TOSHIBA CMOS DIGITAL INTEGRATED CIRCUIT SILICON MONOLITHIC

TC7SH86F, TC7SH86FU

EXCLUSIVE OR GATE

The TC7SH86 is an advanced high speed CMOS EXCLUSIVE OR GATE fabricated with silicon gate CMOS technology.

It achieves the high speed operation similar to equivalent Bipolar Schottky TTL while maintaining the CMOS low power dissipation.

The internal circuit is includes on output buffer, which provide high noise immunity and stable output. An input protection circuit ensures that 0V to 7V can be applied to the input pins without regard to the supply voltage. This device can be used to interface 5V to 3V system and two supply system such as battery back up. This circuit prevents device destruction due to mismatched supply and input voltages.

FEATURES

- High Speed $\cdots t_{pd} = 4.8 \text{ ns} (Typ.)$ at $V_{CC} = 5V$
- Low Power Dissipation $\dots I_{CC} = 2\mu A$ (Max.) at Ta = 25°C
- High Noise Immunity $\cdots V_{NIH} = V_{NIL} = 28\% V_{CC}$ (Min.)
- Power Down Protection is provided on all inputs.
- Balanced Propagation Delays tpLH=tpHL
- Wide Operation Voltage Range \cdots V_{CC} (opr) = 2V~5.5V

MAXIMUM RATINGS

CHARACTERISTIC	SYMBOL	RATING	UNIT
Supply Voltage Range	Vcc	-0.5~7.0	V
DC Input Voltage	VIN	-0.5~7.0	V
DC Output Voltage	Vout	-0.5~V _{CC} +0.5	V
Input Diode Current	lικ	- 20	mA
Output Diode Current	Іок	± 20	mA
DC Output Current	Ιουτ	± 25	mA
DC V _{CC} /Ground Current	lcc	± 50	mA
Power Dissipation	PD	200	mW
Storage Temperature	T _{stg}	- 65~150	°C
Lead Temperature (10 s)	Т	260	°C

Weight SSOP5-P-0.95 : 0.016g (Typ.) SSOP5-P-0.65A : 0.006g (Typ.)

MARKING

TRUTH TABLE

А	В	Y
L	L	L
L	Н	Н
Н	L	Н
Н	Н	L

LOGIC DIAGRAM

RECOMMENDED OPERATING CONDITIONS

CHARACTERISTIC	SYMBOL	RATING	UNIT
Supply Voltage	Vcc	2.0~5.5	V
Input Voltage	VIN	0~5.5	V
Output Voltage	VOUT	0~V _{CC}	V
Operating Temperature	T _{opr}	- 40~85	°C
Input Rise and Fall Time	dt/dv	$0 \sim 100 (V_{CC} = 3.3 \pm 0.3 V)$	ns/V
	ut/uv	$0 \sim 20 (V_{CC} = 5 \pm 0.5V)$	115 / V

DC ELECTRICAL CHARACTERISTICS

CHARACTERISTIC	SYMBOL				Ta = 25°C			Ta = −40~85°C		UNIT	
		TEST CONDITION		Vcc	MIN.	TYP.	MAX.	MIN.	MAX.	UNIT	
High-Level				2.0	1.50	—	—	1.50	_		
Input Voltage	VIH			3.0~ 5.5	V _{CC} ×0.7	_	_	V _{CC} ×0.7	_	V	
Low-Level				2.0	_	—	0.50	_	0.50		
Input Voltage	VIL				—	_	V _{CC} ×0.3	_	V _{СС} ×0.3	V	
			I _{OH} = - 50µА	2.0	1.9	2.0		1.9	_	V	
High-Level Output Voltage		V _{IN} =V _{IH} or V _{IL}		3.0	2.9	3.0		2.9			
	Voн			4.5	4.4	4.5	—	4.4	—		
			$I_{OH} = -4mA$	3.0	2.58	—	—	2.48			
			$I_{OH} = -8mA$	4.5	3.94	_	—	3.80			
		V _{IN}	l _{OL} = 50μA	2.0		0.0	0.1		0.1		
Low-Level Output Voltage				3.0	_	0.0	0.1	—	0.1		
	VOL	= VIH		4.5		0.0	0.1	—	0.1	V	
		or V _{IL}	I _{OL} = 4mA	3.0		—	0.36	—	0.44	-	
			I _{OL} = 8mA	4.5		—	0.36	—	0.44		
Input Leakage Current	IIN	V _{IN} = 5.5V or GND		0~ 5.5		_	±0.1	_	± 1.0	μΑ	
Quiescent Supply Current	lcc	V _{IN} = V _{CC} or GND		5.5			2.0		20.0	μΑ	

961001EBA2'

The products described in this document are subject to foreign exchange and foreign trade control laws.
The information contained herein is presented only as a guide for the applications of our products. No responsibility is assumed by TOSHIBA CORPORATION for any infringements of intellectual property or other rights of the third parties which may result from its use. No license is granted by implication or otherwise under any intellectual property or other rights of TOSHIBA CORPORATION or others.
The information contained herein is subject to change without notice.

IN B 1 5 VCC IN A 2 沪 GND 3 4 OUT Y

PIN ASSIGNMENT (TOP VIEW)

AC ELECTRICAL CHARACTERISTICS (Input $t_r = t_f = 3ns$)

CHARACTERISTIC SYM	SYMBOL	TEST C	CONDITION		Ta = 25°C			Ta = -4		
	STIVIDOL			C _L (pF)	MIN.	TYP.	MAX.	MIN.	MAX.	
			22402	15		7.0	11.0	1.0	13.0	
	^t pLH ^t pHL	3.3±0.3	50	_	9.5	14.5	1.0	16.5		
			5.0±0.5	15		4.8	6.8	1.0	8.0	ns
				50	_	6.3	8.8	1.0	10.0	
Input Capacitance	CIN				_	4	10	—	10	рF
Power Dissipation Capacitance	C _{PD}	(Ne	ote 1)			18	_	_	_	pF

(Note 1) : CPD is defined as the value of the internal equivalent capacitance which is calculated from the operating current consumption without load. Average operating current can be obtained by the equation : $I_{CC}(opr) = CPD \cdot V_{CC} \cdot f_{IN} + I_{CC}$

INPUT EQUIVALENT CIRCUIT

OUTLINE DRAWING SSOP5-P-0.95

Unit : mm

Weight : 0.016g (Typ.)

OUTLINE DRAWING SSOP5-P-0.65A

Unit : mm

Weight : 0.006g (Typ.)