TOSHIBA BI-CMOS INTEGRATED CIRCUIT SILICON MONOLITHIC

# TB62717N, TB62717F

### 24 BIT CONSTANT CURRENT DRIVERS $(3 \times 8 \text{ BIT SHIFT REGISTER & LATCH})$

The TB62717N/F are specifically designed constant current driver for LED & LED DISPLAY.

This constant-current output-circuits is able to set up at an external resistor.

This IC is monolithic integrated circuit designed to be used together with Bi-CMOS process.

The devices builds in three block composed by the shift register circuit of eight bits, the latch-circuit of eight bits, the AND gate circuit of eight bits and the constantcurrent output circuits of eight bits.

This device has a SERIAL-IN terminal and a SERIAL-OUT terminal three blocks to each, and has a CLOCK terminal and a LATCH terminal three blocks to the commonness.

#### **FEATURES**

- Constant Current Output : Able to set up at an external resistor for all output 2 current.
- Schmitt Triggered Input
- **Recommended Operating Condition** 
  - Maximum Clock Frequency : f<sub>CLK</sub> = 10.0 MHz (Cascade connected)
  - IC Supply Voltage : V<sub>DD</sub> = 4.5~5.5 V
  - Output Voltage : V<sub>OUT</sub> = 0.4~17 V
  - Output Current
  - :  $T_{opr} = -40 \sim 85^{\circ}C$ Operating Temperature

#### CONSTANT OUTPUT CURRENT MATCHING

| OUTPUT-GND<br>VOLTAGE | CURRENT<br>MATCHING | OUTPUT CURRENT |  |  |
|-----------------------|---------------------|----------------|--|--|
| ≧0.4 V                | ±6.0%               | 5~50 mA        |  |  |

5 V CMOS Compatible Input ٠

Package : N Type SDIP42-P-600-1.78 F Type QFP48-P-1014-0.80





TOSHIBA is continually working to improve the quality and the reliability of its products. Nevertheless, semiconductor devices in general can malfunction or fail due to their inherent electrical sensitivity and vulnerability to physical stress. It is the responsibility of the buyer, when utilizing TOSHIBA products, to observe standards of safety, and to avoid situations in which a malfunction or failure of a TOSHIBA product could cause loss of human life, bodily injury or damage to property. In developing your designs, please ensure that TOSHIBA products are used within specified operating ranges as set forth in the most recent products specifications. Also, please keep in mind the precautions and conditions set forth in the TOSHIBA Semiconductor Reliability Handbook.
The products described in this document are subject to the foreign exchange and foreign trade laws.
The information contained herein is presented only as a guide for the applications of our products. No responsibility

: IOUT = 5~30 mA / bit

The information contained herein is presented only as a guide for the applications of our products. No responsibility is assumed by TOSHIBA CORPORATION for any infringements of intellectual property or other rights of the third parties which may result from its use. No license is granted by implication or otherwise under any intellectual property or other rights of TOSHIBA CORPORATION or others.

The information contained herein is subject to change without notice.

PIN CONNECTION (TOP VIEW)





# <u>TOSHIBA</u>

#### **BLOCK DIAGRAM**



(Note)  $I_{OUT} = 30 \text{ mA} / \text{bit} (\text{max})$  in 24 bit output activate

#### TRUTH TABLE

| CLOCK | LATCH | ENABLE<br>R / G / B | SERIAL-IN<br>R / G / B | OUT- ··· OUT- ··· OUT-<br>R/G/B0 R/G/B3 R/G/B7                   | SERIAL-OUT<br>R / G / B |
|-------|-------|---------------------|------------------------|------------------------------------------------------------------|-------------------------|
| UP    | Н     | L                   | D <sub>n</sub>         | D <sub>n</sub> ··· D <sub>n – 3</sub> ··· D <sub>n – 7</sub>     | D <sub>n - 7</sub>      |
| UP    | L     | L                   | D <sub>n + 1</sub>     | No Change                                                        | D <sub>n</sub> – 6      |
| DOWN  | Н     | L                   | D <sub>n + 1</sub>     | D <sub>n + 1</sub> ··· D <sub>n - 2</sub> ··· D <sub>n - 6</sub> | D <sub>n</sub> – 6      |
| — —   | Х     | L                   | D <sub>n + 2</sub>     | No Change                                                        | D <sub>n</sub> – 6      |
| _     | Х     | Н                   | D <sub>n + 3</sub>     | All Off                                                          | D <sub>n</sub> – 6      |

(Nete) OUT-R/G/B0~7 = on in case of Dn = H level and OUT-R/G/B0~7 = off in case of Dn = L level.

A resistor is connected with R-EXT and GND accompanied with outside, and it is necessary that a correct power supply voltage is supplied.

#### TIMING DIAGRAM



(Note) Latch are level sensitive, not rising edges sensitive and not synchronous CLOCK. Input of LATCH-terminal to "H" level, data passes latches, and input to "L" level, data hold latches.

Input of ENABLE-terminal to "H" level, all output do off.

#### TERMINAL EXPLANATION

| NUMBERS    |           |                          |                                                                                                                                                                                                                                                                            |  |  |  |  |
|------------|-----------|--------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| N          | F         | NAME                     | EXPLANATION                                                                                                                                                                                                                                                                |  |  |  |  |
| 36~38      | 36~38     | OUT-R/G/B0               | This terminal is the constant-current output of the 0th bit of each block. An output terminal is high-active in the input data.                                                                                                                                            |  |  |  |  |
| 33~35      | 33~35     | OUT-R/G/B1               | This terminal is the constant-current output of the 1st bit of each block. An output terminal is high-active in the input data.                                                                                                                                            |  |  |  |  |
| 5~7        | 2~4       | OUT-R/G/B2               | This terminal is the constant-current output of the 2nd bit of each block. An output terminal is high-active in the input data.                                                                                                                                            |  |  |  |  |
| 8~10       | 5~7       | OUT-R/G/B3               | This terminal is the constant-current output of the 3rd bit of each block. An output terminal is high-active in the input data.                                                                                                                                            |  |  |  |  |
| 12~14      | 9~11      | OUT-R/G/B4               | This terminal is the constant-current output of the 4th bit of each block. An output terminal is high-active in the input data.                                                                                                                                            |  |  |  |  |
| 15~17      | 12~14     | OUT-R/G/B5               | This terminal is the constant-current output of the 5th bit of each block. An output terminal is high-active in the input data.                                                                                                                                            |  |  |  |  |
| 29~31      | 29~31     | OUT-R/G/B6               | This terminal is the constant-current output of the 6th bit of each block. An output terminal is high-active in the input data.                                                                                                                                            |  |  |  |  |
| 26~28      | 26~28     | OUT-R/G/B7               | This terminal is the constant-current output of the 7th bit of each block. An output terminal is high-active in the input data.                                                                                                                                            |  |  |  |  |
| 11, 21, 32 | 8, 18, 32 | GND                      | These three terminals are GND terminals. We recommend that it is grounded (this terminal all).                                                                                                                                                                             |  |  |  |  |
| 1~3        | 45~47     | SERIAL-IN<br>-R / G / B  | This terminal is a serial-data input of each block.                                                                                                                                                                                                                        |  |  |  |  |
| 4          | 48        | CLOCK                    | This terminal is the clock signal input which is common to each block.                                                                                                                                                                                                     |  |  |  |  |
| 22         | 21        | LATCH                    | This terminal is latch signal input. This terminal is a level latch.<br>Therefore, input data are held while input of a level is being<br>maintained. It only passes through the data on the output side<br>in the case of the H level.                                    |  |  |  |  |
| 23~25      | 22~24     | ENABLE<br>-R / G / B     | This terminal is output control signal input. When input of a L<br>level is maintained, an output terminal drives this terminal<br>corresponding to the input data. Output is made a non-drive<br>independently with the input data in the case of the H level.            |  |  |  |  |
| 18~20      | 15~17     | REXT-B/G/R               | This terminal is for the resistance connection which the output<br>electric current value of each block is set up to. Resistance with<br>the outside is connected between this terminal and GND. Output<br>electric current is set up in the value corresponding to the re |  |  |  |  |
| 39         | 39        | V <sub>DD</sub>          | This terminal is input of a power supply voltage 5 V.                                                                                                                                                                                                                      |  |  |  |  |
| 40~42      | 40~42     | SERIAL OUT<br>-B / G / R | This terminal is a serial-data output of each block.                                                                                                                                                                                                                       |  |  |  |  |

#### EQUIVALENT CIRCUIT ABOUT THE INPUT AND OUTPUT TERMINAL

1. The terminal of the  $\overline{\text{ENABLE}}$  -R/G/B



3. The terminal of the CLOCK and SERIAL IN R/G/B



2. The terminal of the  $\overline{LATCH}$ 



4. The terminal of the SERIAL OUT R/G/B



#### MAXIMUM RATINGS (Ta = 25°C)

| CHARACTERIST                  | пс          | SYMBOL                | RATING                          | UNIT   |
|-------------------------------|-------------|-----------------------|---------------------------------|--------|
| Supply Voltage                | oly Voltage |                       | + 7.0                           | V      |
| Input Voltage                 |             | VIN                   | $-0.4 \sim V_{DD} + 0.4$        | V      |
| Output Current                |             | Ιουτ                  | + 50                            | mA     |
| Output Voltage                |             | Vout                  | - 0.5~ + 17.0                   | V      |
| Clock Frequency               |             | fск                   | 15                              | MHz    |
| GND Terminal Current (Note 1) |             | IGND                  | 2200                            | mA     |
| Power Dissipation             | TB62717N    | P-                    | 1.78 (ON PCB) / 1.56 (FREE AIR) | °C/W   |
| (Note 2)                      | TB62717F    | PD                    | 1.38 (ON PCB)/0.86 (FREE AIR)   |        |
| Thermal Resistance            | TB62717N    |                       | 70 (ON PCB)/80 (FREE AIR)       | - °c/w |
| (Note 2) TB62717F             |             | R <sub>th</sub> (j-a) | 90 (On PCB)/145 (FREE AIR)      |        |
| Operating Temperature         |             | T <sub>opr</sub>      | - 40~ + 85                      | °C     |
| Storage Temperature           |             | T <sub>stg</sub>      | - 55~ + 150                     | °C     |

- (Note 1) Use all GND-terminals.
- (Note 2) Ambient temperature delayed the above 25°C with the type N with 14.2 mW/°C and the type F with 11.1 mW /°C in on PCB (Glass Epoxy PCB 50  $\times$  50  $\times$  1.6 mm Cu 36%).

| CHARACTERISTIC        | SYMBOL                 | CONDITION                                                                 | MIN.                   | TYP. | MAX.                     | UNIT |
|-----------------------|------------------------|---------------------------------------------------------------------------|------------------------|------|--------------------------|------|
| Supply Voltage        | V <sub>DD</sub>        |                                                                           | 4.5                    | 5.0  | 5.5                      | V    |
| Output Voltage        | VOUT                   | —                                                                         | 0.4                    | —    | 15.0                     | V    |
|                       | ΙΟυτ                   | DC 1 circuit                                                              | _                      | —    | 35                       |      |
| Output Current        | ЮН                     | SERIAL-OUT                                                                | -                      | —    | - 1.0                    | mA   |
|                       | IOL                    | SERIAL-OUT                                                                | _                      |      | 1.0                      | 2    |
|                       | VIH                    | _                                                                         | 0.7<br>V <sub>DD</sub> | _    | V <sub>DD</sub><br>+ 0.3 | v    |
| Input Voltage         | VIL                    | _                                                                         | - 0.3                  | _    | 0.3<br>V <sub>DD</sub>   |      |
| LATCH Pulse Width     | tw / LATCH             | $V_{DD} = 4.5 \sim 5.5 V$                                                 | 100                    |      |                          | ns   |
| CLOCK Pulse Width     | <sup>t</sup> w CLK     |                                                                           | 50                     | —    |                          | ns   |
| ENABLE Pulse Width    | t <sub>w</sub> /EN     |                                                                           | 4500                   | —    |                          | ns   |
| Set-up Time for DATA  | t <sub>setup</sub> (D) |                                                                           | 60                     | —    |                          | ns   |
| Hold Time for DATA    | <sup>t</sup> hold (D)  |                                                                           | 20                     | —    | _                        | ns   |
| Set-up Time for LATCH | t <sub>setup</sub> (L) |                                                                           | 100                    | —    |                          | ns   |
| Hold Time for LATCH   | <sup>t</sup> hold (L)  |                                                                           | 60                     | —    | _                        | ns   |
| Clock Frequency       | <sup>f</sup> CLK       | Cascade operation                                                         | —                      | —    | 10.0                     | MHz  |
| Power Dissipation     | PD                     | Ta = $85^{\circ}$ C (SDIP42 on PCB)<br>Ta = $85^{\circ}$ C (QFP48 on PCB) |                        |      | 0.92                     | w    |

#### **RECOMMENDED OPERATING CONDITION** (Ta = 25°C unless otherwise noted)

#### **ELECTRICAL CHARACTERISTICS** (Ta = 25°C unless otherwise noted)

| CHARACTERISTIC     |                 | SYMBOL                  | TEST<br>CIR-<br>CUIT | CONDITION                                           |                          | MIN. | TYP.            | MAX.                   | UNIT  |
|--------------------|-----------------|-------------------------|----------------------|-----------------------------------------------------|--------------------------|------|-----------------|------------------------|-------|
| Input "H" Level    |                 | VIH                     |                      | Ta = −40~85°                                        | 0.7<br>V <sub>DD</sub>   | _    | V <sub>DD</sub> | v                      |       |
| Voltage            | "L" Level       | VIL                     |                      | $1a = -40^{-60}$                                    | C                        | GND  | _               | 0.3<br>V <sub>DD</sub> | v     |
| Output Leak        | age Current     | Iон                     |                      | V <sub>OH</sub> = 15.0 V                            |                          |      | —               | 10                     | μΑ    |
| Output             | tput SOUT-R/G/B |                         |                      | l <sub>OL</sub> = 1.0 mA                            |                          | —    | 0.4             | v                      |       |
| Voltage SOUT-R/G/B |                 | Voн                     |                      | $I_{OL} = -1.0  mA$                                 | 4.6                      | —    | _               | Ň                      |       |
| Output Curre       | ent             | lol                     | 1                    | V <sub>CE</sub> = 0.4 V                             | R <sub>EXT</sub> = 660 Ω | 25.5 | 30.0            | 34.5                   | mA    |
|                    | Current Skew    | ol                      |                      | l <sub>OL</sub> = 30 mA,<br>V <sub>CE</sub> = 0.4 V |                          | _    | ± 1.5           | ±6.0                   | %     |
| Supply Volta       | ge Regulation   | % / V <sub>DD</sub>     |                      | $R_{EXT} = 660 \Omega$                              | Ta = −40~85°C            | _    | 1.5             | 5.0                    | % / V |
| Pull-Up Resis      | tor             | R <sub>IN</sub> (up)    |                      | —                                                   |                          | 150  | 300             | 600                    | Ω     |
| Pull-Down Resistor |                 | R <sub>IN</sub> (down)  |                      | —                                                   |                          | 150  | 300             | 600                    | Ω     |
| Supply             |                 |                         |                      | R <sub>EXT</sub> = OPEN                             | All output off           |      | 1.2             | 2.4                    |       |
| Current            |                 | <sup>I</sup> DD (off) 2 |                      | ·                                                   |                          | 7.0  | 12.0            | 16.0                   | mA    |
| Current            | "ON"            | l <sub>DD</sub> (on) 1  |                      | R <sub>EXT</sub> = 660 Ω                            | All output on            | 15.0 | 28.0            | 40.0                   |       |

(Note) Current-skew items are specifications about the electric current value of eight output which each block has.

Therefore, as for the output electric current value which a different block sticks to, its become the specifications which are equal to the " $I_{OL}$ " item.

| CHARACTERISTIC             |             | SYMBOL                              | TEST<br>CIR-<br>CUIT | CONDITION                                                                               | MIN. | TYP. | MAX. | UNIT |
|----------------------------|-------------|-------------------------------------|----------------------|-----------------------------------------------------------------------------------------|------|------|------|------|
| Description                | CLK-OUTn    |                                     |                      |                                                                                         | _    | 1200 | 1500 |      |
| Propagation                | /LATCH-OUTn | <b>4</b>                            |                      |                                                                                         | _    | 1200 | 1500 | ]    |
| Delay Time<br>("L" to "H") | / EN-OUTn   | <sup>t</sup> pLH                    |                      |                                                                                         | _    | 1200 | 1500 |      |
|                            | CLK-SOUT    |                                     |                      |                                                                                         | _    | 30   | 70   |      |
| D                          | CLK-OUTn    |                                     |                      | V <sub>DD</sub> = 5.0 V<br>V <sub>CE</sub> = 0.4 V<br>V <sub>IH</sub> = V <sub>DD</sub> | _    | 700  | 1000 | ns   |
| Propagation                | /LATCH-OUTn | <b>.</b>                            | - 2                  |                                                                                         | _    | 700  | 1000 |      |
| Delay Time<br>("H" to "L") | / EN-OUTn   | <sup>t</sup> pHL                    |                      |                                                                                         | _    | 700  | 1000 |      |
|                            | CLK-SOUT    |                                     |                      |                                                                                         | _    | 30   | 70   |      |
| Dulas Mistel               | CLK         | t <sub>w</sub> CLK, / CLK           |                      | $V_{IL} = GND$                                                                          | _    | 20   | 30   |      |
| Pulse Width                | LATCH       | t <sub>w</sub> LAT, / LAT           |                      | $R_{EXT} = 660 \Omega$<br>V <sub>L</sub> = 3.0 V                                        | _    | 10   | 25   |      |
| Set-Up Time for            | L-H         | + /                                 |                      |                                                                                         | _    | 25   | 50   |      |
| /LATCH and SIN             | H-L         | <sup>t</sup> setup <sup>/</sup> LAT |                      |                                                                                         | _    | 25   | 50   | ]    |
| Hold Time for              | L-H         | <b>t</b> (                          |                      | C <sub>L</sub> = 10.5 pF                                                                | _    | 0    | 15   |      |
| /LATCH and SIN             | H-L         | <sup>t</sup> hold <sup>/</sup> LAT  |                      |                                                                                         | _    | 0    | 15   |      |
| Maximum CLOCK Rise Time    |             | t <sub>r</sub>                      | 1                    |                                                                                         | _    | —    | 10   |      |
| Maximum CLOCK Fall Time    |             | tf                                  | 1                    |                                                                                         | _    | —    | 10   | μs   |
| Output Rise Time           |             | t <sub>or</sub>                     | 1                    |                                                                                         | 300  | 600  | 1000 |      |
| Output Fall Time           |             | <sup>t</sup> of                     |                      |                                                                                         | 150  | 300  | 600  | ns   |

#### SWITCHING CHARACTERISTICS (Ta = 25°C unless otherwise noted)

### TEST CIRCUIT

DC characteristic



#### AC characteristic



#### TIMING WAVEFORM

#### 1. CLOCK-SERIAL OUT-R/G/B, SERIAL OUT-R/G/B, OUT-R/G/B0~7



#### 2. CLOCK-LATCH



#### 3. ENABLE-R/G/B, OUT-R/G/B n









I/O LAYOUT IMAGE



1999-02-16 13/17

#### REXT - IOUT <sup>100</sup> Г $_{-1OUT}(A) = [1.26(V) / REXT(\Omega)] \times 14.7$ 80 loUT (mA/bit) 60 40 20 0.1 L 100 1000 10000 **R-EXT (**Ω)

# LED DRIVER TB6270X SERIES APLICATION NOTE Fig.1

[1] Output Current (IOUT)

IOUT is set by the external resistor (R-EXT) as shown in Fig1.

[2] Total Supply Voltage (V<sub>LED</sub>)

This device can operate  $0.4 \sim 0.7 \text{ V}$  (V<sub>O</sub>).

When a higher voltage is input to the device, the excess voltage is consumed inside the device, that leads to power dissipation.

In order to minimize power dissipation and loss, we would like to recommend to set the total supply voltage as shown below,

VLED (total supply voltage) =  $V_{CE}$  (Tr V<sub>sat</sub>) + Vf (LED Forward voltage) + VO (IC supply voltage)

When the total supply is too high considering the power dissipation of this device, an additional R can decrease the supply voltage ( $V_O$ ).

[3] Pattern Layout

This device owns only one ground pin that means signal ground pin and power ground pin are common.

If ground pattern layout contains large inductance and impedance, and the voltage between ground and LATCH, CLOCK terminals exceeds 2.5 V by switching noise in operation, this device may miss-operate. So we would like you to pay attention to pattern layout to minimize inductance.

#### PATTERN LAYOUT



### OUTLINE DRAWING

SDIP42-P-600-1.78

Unit : mm



Weight: 4.13 g (Typ.)

Unit : mm

### OUTLINE DRAWING





