN-ON: PIN2 > 7V --- 10ms --- (STANDBY OUT + DIAG ENABLE) --- 500 ms (min) --- MUTING OUT

TURN-OFF: MUTING IN --- 20 ms --- (DIAG DISABLE + STANDBY IN) --- 10ms --- PIN2 = 0

Car Radio Installation: PIN2 > 7V --- 10ms DIAG ENABLE (write) --- 200 ms --- I<sup>2</sup>C read (repeat until All faults disappear).

OFFSET TEST: Device in Play (no signal) -- OFFSET ENABLE - 30ms - I<sup>2</sup>C reading (repeat I<sup>2</sup>C reading until high-offset message disappears).

### 7.2 I<sup>2</sup>C bus interface

Data transmission from microprocessor to the TDA7563A and vice versa takes place through the 2 wires I<sup>2</sup>C BUS interface, consisting of the two lines SDA and SCL (pull-up resistors to positive supply voltage must be connected).

## 7.3 Data validity

As shown by Figure 29, the data on the SDA line must be stable during the high period of the clock

The HIGH and LOW state of the data line can only change when the clock signal on the SCL line is LOW.

## 7.4 Start and stop conditions

As shown by *Figure 30* a start condition is a HIGH to LOW transition of the SDA line while SCL is HIGH.

The stop condition is a LOW to HIGH transition of the SDA line while SCL is HIGH.

## 7.5 Byte format

Every byte transferred to the SDA line must contain 8 bits. Each byte must be followed by an acknowledge bit. The MSB is transferred first.

TDA7563A I2C bus

## 7.6 Acknowledge

The transmitter<sup>(\*)</sup> puts a resistive HIGH level on the SDA line during the acknowledge clock pulse (see *Figure 31*). The receiver<sup>(\*\*)</sup> the acknowledges has to pull-down (LOW) the SDA line during the acknowledge clock pulse, so that the SDA line is stable LOW during this clock pulse.

### (\*) Transmitter

- master (μP) when it writes an address to the TDA7563A
- slave (TDA7563A) when the μP reads a data byte from TDA7563A

### (\*\*) Receiver

- slave (TDA7563A) when the μP writes an address to the TDA7563A
- master (μP) when it reads a data byte from TDA7563A

Figure 29. Data validity on the I<sup>2</sup>C bus

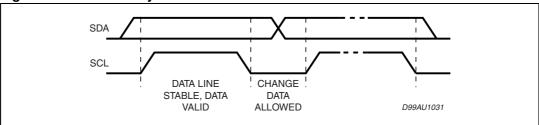



Figure 30. Timing diagram on the I<sup>2</sup>C bus

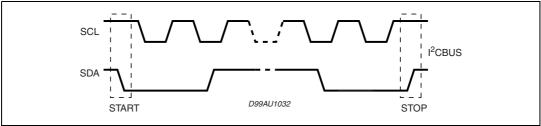
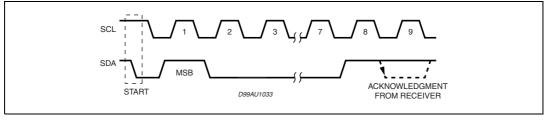




Figure 31. Timing acknowledge clock pulse



## 8 Software specifications

All the functions of the TDA7563A are activated by  $\ensuremath{\text{I}}^2\text{C}$  interface.

The bit 0 of the "ADDRESS BYTE" defines if the next bytes are write instruction (from  $\mu P$  to TDA7563A) or read instruction (from TDA7563A to  $\mu P$ ).

Table 5. Chip address:

| D7 |   |   |   |   |   | D0 |   |   |        |  |
|----|---|---|---|---|---|----|---|---|--------|--|
|    | 1 | 1 | 0 | 1 | 1 | 0  | 0 | Х | D8 Hex |  |

X = 0 Write to device

X = 1 Read from device

If R/W = 0, the  $\mu P$  sends 2 "Instruction Bytes": IB1 and IB2.

Table 6. IB1

| Table 0.   | ID1                                                               |
|------------|-------------------------------------------------------------------|
| D7         | 0                                                                 |
| D6         | Diagnostic enable (D6 = 1) Diagnostic defeat (D6 = 0)             |
| <b>D</b> 5 | Offset Detection enable (D5 = 1) Offset Detection defeat (D5 = 0) |
| D4         | Front Channel  Gain = 26dB (D4 = 0)  Gain = 12dB (D4 = 1)         |
| D3         | Rear Channel Gain = 26dB (D3 = 0) Gain = 12dB (D3 = 1)            |
| D2         | Mute front channels (D2 = 0) Unmute front channels (D2 = 1)       |
| D1         | Mute rear channels (D1 = 0) Unmute rear channels (D1 = 1)         |
| D0         | CD 2% (D0 = 0)<br>CD 10% (D0 = 1)                                 |

| т_ | ble | . 7 |      | 12 |
|----|-----|-----|------|----|
| 12 | nie | • / | - 16 | •  |
|    |     |     |      |    |

| D7 | 0                                                                                                                         |
|----|---------------------------------------------------------------------------------------------------------------------------|
| D6 | 0                                                                                                                         |
| D5 | Normal muting time (D5 = 0) Fast muting time (D5 = 1)                                                                     |
| D4 | Standby on - Amplifier not working - (D4 = 0) Standby off - Amplifier working - (D4 = 1)                                  |
| D3 | Power amplifier mode diagnostic (D3 = 0) Line driver mode diagnostic (D3 = 1)                                             |
| D2 | Current Detection Diagnostic Enabled (D2 =1) Current Detection Diagnostic Defeat (D2 =0)                                  |
| D1 | Right Channel Power amplifier working in standard mode (D1 = 0)  Power amplifier working in high efficiency mode (D1 = 1) |
| D0 | Left Channel Power amplifier working in standard mode (D0 = 0)  Power amplifier working in high efficiency mode (D0 = 1)  |

If R/W = 1, the TDA7563A sends 4 "Diagnostics Bytes" to  $\mu$ P: DB1, DB2, DB3 and DB4.

Table 8. DB1

| D7 | Thermal warning active (D7 = 1), T <sub>J</sub> = 155°C                                                                                               |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------|
| D6 | Diag. cycle not activated or not terminated (D6 = 0) Diag. cycle terminated (D6 = 1)                                                                  |
| D5 | Channel LF Current Detection Output peak current <250mA - Output load (D5 = 1) Output peak current >500mA - Output load (D5 = 0)                      |
| D4 | Channel LF Turn-on diagnostic (D4 = 0) Permanent diagnostic (D4 = 1)                                                                                  |
| D3 | Channel LF Normal load (D3 = 0) Short load (D3 = 1)                                                                                                   |
| D2 | Channel LF Turn-on diag.: No open load (D2 = 0) Open load detection (D2 = 1) Offset diag.: No output offset (D2 = 0) Output offset detection (D2 = 1) |
| D1 | Channel LF No short to Vcc (D1 = 0) Short to Vcc (D1 = 1)                                                                                             |
| D0 | Channel LF No short to GND (D1 = 0) Short to GND (D1 = 1)                                                                                             |

| T-1 | ole 9. | DB2  |
|-----|--------|------|
| ıar | ש פור  | 1187 |
|     |        |      |

| D7 | Offset detection not activated (D7 = 0) Offset detection activated (D7 = 1)                                                                              |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------|
| D6 | 0                                                                                                                                                        |
| D5 | Channel LR Current Detection Output peak current <250mA - Output load (D5 = 1) Output peak current >500mA - Output load (D5 = 0)                         |
| D4 | Channel LR Turn-on diagnostic (D4 = 0) Permanent diagnostic (D4 = 1)                                                                                     |
| D3 | Channel LR Normal load (D3 = 0) Short load (D3 = 1)                                                                                                      |
| D2 | Channel LR Turn-on diag.: No open load (D2 = 0) Open load detection (D2 = 1) Permanent diag.: No output offset (D2 = 0) Output offset detection (D2 = 1) |
| D1 | Channel LR No short to Vcc (D1 = 0) Short to Vcc (D1 = 1)                                                                                                |
| D0 | Channel LR No short to GND (D1 = 0) Short to GND (D1 = 1)                                                                                                |

### Table 10. DB3

| Standby status (= IB2 - D4)                       |
|---------------------------------------------------|
| Diagnostic status (= IB1 - D6)                    |
| Channel RF                                        |
| Current Detection                                 |
| Output peak current <250mA - Output load (D5 = 1) |
| Output peak current >500mA - Output load (D5 = 0) |
| Channel RF                                        |
| Turn-on diagnostic (D4 = 0)                       |
| Permanent diagnostic (D4 = 1)                     |
| Channel RF                                        |
| Normal load (D3 = 0)                              |
| Short load (D3 = 1)                               |
| Channel RF                                        |
| Turn-on diag.: No open load (D2 = 0)              |
| Open load detection (D2 = 1)                      |
| Permanent diag.: No output offset (D2 = 0)        |
| Output offset detection (D2 = 1)                  |
| Channel RF                                        |
| No short to Vcc (D1 = 0)                          |
| Short to Vcc (D1 = 1)                             |
| Channel RF                                        |
| No short to GND (D1 = 0)                          |
| Short to GND (D1 = 1)                             |
|                                                   |

Table 11. DB4

| D7 | Thermal warning 2 active (D7 = 1), T <sub>J</sub> = 140°C                                                                                                |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------|
| D6 | Thermal warning 3 active (D6 = 1), T <sub>J</sub> = 120°C                                                                                                |
| D5 | Channel RR Current Detection Output peak current <250mA - Output load (D5 = 1) Output peak current >500mA - Output load (D5 = 0)                         |
| D4 | Channel RR Turn-on diagnostic (D4 = 0) Permanent diagnostic (D4 = 1)                                                                                     |
| D3 | Channel R R Normal load (D3 = 0) Short load (D3 = 1)                                                                                                     |
| D2 | Channel RR Turn-on diag.: No open load (D2 = 0) Open load detection (D2 = 1) Permanent diag.: No output offset (D2 = 0) Output offset detection (D2 = 1) |
| D1 | Channel RR No short to Vcc (D1 = 0) Short to Vcc (D1 = 1)                                                                                                |
| D0 | Channel RR No short to GND (D1 = 0) Short to GND (D1 = 1)                                                                                                |

## 9 Examples of bytes sequence

1 - Turn-On diagnostic - Write operation

| Start Add | dress byte with D0 = 0 | ACK | IB1 with D6 = 1 | ACK | IB2 | ACK | STOP |
|-----------|------------------------|-----|-----------------|-----|-----|-----|------|
|-----------|------------------------|-----|-----------------|-----|-----|-----|------|

2 - Turn-On diagnostic - Read operation

| Start | Address byte with D0 = 1 | ACK | DB1 | ACK | DB2 | ACK | DB3 | ACK | DB4 | ACK | STOP |
|-------|--------------------------|-----|-----|-----|-----|-----|-----|-----|-----|-----|------|

• The delay from 1 to 2 can be selected by software, starting from 1ms

3a - Turn-On of the power amplifier with 26dB gain, mute on, diagnostic defeat, CD = 2%.

| Start | Address byte with D0 = 0 | ACK | IB1      | ACK | IB2      | ACK | STOP |
|-------|--------------------------|-----|----------|-----|----------|-----|------|
|       |                          |     | X0000000 |     | XXX1XX11 |     |      |

3b - Turn-Off of the power amplifier

| Start | Address byte with D0 = 0 | ACK | IB1      | ACK | IB2      | ACK | STOP |
|-------|--------------------------|-----|----------|-----|----------|-----|------|
|       |                          |     | X0XXXXXX |     | XXX0XXXX |     |      |

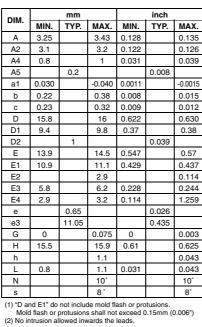
4 - Offset detection procedure enable

| Start | Address byte with D0 = 0 | ACK | IB1      | ACK | IB2      | ACK | STOP |
|-------|--------------------------|-----|----------|-----|----------|-----|------|
|       |                          |     | XX1XX11X |     | XXX1XXXX |     |      |

**5** - Offset detection procedure stop and reading operation (the results are valid only for the offset detection bits (D2 of the bytes DB1, DB2, DB3, DB4).

|       | · · · · · · · · · · · · · · · · · · · | ,   | ,   | · , , |     |     |     |     |     |     |      |
|-------|---------------------------------------|-----|-----|-------|-----|-----|-----|-----|-----|-----|------|
| Start | Address byte with D0 = 1              | ACK | DB1 | ACK   | DB2 | ACK | DB3 | ACK | DB4 | ACK | STOP |

- The purpose of this test is to check if a D.C. offset (2V typ.) is present on the outputs, produced by input capacitor with anomalous leakage current or humidity between pins.
- The delay from 4 to 5 can be selected by software, starting from 1ms

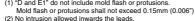

**Package information TDA7563A** 

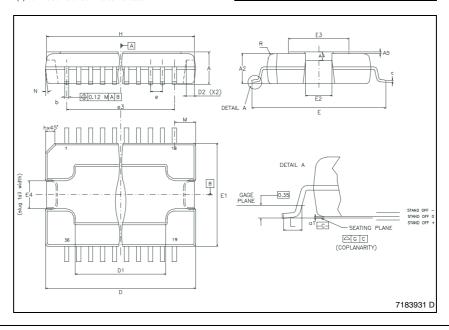
#### **Package information** 10

In order to meet environmental requirements, ST (also) offers these devices in ECOPACK® packages. ECOPACK® packages are lead-free. The category of second Level Interconnect is marked on the package and on the inner box label, in compliance with JEDEC Standard JESD97. The maximum ratings related to soldering conditions are also marked on the inner box label.

ECOPACK is an ST trademark. ECOPACK specifications are available at: www.st.com.

PowerSO36 (slug up) mechanical data and package dimensions




**OUTLINE AND** 

**MECHANICAL DATA** 







TDA7563A Package information

Figure 33. Flexiwatt27 (SMD) mechanical data and package dimensions

| H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | A   4-45   4-50   4-55   0-455   0-055   0-057   0-051                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | DIM.                                       |                                                                                   | mm                                          | ****                   |                         | inch                                      |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------|-----------------------------------------------------------------------------------|---------------------------------------------|------------------------|-------------------------|-------------------------------------------|--------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ## 112   2.22   2.32   0.0835   0.0874   0.0913                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Δ                                          |                                                                                   |                                             |                        |                         |                                           |        | OUTLINE AND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                            |                                                                                   |                                             |                        |                         |                                           |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| E 0.95 0.40 0.44 0.0142 0.0157 0.0179 PT 0.47 0.10 1 0.57 0.0185 0.0201 0.0224 PT 0.47 0.021 0.057 0.0086 0.0201 0.024 PT 0.47 0.00 0.00 0.00 0.001 0.0181 0.0201 0.024 PT 0.47 0.00 0.00 0.00 0.001 0.018 0.0021 0.0084 PT 0.47 0.00 0.00 0.001 0.018 0.0021 0.0084 PT 0.47 0.00 0.00 0.001 0.001 0.0015 0.0015 PT 0.47 0.00 0.001 0.001 0.0015 0.0015 PT 0.47 0.00 0.001 0.001 0.0015 0.0015 PT 0.00 0.00 0.001 0.001 0.0015 0.0015 PT 0.00 0.00 0.001 0.0015 0.0015 PT 0.00 0.001 0.001 0.0015 0.0017 PT 0.00 0.001 0.001 0.0015 0.0017 PT 0.000 0.001 0.001 0.0015 0.0017 PT 0.000 0.001 0.001 0.0015 0.0017 PT 0.000 0.001 0.001 0.0017 PT 0.000 0.001 0.0017 PT 0.000 0.001 0.001 0.0017 PT 0.000 0.001 0.0017 PT 0.000 0.001 0.001 0.0017 PT 0.000   | E 0.95 0.40 0.44 0.0142 0.0157 0.0179 PT 0.47 0.10 1 0.57 0.0180 0.0201 0.0224 PT 0.47 0.025 0.00180 0.0201 0.024 PT 0.47 0.020 0.023 0.00180 0.0201 0.024 PT 0.025 0.00 0.001 0.0118 1.0238 1.0564 PT 0.027 0.00 0.00180 0.00180 0.00181 0.0244 PT 0.025 0.000 0.00180 0.00180 0.00181 0.00184 PT 0.025 0.00180 0.00180 0.00181 0.00181 PT 0.025 0.00180 0.00181 0.00181 0.00181 0.00181 PT 0.025 0.00180 0.00181 0.00181 0.00181 0.00181 0.00181 0.00181 0.00181 0.00181 0.00181 0.00181 0.00181 0.00181 0.00181 0.00181 0.00181 0.00181 0.00181 0.00181 0.00181 0.00181 0.00181 0.00181 0.00181 0.00181 0.00181 0.00181 0.00181 0.00181 0.00181 0.00181 0.00181 0.00181 0.00181 0.00181 0.00181 0.00181 0.00181 0.00181 0.00181 0.00181 0.00181 0.00181 0.00181 0.00181 0.00181 0.00181 0.00181 0.00181 0.00181 0.00181 0.00181 0.00181 0.00181 0.00181 0.00181 0.00181 0.00181 0.00181 0.00181 0.00181 0.00181 0.00181 0.00181 0.00181 0.00181 0.00181 0.00181 0.00181 0.00181 0.00181 0.00181 0.00181 0.00181 0  |                                            |                                                                                   |                                             |                        |                         |                                           |        | MECHANICAL DATA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| FP 0.47 0.51 0.57 0.0185 0.0201 0.0201 0.0204 (1) 0.75 1.00 1.25 0.0205 0.0205 0.0204 0.0322 (1) 1.75 0.00 0.0205 0.0205 0.0205 0.0205 0.0205 0.0205 0.0205 0.0205 0.0205 0.0205 0.0205 0.0205 0.0205 0.0205 0.0205 0.0205 0.0205 0.0205 0.0205 0.0205 0.0205 0.0205 0.0205 0.0205 0.0205 0.0205 0.0205 0.0205 0.0205 0.0205 0.0205 0.0205 0.0205 0.0205 0.0205 0.0205 0.0205 0.0205 0.0205 0.0205 0.0205 0.0205 0.0205 0.0205 0.0205 0.0205 0.0205 0.0205 0.0205 0.0205 0.0205 0.0205 0.0205 0.0205 0.0205 0.0205 0.0205 0.0205 0.0205 0.0205 0.0205 0.0205 0.0205 0.0205 0.0205 0.0205 0.0205 0.0205 0.0205 0.0205 0.0205 0.0205 0.0205 0.0205 0.0205 0.0205 0.0205 0.0205 0.0205 0.0205 0.0205 0.0205 0.0205 0.0205 0.0205 0.0205 0.0205 0.0205 0.0205 0.0205 0.0205 0.0205 0.0205 0.0205 0.0205 0.0205 0.0205 0.0205 0.0205 0.0205 0.0205 0.0205 0.0205 0.0205 0.0205 0.0205 0.0205 0.0205 0.0205 0.0205 0.0205 0.0205 0.0205 0.0205 0.0205 0.0205 0.0205 0.0205 0.0205 0.0205 0.0205 0.0205 0.0205 0.0205 0.0205 0.0205 0.0205 0.0205 0.0205 0.0205 0.0205 0.0205 0.0205 0.0205 0.0205 0.0205 0.0205 0.0205 0.0205 0.0205 0.0205 0.0205 0.0205 0.0205 0.0205 0.0205 0.0205 0.0205 0.0205 0.0205 0.0205 0.0205 0.0205 0.0205 0.0205 0.0205 0.0205 0.0205 0.0205 0.0205 0.0205 0.0205 0.0205 0.0205 0.0205 0.0205 0.0205 0.0205 0.0205 0.0205 0.0205 0.0205 0.0205 0.0205 0.0205 0.0205 0.0205 0.0205 0.0205 0.0205 0.0205 0.0205 0.0205 0.0205 0.0205 0.0205 0.0205 0.0205 0.0205 0.0205 0.0205 0.0205 0.0205 0.0205 0.0205 0.0205 0.0205 0.0205 0.0205 0.0205 0.0205 0.0205 0.0205 0.0205 0.0205 0.0205 0.0205 0.0205 0.0205 0.0205 0.0205 0.0205 0.0205 0.0205 0.0205 0.0205 0.0205 0.0205 0.0205 0.0205 0.0205 0.0205 0.0205 0.0205 0.0205 0.0205 0.0205 0.0205 0.0205 0.0205 0.0205 0.0205 0.0205 0.0205 0.0205 0.0205 0.0205 0.0205 0.0205 0.0205 0.0205 0.0205 0.0205 0.0205 0.0205 0.0205 0.0205 0.0205 0.0205 0.0205 0.0205 0.0205 0.0205 0.0205 0.0205 0.0205 0.0205 0.0205 0.0205 0.0205 0.0205 0.0205 0.0205 0.0205 0.0205 0.0205 0.0205 0.0205 0.0205 0.0205 0.0205 0.0205 0.0205 0.0205 0.0205 0.0205 0.0205   | FP 0.47 0.51 0.57 0.0185 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.000  |                                            |                                                                                   |                                             |                        |                         |                                           |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 6(7) 0.75 1.00 1.25 0.00283 0.0394 0.0395 0.0394 0.0366 0.0366 0.0366 0.0366 0.0366 0.0366 0.0366 0.0366 0.0366 0.0366 0.0366 0.0366 0.0366 0.0366 0.0366 0.0366 0.0366 0.0366 0.0366 0.0366 0.0366 0.0366 0.0366 0.0366 0.0366 0.0366 0.0366 0.0366 0.0366 0.0366 0.0366 0.0366 0.0366 0.0366 0.0366 0.0366 0.0366 0.0366 0.0366 0.0366 0.0366 0.0366 0.0366 0.0366 0.0366 0.0366 0.0366 0.0366 0.0366 0.0366 0.0366 0.0366 0.0366 0.0366 0.0366 0.0366 0.0366 0.0366 0.0366 0.0366 0.0366 0.0366 0.0366 0.0366 0.0366 0.0366 0.0366 0.0366 0.0366 0.0366 0.0366 0.0366 0.0366 0.0366 0.0366 0.0366 0.0366 0.0366 0.0366 0.0366 0.0366 0.0366 0.0366 0.0366 0.0366 0.0366 0.0366 0.0366 0.0366 0.0366 0.0366 0.0366 0.0366 0.0366 0.0366 0.0366 0.0366 0.0366 0.0366 0.0366 0.0366 0.0366 0.0366 0.0366 0.0366 0.0366 0.0366 0.0366 0.0366 0.0366 0.0366 0.0366 0.0366 0.0366 0.0366 0.0366 0.0366 0.0366 0.0366 0.0366 0.0366 0.0366 0.0366 0.0366 0.0366 0.0366 0.0366 0.0366 0.0366 0.0366 0.0366 0.0366 0.0366 0.0366 0.0366 0.0366 0.0366 0.0366 0.0366 0.0366 0.0366 0.0366 0.0366 0.0366 0.0366 0.0366 0.0366 0.0366 0.0366 0.0366 0.0366 0.0366 0.0366 0.0366 0.0366 0.0366 0.0366 0.0366 0.0366 0.0366 0.0366 0.0366 0.0366 0.0366 0.0366 0.0366 0.0366 0.0366 0.0366 0.0366 0.0366 0.0366 0.0366 0.0366 0.0366 0.0366 0.0366 0.0366 0.0366 0.0366 0.0366 0.0366 0.0366 0.0366 0.0366 0.0366 0.0366 0.0366 0.0366 0.0366 0.0366 0.0366 0.0366 0.0366 0.0366 0.0366 0.0366 0.0366 0.0366 0.0366 0.0366 0.0366 0.0366 0.0366 0.0366 0.0366 0.0366 0.0366 0.0366 0.0366 0.0366 0.0366 0.0366 0.0366 0.0366 0.0366 0.0366 0.0366 0.0366 0.0366 0.0366 0.0366 0.0366 0.0366 0.0366 0.0366 0.0366 0.0366 0.0366 0.0366 0.0366 0.0366 0.0366 0.0366 0.0366 0.0366 0.0366 0.0366 0.0366 0.0366 0.0366 0.0366 0.0366 0.0366 0.0366 0.0366 0.0366 0.0366 0.0366 0.0366 0.0366 0.0366 0.0366 0.0366 0.0366 0.0366 0.0366 0.0366 0.0366 0.0366 0.0366 0.0366 0.0366 0.0366 0.0366 0.0366 0.0366 0.0366 0.0366 0.0366 0.0366 0.0366 0.0366 0.0366 0.0366 0.0366 0.0366 0.0366 0.0366 0.0366 0.0366 0.0366 0.0366 0.0366 0.0366 0.  | 6(7) 0.75 1.00 1.25 0.0293 0.0394 0.0395 0.0394 0.0395 0.0395 0.0395 0.0395 0.0395 0.0395 0.0395 0.0395 0.0395 0.0395 0.0395 0.0395 0.0395 0.0395 0.0395 0.0395 0.0395 0.0395 0.0395 0.0395 0.0395 0.0395 0.0395 0.0395 0.0395 0.0395 0.0395 0.0395 0.0395 0.0395 0.0395 0.0395 0.0395 0.0395 0.0395 0.0395 0.0395 0.0395 0.0395 0.0395 0.0395 0.0395 0.0395 0.0395 0.0395 0.0395 0.0395 0.0395 0.0395 0.0395 0.0395 0.0395 0.0395 0.0395 0.0395 0.0395 0.0395 0.0395 0.0395 0.0395 0.0395 0.0395 0.0395 0.0395 0.0395 0.0395 0.0395 0.0395 0.0395 0.0395 0.0395 0.0395 0.0395 0.0395 0.0395 0.0395 0.0395 0.0395 0.0395 0.0395 0.0395 0.0395 0.0395 0.0395 0.0395 0.0395 0.0395 0.0395 0.0395 0.0395 0.0395 0.0395 0.0395 0.0395 0.0395 0.0395 0.0395 0.0395 0.0395 0.0395 0.0395 0.0395 0.0395 0.0395 0.0395 0.0395 0.0395 0.0395 0.0395 0.0395 0.0395 0.0395 0.0395 0.0395 0.0395 0.0395 0.0395 0.0395 0.0395 0.0395 0.0395 0.0395 0.0395 0.0395 0.0395 0.0395 0.0395 0.0395 0.0395 0.0395 0.0395 0.0395 0.0395 0.0395 0.0395 0.0395 0.0395 0.0395 0.0395 0.0395 0.0395 0.0395 0.0395 0.0395 0.0395 0.0395 0.0395 0.0395 0.0395 0.0395 0.0395 0.0395 0.0395 0.0395 0.0395 0.0395 0.0395 0.0395 0.0395 0.0395 0.0395 0.0395 0.0395 0.0395 0.0395 0.0395 0.0395 0.0395 0.0395 0.0395 0.0395 0.0395 0.0395 0.0395 0.0395 0.0395 0.0395 0.0395 0.0395 0.0395 0.0395 0.0395 0.0395 0.0395 0.0395 0.0395 0.0395 0.0395 0.0395 0.0395 0.0395 0.0395 0.0395 0.0395 0.0395 0.0395 0.0395 0.0395 0.0395 0.0395 0.0395 0.0395 0.0395 0.0395 0.0395 0.0395 0.0395 0.0395 0.0395 0.0395 0.0395 0.0395 0.0395 0.0395 0.0395 0.0395 0.0395 0.0395 0.0395 0.0395 0.0395 0.0395 0.0395 0.0395 0.0395 0.0395 0.0395 0.0395 0.0395 0.0395 0.0395 0.0395 0.0395 0.0395 0.0395 0.0395 0.0395 0.0395 0.0395 0.0395 0.0395 0.0395 0.0395 0.0395 0.0395 0.0395 0.0395 0.0395 0.0395 0.0395 0.0395 0.0395 0.0395 0.0395 0.0395 0.0395 0.0395 0.0395 0.0395 0.0395 0.0395 0.0395 0.0395 0.0395 0.0395 0.0395 0.0395 0.0395 0.0395 0.0395 0.0395 0.0395 0.0395 0.0395 0.0395 0.0395 0.0395 0.0395 0.0395 0.0395 0.0395 0.0395 0.0395 0.0395 0.0395 0.0  |                                            |                                                                                   |                                             |                        |                         |                                           |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| St   25.70   20.00   22.50   1.0118   0.0236   1.0356   1.0356   1.0356   1.0356   1.0356   1.0356   1.0356   1.0356   1.0356   1.0356   1.0356   1.0356   1.0356   1.0356   1.0356   1.0356   1.0356   1.0356   1.0356   1.0356   1.0356   1.0356   1.0356   1.0356   1.0356   1.0356   1.0356   1.0356   1.0356   1.0356   1.0356   1.0356   1.0356   1.0356   1.0356   1.0356   1.0356   1.0356   1.0356   1.0356   1.0356   1.0356   1.0356   1.0356   1.0356   1.0356   1.0356   1.0356   1.0356   1.0356   1.0356   1.0356   1.0356   1.0356   1.0356   1.0356   1.0356   1.0356   1.0356   1.0356   1.0356   1.0356   1.0356   1.0356   1.0356   1.0356   1.0356   1.0356   1.0356   1.0356   1.0356   1.0356   1.0356   1.0356   1.0356   1.0356   1.0356   1.0356   1.0356   1.0356   1.0356   1.0356   1.0356   1.0356   1.0356   1.0356   1.0356   1.0356   1.0356   1.0356   1.0356   1.0356   1.0356   1.0356   1.0356   1.0356   1.0356   1.0356   1.0356   1.0356   1.0356   1.0356   1.0356   1.0356   1.0356   1.0356   1.0356   1.0356   1.0356   1.0356   1.0356   1.0356   1.0356   1.0356   1.0356   1.0356   1.0356   1.0356   1.0356   1.0356   1.0356   1.0356   1.0356   1.0356   1.0356   1.0356   1.0356   1.0356   1.0356   1.0356   1.0356   1.0356   1.0356   1.0356   1.0356   1.0356   1.0356   1.0356   1.0356   1.0356   1.0356   1.0356   1.0356   1.0356   1.0356   1.0356   1.0356   1.0356   1.0356   1.0356   1.0356   1.0356   1.0356   1.0356   1.0356   1.0356   1.0356   1.0356   1.0356   1.0356   1.0356   1.0356   1.0356   1.0356   1.0356   1.0356   1.0356   1.0356   1.0356   1.0356   1.0356   1.0356   1.0356   1.0356   1.0356   1.0356   1.0356   1.0356   1.0356   1.0356   1.0356   1.0356   1.0356   1.0356   1.0356   1.0356   1.0356   1.0356   1.0356   1.0356   1.0356   1.0356   1.0356   1.0356   1.0356   1.0356   1.0356   1.0356   1.0356   1.0356   1.0356   1.0356   1.0356   1.0356   1.0356   1.0356   1.0356   1.0356   1.0356   1.0356   1.0356   1.0356   1.0356   1.0356   1.0356   1.0356   1.0356   1.0356   1.0356   1.0356   1.0356   1.0356      | St   25.70   20.00   22.50   1.0118   1.0238   1.0348   1.0238   1.0348   1.0288   1.0288   1.0288   1.0288   1.0288   1.0288   1.0288   1.0288   1.0288   1.0288   1.0288   1.0288   1.0288   1.0288   1.0288   1.0288   1.0288   1.0288   1.0288   1.0288   1.0288   1.0288   1.0288   1.0288   1.0288   1.0288   1.0288   1.0288   1.0288   1.0288   1.0288   1.0288   1.0288   1.0288   1.0288   1.0288   1.0288   1.0288   1.0288   1.0288   1.0288   1.0288   1.0288   1.0288   1.0288   1.0288   1.0288   1.0288   1.0288   1.0288   1.0288   1.0288   1.0288   1.0288   1.0288   1.0288   1.0288   1.0288   1.0288   1.0288   1.0288   1.0288   1.0288   1.0288   1.0288   1.0288   1.0288   1.0288   1.0288   1.0288   1.0288   1.0288   1.0288   1.0288   1.0288   1.0288   1.0288   1.0288   1.0288   1.0288   1.0288   1.0288   1.0288   1.0288   1.0288   1.0288   1.0288   1.0288   1.0288   1.0288   1.0288   1.0288   1.0288   1.0288   1.0288   1.0288   1.0288   1.0288   1.0288   1.0288   1.0288   1.0288   1.0288   1.0288   1.0288   1.0288   1.0288   1.0288   1.0288   1.0288   1.0288   1.0288   1.0288   1.0288   1.0288   1.0288   1.0288   1.0288   1.0288   1.0288   1.0288   1.0288   1.0288   1.0288   1.0288   1.0288   1.0288   1.0288   1.0288   1.0288   1.0288   1.0288   1.0288   1.0288   1.0288   1.0288   1.0288   1.0288   1.0288   1.0288   1.0288   1.0288   1.0288   1.0288   1.0288   1.0288   1.0288   1.0288   1.0288   1.0288   1.0288   1.0288   1.0288   1.0288   1.0288   1.0288   1.0288   1.0288   1.0288   1.0288   1.0288   1.0288   1.0288   1.0288   1.0288   1.0288   1.0288   1.0288   1.0288   1.0288   1.0288   1.0288   1.0288   1.0288   1.0288   1.0288   1.0288   1.0288   1.0288   1.0288   1.0288   1.0288   1.0288   1.0288   1.0288   1.0288   1.0288   1.0288   1.0288   1.0288   1.0288   1.0288   1.0288   1.0288   1.0288   1.0288   1.0288   1.0288   1.0288   1.0288   1.0288   1.0288   1.0288   1.0288   1.0288   1.0288   1.0288   1.0288   1.0288   1.0288   1.0288   1.0288   1.0288   1.0288   1.0288   1.0288   1.0288   1.0288   1.0288      |                                            |                                                                                   |                                             |                        |                         |                                           |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 17.5   2.00   2.25   0.0689   0.0787   0.0880                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 17.5   2.00   2.25   0.0698   0.0797   0.0786   0.0786   0.0787   0.0788   0.0787   0.0788   0.0787   0.0788   0.0788   0.0787   0.0788   0.0788   0.0788   0.0788   0.0788   0.0788   0.0788   0.0788   0.0788   0.0788   0.0788   0.0788   0.0788   0.0788   0.0788   0.0788   0.0788   0.0788   0.0788   0.0788   0.0788   0.0788   0.0788   0.0788   0.0788   0.0788   0.0788   0.0788   0.0788   0.0788   0.0788   0.0788   0.0788   0.0788   0.0788   0.0788   0.0788   0.0788   0.0788   0.0788   0.0788   0.0788   0.0788   0.0788   0.0788   0.0788   0.0788   0.0788   0.0788   0.0788   0.0788   0.0788   0.0788   0.0788   0.0788   0.0788   0.0788   0.0788   0.0788   0.0788   0.0788   0.0788   0.0788   0.0788   0.0788   0.0788   0.0788   0.0788   0.0788   0.0788   0.0788   0.0788   0.0788   0.0788   0.0788   0.0788   0.0788   0.0788   0.0788   0.0788   0.0788   0.0788   0.0788   0.0788   0.0788   0.0788   0.0788   0.0788   0.0788   0.0788   0.0788   0.0788   0.0788   0.0788   0.0788   0.0788   0.0788   0.0788   0.0788   0.0788   0.0788   0.0788   0.0788   0.0788   0.0788   0.0788   0.0788   0.0788   0.0788   0.0788   0.0788   0.0788   0.0788   0.0788   0.0788   0.0788   0.0788   0.0788   0.0788   0.0788   0.0788   0.0788   0.0788   0.0788   0.0788   0.0788   0.0788   0.0788   0.0788   0.0788   0.0788   0.0788   0.0788   0.0788   0.0788   0.0788   0.0788   0.0788   0.0788   0.0788   0.0788   0.0788   0.0788   0.0788   0.0788   0.0788   0.0788   0.0788   0.0788   0.0788   0.0788   0.0788   0.0788   0.0788   0.0788   0.0788   0.0788   0.0788   0.0788   0.0788   0.0788   0.0788   0.0788   0.0788   0.0788   0.0788   0.0788   0.0788   0.0788   0.0788   0.0788   0.0788   0.0788   0.0788   0.0788   0.0788   0.0788   0.0788   0.0788   0.0788   0.0788   0.0788   0.0788   0.0788   0.0788   0.0788   0.0788   0.0788   0.0788   0.0788   0.0788   0.0788   0.0788   0.0788   0.0788   0.0788   0.0788   0.0788   0.0788   0.0788   0.0788   0.0788   0.0788   0.0788   0.0788   0.0788   0.0788   0.0788   0.0788   0.0788   0.0788   0.0788   0.0788     |                                            |                                                                                   |                                             |                        |                         |                                           |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                            |                                                                                   |                                             |                        |                         |                                           |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | H(**)                                      |                                                                                   |                                             |                        |                         |                                           |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | H1                                         |                                                                                   | 17.00                                       |                        |                         | 0.6693                                    |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| LEY) 15.50 15.70 15.90 0.010 0.0181 0.6560 1.1 1.7 7.7 8.5 7.95 7.7 8.5 7.7 8.5 7.7 8.5 7.7 8.5 7.7 8.5 7.7 8.5 7.7 8.5 7.7 8.5 7.5 8.5 0.0053 0.0054 0.0150 0.0554 0.0554 0.0555 0.0559 0.0558 0.0554 0.0554 0.0554 0.0555 0.0558 0.0555 0.0558 0.0555 0.0558 0.0555 0.0558 0.0555 0.0558 0.0555 0.0558 0.0555 0.0558 0.0555 0.0558 0.0555 0.0558 0.0555 0.0558 0.0555 0.0558 0.0555 0.0558 0.0555 0.0558 0.0555 0.0558 0.0555 0.0558 0.0555 0.0558 0.0555 0.0558 0.0555 0.0558 0.0555 0.0558 0.0555 0.0558 0.0555 0.0558 0.0555 0.0558 0.0555 0.0558 0.0555 0.0558 0.0555 0.0558 0.0555 0.0558 0.0555 0.0558 0.0555 0.0558 0.0555 0.0558 0.0555 0.0558 0.0555 0.0558 0.0555 0.0558 0.0555 0.0558 0.0555 0.0558 0.0555 0.0558 0.0555 0.0558 0.0555 0.0558 0.0555 0.0558 0.0555 0.0558 0.0555 0.0558 0.0555 0.0558 0.0555 0.0558 0.0555 0.0558 0.0555 0.0558 0.0555 0.0558 0.0555 0.0558 0.0555 0.0558 0.0555 0.0558 0.0555 0.0558 0.0555 0.0558 0.0555 0.0558 0.0555 0.0558 0.0555 0.0558 0.0555 0.0558 0.0555 0.0558 0.0555 0.0558 0.0555 0.0558 0.0555 0.0558 0.0555 0.0558 0.0555 0.0558 0.0555 0.0558 0.0555 0.0558 0.0555 0.0558 0.0555 0.0558 0.0555 0.0558 0.0555 0.0558 0.0555 0.0558 0.0555 0.0558 0.0555 0.0558 0.0555 0.0558 0.0555 0.0558 0.0555 0.0558 0.0555 0.0558 0.0558 0.0558 0.0558 0.0558 0.0558 0.0558 0.0558 0.0558 0.0558 0.0558 0.0558 0.0558 0.0558 0.0558 0.0558 0.0558 0.0558 0.0558 0.0558 0.0558 0.0558 0.0558 0.0558 0.0558 0.0558 0.0558 0.0558 0.0558 0.0558 0.0558 0.0558 0.0558 0.0558 0.0558 0.0558 0.0558 0.0558 0.0558 0.0558 0.0558 0.0558 0.0558 0.0558 0.0558 0.0558 0.0558 0.0558 0.0558 0.0558 0.0558 0.0558 0.0558 0.0558 0.0558 0.0558 0.0558 0.0558 0.0558 0.0558 0.0558 0.0558 0.0558 0.0558 0.0558 0.0558 0.0558 0.0558 0.0558 0.0558 0.0558 0.0558 0.0558 0.0558 0.0558 0.0558 0.0558 0.0558 0.0558 0.0558 0.0558 0.0558 0.0558 0.0558 0.0558 0.0558 0.0558 0.0558 0.0558 0.0558 0.0558 0.0558 0.0558 0.0558 0.0558 0.0558 0.0558 0.0558 0.0558 0.0558 0.0558 0.0558 0.0558 0.0558 0.0558 0.0558 0.0558 0.0558 0.0558 0.0558 0.0558 0.0558 0.0558 0.0558 0.0558 0.0558 0.0558  | LEY) 15.50 15.70 15.90 0.010 0.0181 0.6580 1.1 1.7 7.7 8.5 7.9 8.0 0.0301 0.0309 0.0310 0.0310 0.0310 0.0310 0.0310 0.0310 0.0310 0.0310 0.0310 0.0310 0.0310 0.0310 0.0310 0.0310 0.0310 0.0310 0.0310 0.0310 0.0310 0.0310 0.0310 0.0310 0.0310 0.0310 0.0310 0.0310 0.0310 0.0310 0.0310 0.0310 0.0310 0.0310 0.0310 0.0310 0.0310 0.0310 0.0310 0.0310 0.0310 0.0310 0.0310 0.0310 0.0310 0.0310 0.0310 0.0310 0.0310 0.0310 0.0310 0.0310 0.0310 0.0310 0.0310 0.0310 0.0310 0.0310 0.0310 0.0310 0.0310 0.0310 0.0310 0.0310 0.0310 0.0310 0.0310 0.0310 0.0310 0.0310 0.0310 0.0310 0.0310 0.0310 0.0310 0.0310 0.0310 0.0310 0.0310 0.0310 0.0310 0.0310 0.0310 0.0310 0.0310 0.0310 0.0310 0.0310 0.0310 0.0310 0.0310 0.0310 0.0310 0.0310 0.0310 0.0310 0.0310 0.0310 0.0310 0.0310 0.0310 0.0310 0.0310 0.0310 0.0310 0.0310 0.0310 0.0310 0.0310 0.0310 0.0310 0.0310 0.0310 0.0310 0.0310 0.0310 0.0310 0.0310 0.0310 0.0310 0.0310 0.0310 0.0310 0.0310 0.0310 0.0310 0.0310 0.0310 0.0310 0.0310 0.0310 0.0310 0.0310 0.0310 0.0310 0.0310 0.0310 0.0310 0.0310 0.0310 0.0310 0.0310 0.0310 0.0310 0.0310 0.0310 0.0310 0.0310 0.0310 0.0310 0.0310 0.0310 0.0310 0.0310 0.0310 0.0310 0.0310 0.0310 0.0310 0.0310 0.0310 0.0310 0.0310 0.0310 0.0310 0.0310 0.0310 0.0310 0.0310 0.0310 0.0310 0.0310 0.0310 0.0310 0.0310 0.0310 0.0310 0.0310 0.0310 0.0310 0.0310 0.0310 0.0310 0.0310 0.0310 0.0310 0.0310 0.0310 0.0310 0.0310 0.0310 0.0310 0.0310 0.0310 0.0310 0.0310 0.0310 0.0310 0.0310 0.0310 0.0310 0.0310 0.0310 0.0310 0.0310 0.0310 0.0310 0.0310 0.0310 0.0310 0.0310 0.0310 0.0310 0.0310 0.0310 0.0310 0.0310 0.0310 0.0310 0.0310 0.0310 0.0310 0.0310 0.0310 0.0310 0.0310 0.0310 0.0310 0.0310 0.0310 0.0310 0.0310 0.0310 0.0310 0.0310 0.0310 0.0310 0.0310 0.0310 0.0310 0.0310 0.0310 0.0310 0.0310 0.0310 0.0310 0.0310 0.0310 0.0310 0.0310 0.0310 0.0310 0.0310 0.0310 0.0310 0.0310 0.0310 0.0310 0.0310 0.0310 0.0310 0.0310 0.0310 0.0310 0.0310 0.0310 0.0310 0.0310 0.0310 0.0310 0.0310 0.0310 0.0310 0.0310 0.0310 0.0310 0.0310 0.0310 0.0310 0.0310 0.0310 0.0310 0.031  | H2                                         |                                                                                   |                                             |                        |                         |                                           |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| L1 7,70 7,85 7,95 0,303 0,3091 0,3130 L2 142 142 142 142 1430 142 142 144 0,0512 0,0519 0,5569 10,5569 12 1,0569 11,180 11,200 11,200 0,0464 0,4724 0,4803 L14 11,30 1,48 1,66 0,0512 0,0583 0,0054 1,0106 L15 0,242 0,50 0,58 0,0050 0,0094 1,0106 L15 0,042 0,050 0,050 0,0094 1,0106 L15 0,050 0,050 0,0094 1,0106 L15 0,042 0,050 0,050 0,0094 1,0106 1,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,  | L1 7,70 7,85 7,95 0,3031 0,3091 0,3130 L2 142 142 142 142 1430 142 142 144 0,0 5512 0,5591 0,5599 12 1,5599 12 1,5599 12 1,5599 12 1,5599 12 1,5599 12 1,5599 12 1,5599 12 1,5599 12 1,5599 12 1,5599 12 1,5599 12 1,5599 12 1,5599 12 1,5599 12 1,5599 12 1,5599 12 1,5599 12 1,5599 12 1,5599 12 1,5599 12 1,5599 12 1,5599 12 1,5599 12 1,5599 12 1,5599 12 1,5599 12 1,5599 12 1,5599 12 1,5599 12 1,5599 12 1,5599 12 1,5599 12 1,5599 12 1,5599 12 1,5599 12 1,5599 12 1,5599 12 1,5599 12 1,5599 12 1,5599 12 1,5599 12 1,5599 12 1,5599 12 1,5599 12 1,5599 12 1,5599 12 1,5599 12 1,5599 12 1,5599 12 1,5599 12 1,5599 12 1,5599 12 1,5599 12 1,5599 12 1,5599 12 1,5599 12 1,5599 12 1,5599 12 1,5599 12 1,5599 12 1,5599 12 1,5599 12 1,5599 12 1,5599 12 1,5599 12 1,5599 12 1,5599 12 1,5599 12 1,5599 12 1,5599 12 1,5599 12 1,5599 12 1,5599 12 1,5599 12 1,5599 12 1,5599 12 1,5599 12 1,5599 12 1,5599 12 1,5599 12 1,5599 12 1,5599 12 1,5599 12 1,5599 12 1,5599 12 1,5599 12 1,5599 12 1,5599 12 1,5599 12 1,5599 12 1,5599 12 1,5599 12 1,5599 12 1,5599 12 1,5599 12 1,5599 12 1,5599 12 1,5599 12 1,5599 12 1,5599 12 1,5599 12 1,5599 12 1,5599 12 1,5599 12 1,5599 12 1,5599 12 1,5599 12 1,5599 12 1,5599 12 1,5599 12 1,5599 12 1,5599 12 1,5599 12 1,5599 12 1,5599 12 1,5599 12 1,5599 12 1,5599 12 1,5599 12 1,5599 12 1,5599 12 1,5599 12 1,5599 12 1,5599 12 1,5599 12 1,5599 12 1,5599 12 1,5599 12 1,5599 12 1,5599 12 1,5599 12 1,5599 12 1,5599 12 1,5599 12 1,5599 12 1,5599 12 1,5599 12 1,5599 12 1,5599 12 1,5599 12 1,5599 12 1,5599 12 1,5599 12 1,5599 12 1,5599 12 1,5599 12 1,5599 12 1,5599 12 1,5599 12 1,5599 12 1,5599 12 1,5599 12 1,5599 12 1,5599 12 1,5599 12 1,5599 12 1,5599 12 1,5599 12 1,5599 12 1,5599 12 1,5599 12 1,5599 12 1,5599 12 1,5599 12 1,5599 12 1,5599 12 1,5599 12 1,5599 12 1,5599 12 1,5599 12 1,5599 12 1,5599 12 1,5599 12 1,5599 12 1,5599 12 1,5599 12 1,5599 12 1,5599 12 1,5599 12 1,5599 12 1,5599 12 1,5599 12 1,5599 12 1,5599 12 1,5599 12 1,5599 12 1,5599 12 1,5599 12 1,5599 12 1,5599 12 1,5599 12 1,5599 12 1,5599 12 1,5599 12 1,559  | Н3                                         |                                                                                   |                                             |                        |                         |                                           |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 12   14.00   14.20   14.40   0.515   0.5591   0.5690   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1    | 12   14.00   14.20   14.20   0.512   0.5591   0.5690   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1   1.1    | L(**)                                      |                                                                                   |                                             |                        |                         |                                           |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                            |                                                                                   |                                             |                        |                         |                                           |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 1.30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1.30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                            |                                                                                   |                                             |                        |                         |                                           |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| List   2-42   2-50   2-58   0.0653   0.0964   0.1016                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Lis   2.42   2.50   2.58   0.0853   0.0984   0.0196   0.0197   0.0228                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                            |                                                                                   |                                             |                        |                         |                                           |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Les   0.42   0.50   0.58   0.0165   0.0991                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Les   0.42   0.50   0.58   0.0165   0.0197   0.0228                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                            |                                                                                   |                                             |                        |                         |                                           |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                            |                                                                                   |                                             |                        |                         |                                           |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Ni                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Ni                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                            |                                                                                   |                                             |                        |                         |                                           |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 273   2.83   2.95   0.1075   0.1114   0.1154     170   1.73   1.83   4.93   0.1862   0.1902   0.1941     181   0.50   0.40   0.45   0.0138   0.0157   0.0177     182   0.55   0.40   0.45   0.0138   0.0157   0.0177     183   0.55   0.40   0.45   0.0138   0.0157   0.0177     184   0.50   0.0000   0.00000   0.00000     170   0.000   0.0000   0.00000   0.00000     170   0.000   0.10   0.00001   0.00000     171   0.000   0.11   0.00001   0.00000     172   1.5°   18°   12°   15°   18°   12°   15°   18°     187   187   187   187   187   187   187     185   0.000   0.0000   0.0000   0.0000     185   0.000   0.0000   0.0000   0.0000     185   0.000   0.0000   0.0000   0.0000     185   0.000   0.0000   0.0000   0.0000     185   0.000   0.0000   0.0000   0.0000     185   0.000   0.0000   0.0000   0.0000   0.0000     185   0.000   0.0000   0.0000   0.0000   0.0000     185   0.000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.00000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000       | 273   2.83   2.95   0.1075   0.1114   0.1154                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | N                                          |                                                                                   | 2.20                                        |                        |                         | 0.0866                                    |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| P(*) 4.73 4.83 4.93 0.1982 0.1992 0.1941 R 1.70 0.00 0.00690 R1 0.030 0.40 0.45 0.0138 0.0157 0.0177 R2 0.35 0.40 0.45 0.0138 0.0157 0.0177 R3 0.35 0.40 0.45 0.0138 0.0157 0.0177 R4 0.50 0.40 0.45 0.0138 0.0157 0.0177 R4 0.50 0.40 0.45 0.0138 0.0157 0.0177 R4 0.50 0.40 0.45 0.0138 0.0157 0.0177 R5 0.35 0.40 0.45 0.0138 0.0157 0.0177 R6 0.0031 0.0031 0.0039 R6(*) 0.1 0.10 0.0031 0.0039 R6(*) 0.1 45 45 45 45 45 45 45 45 45 45 45 45 45                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | P(*) 4.73 4.83 4.93 0.1962 0.1962 0.1941 R 1.70 0.000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.000  | N1                                         |                                                                                   |                                             | 1.66                   |                         | 0.0583                                    | 0.0654 | Ro                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 1,70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1,70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | N2(*)                                      |                                                                                   |                                             |                        |                         |                                           |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| R1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | R1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                            | 4.73                                                                              |                                             | 4.93                   | 0.1862                  |                                           | 0.1941 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| R2   0.35                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | R2   0.35   0.40   0.45   0.0138   0.0157   0.0177   0.0177   R3   0.35   0.40   0.45   0.0188   0.0157   0.0177   0.0177   0.018   0.0039   0.018   0.018   0.018   0.018   0.018   0.018   0.018   0.018   0.018   0.018   0.018   0.018   0.018   0.018   0.018   0.018   0.018   0.018   0.018   0.018   0.018   0.018   0.018   0.018   0.018   0.018   0.018   0.018   0.018   0.018   0.018   0.018   0.018   0.018   0.018   0.018   0.018   0.018   0.018   0.018   0.018   0.018   0.018   0.018   0.018   0.018   0.018   0.018   0.018   0.018   0.018   0.018   0.018   0.018   0.018   0.018   0.018   0.018   0.018   0.018   0.018   0.018   0.018   0.018   0.018   0.018   0.018   0.018   0.018   0.018   0.018   0.018   0.018   0.018   0.018   0.018   0.018   0.018   0.018   0.018   0.018   0.018   0.018   0.018   0.018   0.018   0.018   0.018   0.018   0.018   0.018   0.018   0.018   0.018   0.018   0.018   0.018   0.018   0.018   0.018   0.018   0.018   0.018   0.018   0.018   0.018   0.018   0.018   0.018   0.018   0.018   0.018   0.018   0.018   0.018   0.018   0.018   0.018   0.018   0.018   0.018   0.018   0.018   0.018   0.018   0.018   0.018   0.018   0.018   0.018   0.018   0.018   0.018   0.018   0.018   0.018   0.018   0.018   0.018   0.018   0.018   0.018   0.018   0.018   0.018   0.018   0.018   0.018   0.018   0.018   0.018   0.018   0.018   0.018   0.018   0.018   0.018   0.018   0.018   0.018   0.018   0.018   0.018   0.018   0.018   0.018   0.018   0.018   0.018   0.018   0.018   0.018   0.018   0.018   0.018   0.018   0.018   0.018   0.018   0.018   0.018   0.018   0.018   0.018   0.018   0.018   0.018   0.018   0.018   0.018   0.018   0.018   0.018   0.018   0.018   0.018   0.018   0.018   0.018   0.018   0.018   0.018   0.018   0.018   0.018   0.018   0.018   0.018   0.018   0.018   0.018   0.018   0.018   0.018   0.018   0.018   0.018   0.018   0.018   0.018   0.018   0.018   0.018   0.018   0.018   0.018   0.018   0.018   0.018   0.018   0.018   0.018   0.018   0.018   0.018   0.018   0.018   0.018      |                                            |                                                                                   |                                             |                        |                         |                                           |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| R3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | R3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                            | 0.05                                                                              |                                             | 0.45                   | 0.0100                  |                                           | 0.0177 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| R4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | R4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                            |                                                                                   |                                             |                        |                         |                                           |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| T(*)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | T(*)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                            | 0.33                                                                              |                                             | 0.45                   | 0.0136                  |                                           | 0.0177 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| No.     | No.     |                                            | -0.08                                                                             | 0.00                                        | 0.10                   | -0.0031                 | 0.0107                                    | 0.0039 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| V1   3   3   7   3   5   7   7   3   5   7   7   7   3   5   7   7   7   7   7   7   7   7   7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | V1   3   3   7   3   5   7   7   3   5   7   7   7   3   5   7   7   7   7   7   7   7   7   7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | aaa(*)                                     |                                                                                   | 0.1                                         |                        |                         | 0.0039                                    |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| V2 3 5 7 3 5 7 8 15 18 12 15 18 12 15 18 18 12 15 18 18 12 15 18 18 12 15 18 18 12 15 18 18 12 15 18 18 18 18 18 18 18 18 18 18 18 18 18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | V2 3 5 7 3 5 7 8 18 12 15 18 12 15 18 12 15 18 18 12 15 18 18 12 15 18 18 12 15 18 18 12 15 18 18 12 15 18 18 12 15 18 18 18 18 18 18 18 18 18 18 18 18 18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ٧                                          |                                                                                   | 45°                                         |                        |                         | 45°                                       |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| V3   12'   15'   18'   12'   15'   18'   12'   15'   18'   12'   15'   18'   12'   15'   18'   12'   15'   18'   12'   15'   18'   12'   15'   18'   12'   15'   18'   12'   15'   18'   12'   15'   18'   12'   15'   18'   12'   15'   18'   12'   15'   18'   12'   15'   18'   12'   15'   18'   12'   15'   18'   12'   15'   18'   12'   15'   18'   12'   15'   18'   18'   12'   15'   18'   18'   12'   15'   18'   18'   12'   15'   18'   18'   12'   15'   18'   18'   18'   18'   18'   18'   18'   18'   18'   18'   18'   18'   18'   18'   18'   18'   18'   18'   18'   18'   18'   18'   18'   18'   18'   18'   18'   18'   18'   18'   18'   18'   18'   18'   18'   18'   18'   18'   18'   18'   18'   18'   18'   18'   18'   18'   18'   18'   18'   18'   18'   18'   18'   18'   18'   18'   18'   18'   18'   18'   18'   18'   18'   18'   18'   18'   18'   18'   18'   18'   18'   18'   18'   18'   18'   18'   18'   18'   18'   18'   18'   18'   18'   18'   18'   18'   18'   18'   18'   18'   18'   18'   18'   18'   18'   18'   18'   18'   18'   18'   18'   18'   18'   18'   18'   18'   18'   18'   18'   18'   18'   18'   18'   18'   18'   18'   18'   18'   18'   18'   18'   18'   18'   18'   18'   18'   18'   18'   18'   18'   18'   18'   18'   18'   18'   18'   18'   18'   18'   18'   18'   18'   18'   18'   18'   18'   18'   18'   18'   18'   18'   18'   18'   18'   18'   18'   18'   18'   18'   18'   18'   18'   18'   18'   18'   18'   18'   18'   18'   18'   18'   18'   18'   18'   18'   18'   18'   18'   18'   18'   18'   18'   18'   18'   18'   18'   18'   18'   18'   18'   18'   18'   18'   18'   18'   18'   18'   18'   18'   18'   18'   18'   18'   18'   18'   18'   18'   18'   18'   18'   18'   18'   18'   18'   18'   18'   18'   18'   18'   18'   18'   18'   18'   18'   18'   18'   18'   18'   18'   18'   18'   18'   18'   18'   18'   18'   18'   18'   18'   18'   18'   18'   18'   18'   18'   18'   18'   18'   18'   18'   18'   18'   18'   18'   18'   18'   18'   18'   18'   18'   18'   18'   18'   18'   18'      | V3   12'   15'   18'   12'   15'   18'   12'   15'   18'   12'   15'   18'   12'   15'   18'   12'   15'   18'   12'   15'   18'   12'   15'   18'   12'   15'   18'   12'   15'   18'   12'   15'   18'   12'   15'   18'   12'   15'   18'   12'   15'   18'   12'   15'   18'   12'   15'   18'   12'   15'   18'   12'   15'   18'   12'   15'   18'   12'   15'   18'   18'   12'   15'   18'   18'   12'   15'   18'   18'   12'   15'   18'   18'   12'   15'   18'   18'   18'   18'   18'   18'   18'   18'   18'   18'   18'   18'   18'   18'   18'   18'   18'   18'   18'   18'   18'   18'   18'   18'   18'   18'   18'   18'   18'   18'   18'   18'   18'   18'   18'   18'   18'   18'   18'   18'   18'   18'   18'   18'   18'   18'   18'   18'   18'   18'   18'   18'   18'   18'   18'   18'   18'   18'   18'   18'   18'   18'   18'   18'   18'   18'   18'   18'   18'   18'   18'   18'   18'   18'   18'   18'   18'   18'   18'   18'   18'   18'   18'   18'   18'   18'   18'   18'   18'   18'   18'   18'   18'   18'   18'   18'   18'   18'   18'   18'   18'   18'   18'   18'   18'   18'   18'   18'   18'   18'   18'   18'   18'   18'   18'   18'   18'   18'   18'   18'   18'   18'   18'   18'   18'   18'   18'   18'   18'   18'   18'   18'   18'   18'   18'   18'   18'   18'   18'   18'   18'   18'   18'   18'   18'   18'   18'   18'   18'   18'   18'   18'   18'   18'   18'   18'   18'   18'   18'   18'   18'   18'   18'   18'   18'   18'   18'   18'   18'   18'   18'   18'   18'   18'   18'   18'   18'   18'   18'   18'   18'   18'   18'   18'   18'   18'   18'   18'   18'   18'   18'   18'   18'   18'   18'   18'   18'   18'   18'   18'   18'   18'   18'   18'   18'   18'   18'   18'   18'   18'   18'   18'   18'   18'   18'   18'   18'   18'   18'   18'   18'   18'   18'   18'   18'   18'   18'   18'   18'   18'   18'   18'   18'   18'   18'   18'   18'   18'   18'   18'   18'   18'   18'   18'   18'   18'   18'   18'   18'   18'   18'   18'   18'   18'   18'   18'   18'   18'   18'   18'   18'   18'   18'   18'   18'      |                                            |                                                                                   | 3°                                          |                        |                         | 3°                                        |        | Eleviwett97                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| V\$   20'   20'   20'   20'   20'   20'   20'   20'   20'   20'   20'   20'   20'   20'   20'   20'   20'   20'   20'   20'   20'   20'   20'   20'   20'   20'   20'   20'   20'   20'   20'   20'   20'   20'   20'   20'   20'   20'   20'   20'   20'   20'   20'   20'   20'   20'   20'   20'   20'   20'   20'   20'   20'   20'   20'   20'   20'   20'   20'   20'   20'   20'   20'   20'   20'   20'   20'   20'   20'   20'   20'   20'   20'   20'   20'   20'   20'   20'   20'   20'   20'   20'   20'   20'   20'   20'   20'   20'   20'   20'   20'   20'   20'   20'   20'   20'   20'   20'   20'   20'   20'   20'   20'   20'   20'   20'   20'   20'   20'   20'   20'   20'   20'   20'   20'   20'   20'   20'   20'   20'   20'   20'   20'   20'   20'   20'   20'   20'   20'   20'   20'   20'   20'   20'   20'   20'   20'   20'   20'   20'   20'   20'   20'   20'   20'   20'   20'   20'   20'   20'   20'   20'   20'   20'   20'   20'   20'   20'   20'   20'   20'   20'   20'   20'   20'   20'   20'   20'   20'   20'   20'   20'   20'   20'   20'   20'   20'   20'   20'   20'   20'   20'   20'   20'   20'   20'   20'   20'   20'   20'   20'   20'   20'   20'   20'   20'   20'   20'   20'   20'   20'   20'   20'   20'   20'   20'   20'   20'   20'   20'   20'   20'   20'   20'   20'   20'   20'   20'   20'   20'   20'   20'   20'   20'   20'   20'   20'   20'   20'   20'   20'   20'   20'   20'   20'   20'   20'   20'   20'   20'   20'   20'   20'   20'   20'   20'   20'   20'   20'   20'   20'   20'   20'   20'   20'   20'   20'   20'   20'   20'   20'   20'   20'   20'   20'   20'   20'   20'   20'   20'   20'   20'   20'   20'   20'   20'   20'   20'   20'   20'   20'   20'   20'   20'   20'   20'   20'   20'   20'   20'   20'   20'   20'   20'   20'   20'   20'   20'   20'   20'   20'   20'   20'   20'   20'   20'   20'   20'   20'   20'   20'   20'   20'   20'   20'   20'   20'   20'   20'   20'   20'   20'   20'   20'   20'   20'   20'   20'   20'   20'   20'   20'   20'   20'   20'   20'   20'   20'   20'   20'   2 | V\$   20'   20'   20'   20'   20'   20'   20'   20'   20'   20'   20'   20'   20'   20'   20'   20'   20'   20'   20'   20'   20'   20'   20'   20'   20'   20'   20'   20'   20'   20'   20'   20'   20'   20'   20'   20'   20'   20'   20'   20'   20'   20'   20'   20'   20'   20'   20'   20'   20'   20'   20'   20'   20'   20'   20'   20'   20'   20'   20'   20'   20'   20'   20'   20'   20'   20'   20'   20'   20'   20'   20'   20'   20'   20'   20'   20'   20'   20'   20'   20'   20'   20'   20'   20'   20'   20'   20'   20'   20'   20'   20'   20'   20'   20'   20'   20'   20'   20'   20'   20'   20'   20'   20'   20'   20'   20'   20'   20'   20'   20'   20'   20'   20'   20'   20'   20'   20'   20'   20'   20'   20'   20'   20'   20'   20'   20'   20'   20'   20'   20'   20'   20'   20'   20'   20'   20'   20'   20'   20'   20'   20'   20'   20'   20'   20'   20'   20'   20'   20'   20'   20'   20'   20'   20'   20'   20'   20'   20'   20'   20'   20'   20'   20'   20'   20'   20'   20'   20'   20'   20'   20'   20'   20'   20'   20'   20'   20'   20'   20'   20'   20'   20'   20'   20'   20'   20'   20'   20'   20'   20'   20'   20'   20'   20'   20'   20'   20'   20'   20'   20'   20'   20'   20'   20'   20'   20'   20'   20'   20'   20'   20'   20'   20'   20'   20'   20'   20'   20'   20'   20'   20'   20'   20'   20'   20'   20'   20'   20'   20'   20'   20'   20'   20'   20'   20'   20'   20'   20'   20'   20'   20'   20'   20'   20'   20'   20'   20'   20'   20'   20'   20'   20'   20'   20'   20'   20'   20'   20'   20'   20'   20'   20'   20'   20'   20'   20'   20'   20'   20'   20'   20'   20'   20'   20'   20'   20'   20'   20'   20'   20'   20'   20'   20'   20'   20'   20'   20'   20'   20'   20'   20'   20'   20'   20'   20'   20'   20'   20'   20'   20'   20'   20'   20'   20'   20'   20'   20'   20'   20'   20'   20'   20'   20'   20'   20'   20'   20'   20'   20'   20'   20'   20'   20'   20'   20'   20'   20'   20'   20'   20'   20'   20'   20'   20'   20'   20'   20'   20'   20'   20'   2 | V2                                         |                                                                                   |                                             |                        | 3°                      | 5°                                        | 7°     | riexiwatt2/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Solden parameters  Dimension "P" doesn't include dam-bar protrusions.  Dimensions "H" and "L" include mold flash or protrusions.  Detail "A" Rotated 90" CCW  AND PLANE SEATING PLANE  SEATING PLANE  SEATING PLANE  SEATING PLANE  SEATING PLANE  SEATING PLANE  SEATING PLANE  SEATING PLANE  SEATING PLANE  SEATING PLANE  SEATING PLANE  SEATING PLANE  SEATING PLANE  SEATING PLANE  SEATING PLANE  SEATING PLANE  SEATING PLANE  SEATING PLANE  SEATING PLANE  SEATING PLANE  SEATING PLANE  SEATING PLANE  SEATING PLANE  SEATING PLANE  SEATING PLANE  SEATING PLANE  SEATING PLANE  SEATING PLANE  SEATING PLANE  SEATING PLANE  SEATING PLANE  SEATING PLANE  SEATING PLANE  SEATING PLANE  SEATING PLANE  SEATING PLANE  SEATING PLANE  SEATING PLANE  SEATING PLANE  SEATING PLANE  SEATING PLANE  SEATING PLANE  SEATING PLANE  SEATING PLANE  SEATING PLANE  SEATING PLANE  SEATING PLANE  SEATING PLANE  SEATING PLANE  SEATING PLANE  SEATING PLANE  SEATING PLANE  SEATING PLANE  SEATING PLANE  SEATING PLANE  SEATING PLANE  SEATING PLANE  SEATING PLANE  SEATING PLANE  SEATING PLANE  SEATING PLANE  SEATING PLANE  SEATING PLANE  SEATING PLANE  SEATING PLANE  SEATING PLANE  SEATING PLANE  SEATING PLANE  SEATING PLANE  SEATING PLANE  SEATING PLANE  SEATING PLANE  SEATING PLANE  SEATING PLANE  SEATING PLANE  SEATING PLANE  SEATING PLANE  SEATING PLANE  SEATING PLANE  SEATING PLANE  SEATING PLANE  SEATING PLANE  SEATING PLANE  SEATING PLANE  SEATING PLANE  SEATING PLANE  SEATING PLANE  SEATING PLANE  SEATING PLANE  SEATING PLANE  SEATING PLANE  SEATING PLANE  SEATING PLANE  SEATING PLANE  SEATING PLANE  SEATING PLANE  SEATING PLANE  SEATING PLANE  SEATING PLANE  SEATING PLANE  SEATING PLANE  SEATING PLANE  SEATING PLANE  SEATING PLANE  SEATING PLANE  SEATING PLANE  SEATING PLANE  SEATING PLANE  SEATING PLANE  SEATING PLANE  SEATING PLANE  SEATING PLANE  SEATING PLANE  SEATING PLANE  SEATING PLANE  SEATING PLANE  SEATING PLANE  SEATING PLANE  SEATING PLANE  SEATING PLANE  SEATING PLANE  SEATING PLANE  SEATING PLANE  SEATING PLANE  SEATING PLANE  SEA  | VS 20' 20' 20' 30' 30' 30' 30' 30' 30' 30' 30' 30' 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                            | 12°                                                                               |                                             |                        |                         |                                           |        | (ONAD)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Solder parameters  Dimension "F desen't include dam-bar protrusion.  Dimensions "H" and "L" include mold flash or protrusions.  Default "A"  Rotated 90' CCW  SEATING PLANE  SAME  Lead#277  Lead#17  Sae defailt "A"  Sae defailt "A"                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Solder parameters  Dimension "F" desen't include dam-bar protrusion.  Dimensions "H" and "L" include mold flash or protrusions.  Defail "A"  Rotated 90' CCW  SEATING PLANE  SAN DIMENSION SIND SAN DIMENSI  | 1//                                        | 12                                                                                |                                             | 18°                    | 12°                     |                                           | 18°    | (SIVID)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Dimensions "P" doesn't include dam-bar protrusions.  Detail "A" Rotated 90' CCW  AND PLANE  SEATING PLANE  Lead#27  Lead#27  See detail "A"  See detail "A"                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Dimensions "F" doesn't include dam-bar protrusions.  Defall "A" Rotated 90" CCW  Rotated 90" CCW  AND PLANE  SATING PLANE  Lead#27  Lead#27  Sae defall "A"  Sae defall "A"                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                            | 12                                                                                | 5°                                          | 18°                    | 12°                     | 5°                                        | 18°    | (SMD)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Detail "A" Rotated 90' CCW Rotated 90' CCW  AND PLANE  SEATING PLA  | Defall "A"  Rotated 90' CCW  AND PLANE STATING PLANE  N2  N2  N2  N2  N2  N2  N2  N2  N2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | V5<br>) Golden                             | parameters                                                                        | 5°<br>20°                                   |                        |                         | 5°                                        | 18°    | (SMD)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Rotated 90° CCW  WS  AUGUST PLANE  SEATING PLANE  S  | Rotated 90° CCW  AND SEATING PLANE    | V5<br>) Golden<br>*) – Dime                | parameters                                                                        | 5°<br>20°<br>esn't include                  | dam-bar pro            | otrusion.               | 5°<br>20°                                 | 18°    | (SMD)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| AND SEATING PLANE  SE  | AUGE PLANE SEATING PLANE  NI  NI  Lead#1  E See detail "A"                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | V5<br>) Golden<br>**) – Dime               | parameters                                                                        | 5°<br>20°<br>esn't include                  | dam-bar pro            | otrusion.               | 5°<br>20°                                 | 18°    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| AND SEATING PLANE  SE  | AUGE PLANE SEATING PLANE  NI  NI  Lead#1  E See detail "A"                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | V5<br>) Golden<br>*) – Dime                | parameters                                                                        | 5°<br>20°<br>esn't include                  | dam-bar pro            | otrusion.               | 5°<br>20°                                 | 18°    | Detail "A"                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| H2  H2  N2  N2  See detail "A"                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | H2  N2  N2  N2  See detail "A"                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | V5<br>) Golden<br>*) – Dime                | parameters                                                                        | 5°<br>20°<br>esn't include                  | dam-bar pro            | otrusion.               | 5°<br>20°                                 | 18*    | V4 Detail "A" Rotated 90° CCW                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| H2  H2  N2  N2  See detail "A"                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | H2  N2  N2  N2  See detail "A"                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | V5<br>) Golden<br>*) – Dime                | parameters                                                                        | 5°<br>20°<br>esn't include                  | dam-bar pro            | otrusion.               | 5°<br>20°                                 | 18*    | Detail "A"  V4   Rotated 90° CCW                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| H2  H2  N2  N2  See detail "A"                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | H2  N2  N2  N2  See detail "A"                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | V5<br>) Golden<br>*) – Dime                | parameters                                                                        | 5°<br>20°<br>esn't include                  | dam-bar pro            | otrusion.               | 5°<br>20°                                 | 18"    | V4 Detail "A" Rotated 90' CCW                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| H2  N2  N2  N2  N2  See detail "A"                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | H2  N2  N2  N2  See detail "A"                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | V5<br>) Golden<br>*) – Dime                | parameters<br>nsion "F" doe<br>ensions "H" a                                      | 5°<br>20°<br>esn't include<br>nd "L" includ | dam-bar pro            | otrusion.               | 5°<br>20°                                 | 18*    | V4  Detail "A"  Rotated 90° CCW  LS  V3  GAUGE PLANE SEATING PLANE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| H2  N2  N2  N2  N2  See detail "A"                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | H2  N2  N2  N2  See detail "A"                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | V5<br>) Golden<br>*) – Dime                | parameters<br>nsion "F" doe<br>ensions "H" a                                      | 5°<br>20°<br>esn't include<br>nd "L" includ | dam-bar pro            | otrusion.               | 5°<br>20°                                 | 18*    | V4  Detail "A"  Rotated 90° CCW  LS  V3  GAUGE PLANE SEATING PLANE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Lead#37 F Sae detail "A"                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Lead#377   Lead#1   E See detail "A"                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | V5<br>) Golden<br>*) – Dime                | parameters<br>nsion "F" doe<br>ensions "H" a                                      | 5°<br>20°<br>esn't include<br>nd "L" includ | dam-bar pro            | otrusion.               | 5°<br>20°                                 | 18*    | V4  Detail "A" Rolated 90° CCW  L5  V4  QAUGE PLANE SEATING PLANE  STATING PLANE  STATING PLANE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Lead#17   Lead#1   E See detail "A"                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Lead#37   Lead#1   E Sae defall "A"                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | V5<br>Golden<br>) – Dime                   | parameters<br>nsion "F" doe<br>ensions "H" a                                      | 5°<br>20°<br>esn't include<br>nd "L" includ | dam-bar pro            | otrusion.               | 5°<br>20°                                 | 18'    | V4  Detail "A" Rolated 90° CCW  L5  V4  QAUGE PLANE SEATING PLANE  STATING PLANE  STATING PLANE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Lead#17   Lead#1   E See detail "A"                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Lead#37   Lead#1   E Sae defall "A"                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | V5<br>Golden<br>) – Dime                   | parameters<br>nsion "F" doe<br>ensions "H" a                                      | 5°<br>20°<br>esn't include<br>nd "L" includ | dam-bar pro            | otrusion.               | 5° 20° 20°                                |        | V4  Detail "A" Rolated 90° CCW  L5  V4  QAUGE PLANE SEATING PLANE  STATING PLANE  STATING PLANE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Lead#177   Lead#1   E Sae detail "A"                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Lead#277   Lead#1 "A"   Sae detail "A"                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | V5<br>Golden<br>) – Dime                   | parameters<br>nsion "F" doe<br>ensions "H" a                                      | 5°<br>20°<br>esn't include<br>nd "L" includ | dam-bar pro            | otrusion.               | 5° 20° 20°                                |        | V4  Detail "A" Rolated 90° CCW  L5  V4  QAUGE PLANE SEATING PLANE SI  N2  P                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Lead#177   Lead#1   E Sae detail "A"                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Lead#277   Lead#1 "A"   Sae detail "A"                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | V5<br>) Golden<br>*) – Dime<br>– Dime      | parameters<br>nsion "F" doe<br>ensions "H" a                                      | 5°<br>20°<br>esn't include<br>nd "L" includ | dam-bar pro            | otrusion.               | 5° 20° 20°                                |        | V4  Detail "A" Rolated 90° CCW  L5  V4  QAUGE PLANE SEATING PLANE SI  N2  P                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Lead#177   Lead#1   E Sae detail "A"                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Lead#277   Lead#1 "A"   Sae detail "A"                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | V5<br>) Golden<br>*) – Dime<br>– Dime      | parameters<br>nsion "F" doe<br>ensions "H" a                                      | 5°<br>20°<br>esn't include<br>nd "L" includ | dam-bar pro            | otrusion.               | 5° 20° 20°                                |        | V4  Detail "A" Rolated 90° CCW  L5  V4  QAUGE PLANE SEATING PLANE SI  N2  P                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Lead#177   Lead#1   E Sae detail "A"                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Lead#277   Lead#1 "A"   Sae detail "A"                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | V5<br>) Golden<br>*) – Dime<br>– Dime      | parameters<br>nsion "F" doe<br>ensions "H" a                                      | 5°<br>20°<br>esn't include<br>nd "L" includ | dam-bar pro            | otrusion.               | 5° 20° 20°                                |        | V4  Detail "A" Rolated 90° CCW  L5  V4  QAUGE PLANE SEATING PLANE SI  N2  P                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Lead#177   Lead#1   E Sae detail "A"                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Lead#277   Lead#1 "A"   Sae detail "A"                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | V5<br>Golden<br>) – Dime<br>– Dime         | parameters<br>nsion "F" doe<br>ensions "H" a                                      | 5°<br>20°<br>esn't include<br>nd "L" includ | dam-bar pro            | otrusion.               | 5° 20° 20°                                |        | Detail "A" Rotated 90° CCW  LS  V4  QAUGE PLANE SEATING PLANE  N2  N2  P  V4  S  S  S  S  S  S  S  S  S  S  S  S  S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Lead#37   Lead#1   E See detail "A"                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Lead#37   Lead#1   E Sae detail "A"                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | V5<br>Golden<br>) – Dime<br>– Dime         | parameters<br>nsion "F" doe<br>ensions "H" a                                      | 5°<br>20°<br>esn't include<br>nd "L" includ | dam-bar pro            | otrusion.               | 5° 20° 20°                                |        | Detail "A" Rotated 90° CCW  LS  V4  QAUGE PLANE SEATING PLANE  N2  N2  P  V4  S  S  S  S  S  S  S  S  S  S  S  S  S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Lead#27   Lead#1   E Sae detail "A"                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Lead#27   Lead#1   E Sae detail "A"                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | V5<br>) Golden<br>*) – Dime<br>– Dime      | parameters<br>nsion "F" doe<br>ensions "H" a                                      | 5°<br>20°<br>esn't include<br>nd "L" includ | dam-bar pro            | otrusion.               | 5° 20° 20°                                |        | V4  Detail "A"  Rotated 90° CCW  L5  V4  QAUGE PLANE  SEATING PLANE  N2  P  SEATING PLANE  SEATI |
| Lead#27   Lead#1   E Sae detail "A"                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Lead#27   Lead#1   E Sae detail "A"                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | V5<br>) Golden<br>*) – Dime<br>– Dime      | parameters<br>nsion "F" doe<br>ensions "H" a                                      | 5°<br>20°<br>esn't include<br>nd "L" includ | dam-bar pro            | otrusion.               | 5° 20° 20°                                |        | V4  Detail "A"  Rotated 90° CCW  L5  V4  QAUGE PLANE  SEATING PLANE  N2  P  SEATING PLANE  SEATI |
| Lead#37                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Lead#377                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | V5<br>) Golden<br>*) – Dime<br>– Dime      | parameters<br>nsion "F" doe<br>ensions "H" a                                      | 5°<br>20°<br>esn't include<br>nd "L" includ | dam-bar pro            | otrusion.               | 5° 20° 20°                                |        | V4  Detail "A"  Rotated 90° CCW  L5  V4  QAUGE PLANE  SEATING PLANE  N2  P  SEATING PLANE  SEATI |
| Lead#37                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Lead#377                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | V5<br>) Golden<br>*) – Dime<br>– Dime      | parameters<br>nsion "F" doe<br>ensions "H" a                                      | 5°<br>20°<br>esn't include<br>nd "L" includ | dam-bar pro            | otrusion.               | 5° 20° 20°                                |        | V4  Detail "A"  Rotated 90° CCW  L5  V4  QAUGE PLANE  SEATING PLANE  N2  P  SEATING PLANE  SEATI |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | V5<br>) Golden<br>*) – Dime<br>– Dime      | parameters assign FF doe nations The does not | 5° 20° 20° 20° 20° 20° 20° 20° 20° 20° 20   | dam-bar produced flash | otrusion. or protrusio  | 5° 20° ons.                               |        | V4  Detail "A"  Rotated 90° CCW  L5  V4  QAUGE PLANE  SEATING PLANE  N2  P  SEATING PLANE  SEATI |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | V5<br>) Golden<br>*) – Dime<br>– Dime      | parameters assign "F" doe not                 | 5° 20° 20° 20° 20° 20° 20° 20° 20° 20° 20   | dam-bar pro-           | brusion. n or protrusio | 5° 20° 20° 20° 20° 20° 20° 20° 20° 20° 20 |        | Detail "A" Rotated 90° CCW  15  V4  1  S  S  A  A  A  A  A  A  A  A  A  A  A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | V5<br>) Golden<br>*) – Dime<br>– Dime      | parameters assign "F" doe not                 | 5° 20° 20° 20° 20° 20° 20° 20° 20° 20° 20   | dam-bar pro-           | brusion. n or protrusio | 5° 20° ons.                               |        | Detail "A" Rotated 90° CCW  15  V4  1  S  S  A  A  A  A  A  A  A  A  A  A  A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| G2 r                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | G2 r                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | V5<br>) Golden (*) - Dimer (*) - Dimer (*) | parameters assign *F' doc maions *H' a                                            | 5° 20° 20° 20° 20° 20° 20° 20° 20° 20° 20   | dam-bar pro-           | brusion. n or protrusio | 5° 20° ons.                               |        | Detail "A" Rotated 90' CCW  LS  V4  A  ROTATE  |
| G2 r                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | G2 r                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | V5<br>) Golden (*) - Dime                  | parameters assign *F' doc maions *H' a                                            | 5° 20° 20° 20° 20° 20° 20° 20° 20° 20° 20   | dam-bar pro-           | portrusion.             | 5° 20° ons.                               |        | Datail "A" Rotated 90° CCW  15  V4  15  GAUSE PLANE SEATING PLANE SEATIN |
| G1 7000700 F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | r                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | V5<br>) Golden (*) - Dimer (*) - Dimer (*) | parameters assign *F' doc maions *H' a                                            | 5° 20° 20° 20° 20° 20° 20° 20° 20° 20° 20   | dam-bar pro-           | portrusion.             | 5° 20° 20° 20° 20° 20° 20° 20° 20° 20° 20 |        | Datail "A" Rotated 90° CCW  15 V4  15 V4  15 V3  GAUSE PLANE SEATING PLA |
| /993/33 E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | V5<br>) Golden<br>) - Dime<br>- Dime       | parameters assign *F' doc maions *H' a                                            | 5° 20° 20° 20° 20° 20° 20° 20° 20° 20° 20   | dam-bar pro-           | portrusion.             | 5° 20° 20° 20° 20° 20° 20° 20° 20° 20° 20 |        | Datail "A" Rotated 90° CCW  15 V4  15 V4  15 V3  GAUSE PLANE SEATING PLA |

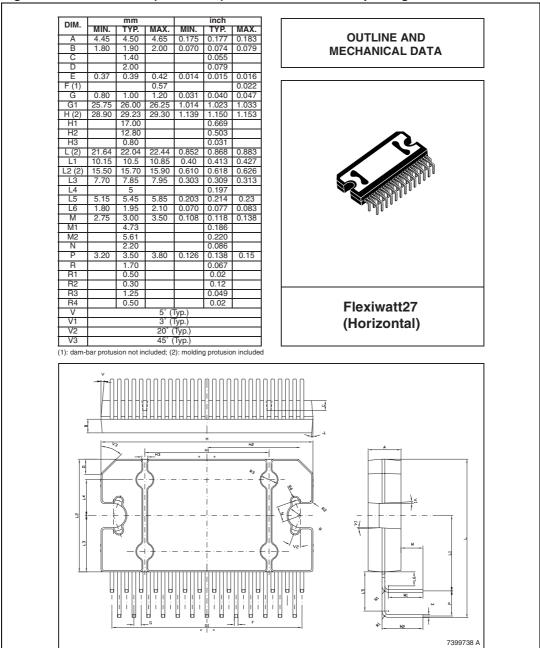

Package information TDA7563A

Figure 34. Flexiwatt27 (vertical) mechanical data and package dimensions

| MIN.           A         4.45           B         1.80           C         0.75 |                       |                  | inch           |          |                         |
|---------------------------------------------------------------------------------|-----------------------|------------------|----------------|----------|-------------------------|
| B 1.80<br>C D 0.75                                                              | 1 4 5 0 1 4 6 5       |                  | TYP.           | MAX.     | OUTLINE AND             |
| C D 0.75                                                                        |                       | 0.175            | 0.177          | 0.183    |                         |
| D 0.75                                                                          | 1.90 2.00<br>1.40     | 0.070            | 0.074          | 0.079    | MECHANICAL DATA         |
|                                                                                 |                       | 0.029            | 0.055          | 0.041    |                         |
| E 0.37                                                                          |                       | 0.023            | 0.015          | 0.016    |                         |
| (1)                                                                             | 0.57                  | 0.011            | 0.0.0          | 0.022    |                         |
| G 0.80                                                                          |                       | 0.031            | 0.040          | 0.047    |                         |
| G1 25.75                                                                        |                       |                  | 1.023          | 1.033    |                         |
| H(2) 28.90                                                                      |                       | 1.139            | 1.150          | 1.153    |                         |
| H1                                                                              | 17.00                 |                  | 0.669          |          |                         |
| H2                                                                              | 12.80                 | 1                | 0.503          |          |                         |
| H3<br>. (2) 22.07                                                               | 0.80<br>7 22.47 22.87 | 0.869            | 0.031<br>0.884 | 0.904    |                         |
| L1 18.57                                                                        |                       | 0.731            | 0.747          | 0.762    |                         |
| .2 (2) 15.50                                                                    |                       |                  | 0.618          | 0.626    |                         |
| L3 7.70                                                                         |                       | 0.303            | 0.309          | 0.313    |                         |
| L4                                                                              | 5                     | 1                | 0.197          |          |                         |
| L5                                                                              | 3.5                   |                  | 0.138          |          |                         |
| M 3.70                                                                          |                       | 0.145            | 0.157          | 0.169    |                         |
| M1 3.60                                                                         |                       | 0.142            | 0.157          | 0.173    |                         |
| N                                                                               | 2.20                  | 1                | 0.086          | <u> </u> |                         |
| O<br>R                                                                          | 1.70                  | +                | 0.079          |          |                         |
| R1                                                                              | 0.5                   | +                | 0.007          |          |                         |
| R2                                                                              | 0.3                   | 1                | 0.12           |          |                         |
| R3                                                                              | 1.25                  |                  | 0.049          |          |                         |
| R4                                                                              | 0.50                  |                  | 0.019          |          |                         |
| V                                                                               |                       | Тур.)            |                |          | Flexiwatt27 (vertical)  |
| V1                                                                              | 3°                    | (Typ.)           |                |          | i ichiwattzi (veiticai) |
| V2<br>V3                                                                        |                       | (Typ.)<br>(Typ.) |                |          |                         |
|                                                                                 | otusion not included  | (1γρ.)           |                |          |                         |
|                                                                                 | tusion included       |                  |                |          |                         |
| S1 51 51 51 51 51 51 51 51 51 51 51 51 51                                       | V3 V3                 | _ H3             | H<br>H1        | H2 R3 \  | R2 L L1 V1              |

TDA7563A Package information

Figure 35. Flexiwatt27 (horizontal) mechanical data and package dimensions



Revision history TDA7563A

## 11 Revision history

Table 12. Document revision history

| Date        | Revision | Changes          |
|-------------|----------|------------------|
| 07-Feb-2008 | 1        | Initial release. |

#### Please Read Carefully:

Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice.

All ST products are sold pursuant to ST's terms and conditions of sale.

Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein.

UNLESS OTHERWISE SET FORTH IN ST'S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

UNLESS EXPRESSLY APPROVED IN WRITING BY AN AUTHORIZED ST REPRESENTATIVE, ST PRODUCTS ARE NOT RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY, DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER'S OWN RISK.

Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST.

ST and the ST logo are trademarks or registered trademarks of ST in various countries.

Information in this document supersedes and replaces all information previously supplied.

The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.

© 2008 STMicroelectronics - All rights reserved

STMicroelectronics group of companies

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan - Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America

www.st.com

