TOSHIBA CMOS DIGITAL INTEGRATED CIRCUIT SILICON MONOLITHIC

TC4W53F, TC4W53FU

TC4W53F

2-CHANNEL MULTIPLEXER / DEMALTIPLEXER

The TC4W53 is multiplexer with capabilities of selection and mixture of analog signal and digital signal. TC4W53F has 2 channel configuration. The digital signal to the control terminal turns "ON" the corresponding switch of each channel, with large amplitude (V_{DD} - V_{EE}) can be switched by the control signal with small logical amplitude (V_{DD} - V_{SS}). For example, in the case of V_{DD} = 5V, V_{SS} = 0V and V_{EE} = -5V, signals between -5V and +5V can be switched from the logical circuit with signal power supply of 5 volts.

As the ON-resistance of each switch is low, these can be connected to the circuits with low input impedance.

MAXIMUM RATINGS

CHARACTERISTIC	SYMBOL	RATING	UNIT
DC Supply Voltage	V _{DD} -V _{SS}	-0.5~20	V
DC Supply Voltage	V _{DD} -V _{EE}	-0.5~20	V
Control Input Voltage	VCIN	V _{SS} – 0.5~V _{DD} + 0.5	V
Switch I/O Voltage	V _I /V _O	$V_{EE} - 0.5 \sim V_{DD} + 0.5$	V
Control Input Current	ICIN	± 10	mA
Potential difference across I/O during ON	V _{I-O}	-0.5~0.5	V
Power Dissipation	PD	300	mW
Operating Temperature	T _{opr}	- 40~85	°C
Storage Temperature	T _{stg}	- 65~150	°C
Lead Temperature (10s)	Т	260	°C

LOGIC DIAGRAM

TRU	гн та	BLE	TRUTH TABLE					
	ITROL PUT	ON	CON- TROL	IMPE- DANCE BETWEEI IN-OUT				
INH	А	CHANNEL	C					
L	L	ch 0		0.5~				
L	Н	ch 1	Н	5 x 10 ² Ω				
Н	×	NONE	L	>10 ⁹ Ω				
× :	Don't	Care						
-	-Ουτ	C IN						

RECOMMENDED OPERATING CONDITIONS

CHARACTERISTIC	SYMBOL		MIN.	TYP.	MAX.	UNIT
DC Supply Voltage	V _{DD} -V _{SS}	—	3	—	18	V
	V _{DD} -V _{EE}	—	3	—	18	V
Control Input Voltage	VIN	—	Vss	—	V _{DD}	V
Input/Output Voltage	VIN-VOUT	—	V _{EE}	_	V _{DD}	V

DC ELECTRICAL CHARACTERISTICS

	TEST CONDITION				– 40°C		25°C			85°C			
CHARACTERISTIC	BOL		V _{SS} (V)	V _{EE} (V)	V _{DD} (V)	MIN.	MAX.	MIN.	TYP.	MAX.	MIN.	MAX.	UNIT
Control Input High Voltage	VIH	V _{IS} = V _{DD}	V _{EE} = R _L = 1 to V _S	kΩ	5 10 15	3.5 7.0 11.0		3.5 7.0 11.0	2.75 5.50 8.25	— — —	3.5 7.0 11.0		v
Control Input Low Voltage	VIL	thru 1kΩ	l _{LS} <2 on al Chan	OFF	5 10 15	_ _ _	1.5 3.0 4.0		2.25 4.5 6.75	1.5 3.0 4.0		1.5 3.0 4.0	
On-State Resistance	RON	$0 \le V_{\text{IS}}$ $\le V_{\text{DD}}$ $R_{\text{L}} = 10 k \Omega$	0 0 0	0 0 0	5 10 15		850 210 140		240 110 80	950 250 160	—	1200 300 200	Ω
⊿ ON-State Resistance Between 2 Switches	⊿R _{ON}	_	0 0 0	0 0 0	5 10 15		_ _ _		10 6 4				Ω
Input/Output Leakage Current	IOFF	V _{IN} = 18V, V _{OUT} = 0V V _{IN} = 0V, V _{OUT} = 18V			18 18	_	± 100 ± 100		±0.01 ±0.01	± 100 ± 100		± 1000 ± 1000	n A I
Quiescent Device Current	IDD	V _{IN} = V _{SS} , V _{DD} *			5 10 15		5.0 10 20		0.005 0.010 0.015	5.0 10 20		150 300 600	μA
Input Current	IIN	V _{IH} = 18V, V _{IL} = 0V		18 18	_	0.1 -0.1		10 ⁻⁵ - 10 ⁻⁵	-		1.0 – 1.0	<i>ν</i> Δ	
Input Capacitance	CIN	-			—	_	_		5	7.5	—	_	рF
Switch Input Capacitance	c _{IN}			_	_		_	10	_	_			
Switch Output Capacitance	COUT			10	_	_	_	17	_	_	_	pF	
Feedthrough Capacitance	C _{IN} - OUT	_			10	—	_		0.2	_	_	_	

* All valid input combinations.

		TEST CONDITION								
CHARACTERISTIC	SYMBOL			V _{SS} (V)	V _{EE} (V)	V _{DD} (V)	MIN.	TYP.	MAX.	UNIT
Phase difference				0	0	5	—	15	45	
between input to	∮I- O	_		0	0	10	—	8	20	ns
output				0	0	15	—	6	15	
	+			0	0	5		170	550	
Propagation Delay	t _{pZL}			0	0	10	—	90	240	
Time (A-OUT)	t _{pZH}	$R_L = 1k\Omega$		0	0	15	—	70	160	ns
	t _{pLZ}			0	- 5	5		100	240	
	t _{pHZ}			0	- 7.5	7.5		80	160	
				0	0	5	—	120	380	
Propagetion Delay	+	$R_L = 1k\Omega$		0	0	10	—	60	200	
Time (INH-OUT)	t _{pZL}			0	0	15	—	50	160	ns
	t _{pZH}			0	- 5	5	—	80	200	
			0	- 7.5	7.5	—	60	160		
				0	0	5	—	170	450	
Propagetion Delay	+			0	0	10	—	90	210	
Time (INH-OUT)	t _{pLZ}	$R_L = 1k\Omega$		0	0	15	—	70	160	ns
	t _{pHZ}			0	– 5	5	—	100	210	
				0	- 7.5	7.5		80	160	
– 3dB Cutoff Frequency	f _{MAX} (I-O)	$R_L = 1k\Omega$	(*1)	- 5	- 5	5	—	40	-	MHz
Tatal IIa was a wis		$R_{I} = 10k\Omega$		- 2.5	- 2.5	2.5	—	0.15	—	
Total Harmonic	_	f = 1 kHz	(*2)	- 5	- 5	5	—	0.03	—	%
Distortion				- 7.5	- 7.5	7.5	—	0.02	—	
– 50dB Feedthrough (Switch OFF)	_	$R_L = 1k\Omega$	(*3)	- 5	- 5	5	_	500	_	kHz
Currente II.		$R_{IN} = 1k\Omega$ $R_{OUT} = 10k\Omega$ $C_{L} = 15pF$		0	0	5		200		
Crosstalk				0	0	10	—	400	—	mV
(CONTROL-OUT)				0	0	15	—	600	—	

AC ELECTRICAL CHARACTERISITICS (Ta = 25° C, C_L = 50pF)

*1 Sine wave of $\pm 2.5V_{p-p}$ shall be used for V_{IS} and the frequency of $20\ell og_{10} \frac{V_{OS}}{V_{IS}} = -3dB$ shall be f_{MAX}.

*2 VIS shall be sine wave of
$$\pm \left(\frac{V_{DD} - V_{EE}}{4}\right) p - p$$

*3 Sine wave of $\pm 2.5V_{p-p}$ shall be used for V_{IS} and the frequency of $20\ell og_{10} \frac{V_{OS}}{V_{IS}} = -50dB$ shall be feed-through.

TOSHIBA

PACKAGE DIMENSIONS

SOP8-P-1.27

Weight : 0.05g (Typ.)

Unit : mm

PACKAGE DIMENSIONS SSOP8-P-0.65

Unit : mm

Weight : 0.02g (Typ.)

RESTRICTIONS ON PRODUCT USE

000707EBA

● TOSHIBA is continually working to improve the quality and reliability of its products. Nevertheless, semiconductor devices in general can malfunction or fail due to their inherent electrical sensitivity and vulnerability to physical stress. It is the responsibility of the buyer, when utilizing TOSHIBA products, to comply with the standards of safety in making a safe design for the entire system, and to avoid situations in which a malfunction or failure of such TOSHIBA products could cause loss of human life, bodily injury or damage to property. In developing your designs, please ensure that TOSHIBA products are used within specified operating ranges as set forth in the most recent TOSHIBA products specifications. Also, please keep in mind the precautions and conditions set forth in the "Handling Guide for Semiconductor Devices," or "TOSHIBA Semiconductor Reliability Handbook" etc..

The TOSHIBA products listed in this document are intended for usage in general electronics applications (computer, personal equipment, office equipment, measuring equipment, industrial robotics, domestic appliances, etc.). These TOSHIBA products are neither intended nor warranted for usage in equipment that requires extraordinarily high quality and/or reliability or a malfunction or failure of which may cause loss of human life or bodily injury ("Unintended Usage"). Unintended Usage include atomic energy control instruments, airplane or spaceship instruments, transportation instruments, traffic signal instruments, combustion control instruments, medical instruments, all types of safety devices, etc.. Unintended Usage of TOSHIBA products listed in this document shall be made at the customer's own risk.

• The products described in this document are subject to the foreign exchange and foreign trade laws.

● The information contained herein is presented only as a guide for the applications of our products. No responsibility is assumed by TOSHIBA CORPORATION for any infringements of intellectual property or other rights of the third parties which may result from its use. No license is granted by implication or otherwise under any intellectual property or other rights of TOSHIBA CORPORATION or others.

• The information contained herein is subject to change without notice.