

2.5V/3.3/5V 2.5GHz 1:4 PECL/ECL CLOCK DRIVER WITH 2:1 DIFFERENTIAL INPUT MUX

FEATURES

- Guaranteed AC parameters over temp/voltage:
 - > 2.5GHz f_{MAX}
 - < 25ps within-device skew
 - < 225ps t_r/t_f time
 - < 450ps prop delay
- Low jitter design:
 - < 1ps_{RMS} cycle-to-cycle jitter
 - <15ps_{PP} total jitter
- 2:1 Differential MUX input
- Flexible supply voltage: 2.5V/3.3V/5V
- Wide operating temperature range: -40°C to +85°C
- 100K ECL compatible outputs
- Inputs accept PECL/LVPECL/ECL/HSTL logic levels
- Available in a 16-pin TSSOP package

Precision Edge®

DESCRIPTION

The SY89830U is a high-speed, 2.5GHz differential PECL 1:4 fanout buffer optimized for ultra-low skew applications. Within device skew is guaranteed to be less than 25ps over temperature and supply voltage. The wide supply voltage operation allows this fanout buffer to operate in 2.5V, 3.3V, and 5V systems.

The SY89830U features a 2:1 input MUX, making it an ideal solution for redundant clock switchover applications. If only one input pair is used, the other pair may be left floating. In addition, this device includes a synchronous enable pin that forces the outputs into a fixed logic state. Enable or disable state is initiated only after the outputs are in a LOW state, thus eliminating the possibility of a "runt" clock pulse.

The SY89830U I/O are fully differential and 100K ECL compatible. Differential 10K ECL logic can interface directly into the SY89830U inputs.

The SY89830U is part of Micrel's high-speed precision edge timing and distribution family. For applications that require a different I/O combination, consult the Micrel website at www.micrel.com, and choose from a comprehensive product line of high-speed, low-skew fanout buffers, translators, and clock generators.

Precision Edge is a registered trademark of Micrel, Inc.

PACKAGE/ORDERING INFORMATION

Ordering Information⁽¹⁾

Part Number	Package Type	Operating Range	Package Marking	Lead Finish
SY89830UK4I	K4-16-1	Industrial	89830U	Sn-Pb
SY89830UK4ITR ⁽²⁾	K4-16-1	Industrial	89830U	Sn-Pb
SY89830UK4G ⁽³⁾	K4-16-1	Industrial	89830U with Pb-Free bar line indicator	NiPdAu Pb-Free
SY89830UK4GTR ^(2, 3)	K4-16-1	Industrial	89830U with Pb-Free bar line indicator	NiPdAu Pb-Free

Notes:

Contact factory for die availability. Dice are guaranteed at T_A = 25°C, DC Electricals only.
 Tape and Reel.

3. Pb-Free package is recommended for new designs.

16-Pin TSSOP (T32-1)

PIN DESCRIPTION

Pin Number	Pin Name	Pin Function
1, 2, 3, 4, 5, 6, 7, 8	Q0 to Q3 /Q0 to /Q3	(LV)PECL, (LV)ECL differential outputs: Terminate with 50 Ω to V _{CC} -2V. For single-ended applications, terminate the unused output with 50 Ω to V _{CC} -2V.
9	V _{EE}	Negative Power Supply: For LVPECL, PECL applications, connect to GND.
10	IN_SEL	(LV)PECL, (LV)ECL compatible 2:1 mux input signal select: When IN_SEL is LOW, the IN0 input pair is selected. When IN_SEL is HIGH, the IN1 input pair is selected. Includes a $75k\Omega$ pull-down. Default state is LOW and IN0 is selected.
11, 12, 13, 14	INO, /INO IN1, /IN1	(LV)PECL, (LV)ECL, HSTL clock or data inputs. Internal 75k Ω pull-down resistors on IN0, IN1. Internal 75k Ω pull-up and 75k Ω pull-down resistors on /IN0, /IN1. /IN0, /IN1 default condition is V _{CC} /2 when left floating. IN0, IN1 default condition is LOW when left floating.
15	/EN	(LV)PECL, (LV)ECL compatible synchronous enable: When /EN goes HIGH, Q_{OUT} will go LOW and $/Q_{OUT}$ will go HIGH on the next LOW input clock transition. Includes a 75k Ω pull-down. Default state is LOW when left floating. The internal latch is clocked on the falling edge of the input (IN0, IN1)
16	V _{cc}	Positive Power Supply: Bypass with 0.1µF//0.01µF low ESR capacitors.

TRUTH TABLE⁽¹⁾

IN0	IN1	IN_SEL	/EN	Q
L	Х	L	L	L
Н	Х	L	L	Н
Х	L	Н	L	L
Х	Н	Н	L	Н
Ť	Х	L	Н	L
Х	T	Н	Н	L

Note:

1. \checkmark = negative edge

ABSOLUTE MAXIMUM RATINGS⁽¹⁾

Symbol	Rating		Value	Unit
$V_{CC} - V_{EE}$	Power Supply Voltage		6.0	V
V _{IN}	Input Voltage ($V_{CC} = 0V$, V_{IN} not m Input Voltage ($V_{EE} = 0V$, V_{IN} not m		-6.0 to 0 +6.0 to 0	V
I _{OUT}	Output Current	–Continuous –Surge	50 100	mA
T _A	Operating Temperature Range	-40 to +85	°C	
T _{LEAD}	Lead Temperature (soldering, 20se	ec.)	260	°C
T _{store}	Storage Temperature Range		-65 to +150	°C
θ_{JA}	Package Thermal Resistance (Junction-to-Ambient)	–Still-Air (single-layer PCB) –Still-Air (multi-layer PCB) –500lfpm (multi-layer PCB)	115 75 65	°C/W
θ^{JC}	Package Thermal Resistance (Junction-to-Case)		21	°C/W

Note:

1. Permanent device damage may occur if absolute maximum ratings are exceeded. This is a stress rating only and functional operation is not implied at conditions other than those detailed in the operational sections of this data sheet. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

DC ELECTRICAL CHARACTERISTICS⁽¹⁾

		Т	T _A = −40°C			_A = +25°	C	Тд	_ = +85°(C		
Symbol	Parameter	Min.	Тур.	Max.	Min.	Тур.	Max.	Min.	Тур.	Max.	Unit	Condition
V _{CC}	Power Supply Voltage										V	
	(PECL)	4.5	5.0	5.5	4.5	5.0	5.5	4.5	5.0	5.5		
	(LVPECL)	2.375	3.3	3.63	2.375	3.3	3.63	2.375	3.3	3.63		
	(ECL)	-5.5	-5.0	-4.5	-5.5	-5.0	-4.5	-5.5	-5.0	-4.5		
	(LVECL)	-3.63	-3.3	-2.375	-3.63	-3.3	-2.375	-3.63	-3.3	-2.375		
I _{CC}	Power Supply Current			70		50	72			75	mA	
I _{IH}	Input HIGH Current		_	150			150			150	μA	$V_{IN} = V_{IH}$
I _{IL}	Input LOW Current IN	0.5	_	—	0.5		—	0.5	_	—	μA	$V_{IN} = V_{IL}$
.=	/IN	-150	—	—	-150	—	—	-150	_	—	μA	$V_{IN} = V_{IL}$
C _{IN}	Input Capacitance (TSSOP)	_	_	_	_	1.0	_	_	_	_	pF	

Note:

1. 100KEP circuits are designed to meet the DC specifications shown in the above table after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and traverse airflow greater than 500lfpm is maintained.

(100KEP) LVPECL DC ELECTRICAL CHARACTERISTICS⁽¹⁾

 $V_{CC} = 2.5V \pm 5\%, V_{EE} = 0V$

		T	T _A = −40°C		T,	T _A = +25°C			T _A = +85°C			
Symbol	Parameter	Min.	Тур.	Max.	Min.	Тур.	Max.	Min.	Тур.	Max.	Unit	Condition
V _{IL}	Input LOW Voltage (Single-ended)	555		875	555	-	875	555		875	mV	V _{CC} = 2.5V
V _{IH}	Input HIGH Voltage (Single-ended)	1275	_	1620	1275	—	1620	1275	_	1620	mV	V _{CC} = 2.5V
V _{OL}	Output LOW Voltage	555	680	805	555	680	805	555	680	805	mV	$V_{CC} = 2.5V$
V _{OH}	Output HIGH Voltage	1355	1480	1605	1355	1480	1605	1355	1480	1605	mV	$V_{CC} = 2.5V$
V _{IHCMR}	Input HIGH Voltage Common Mode Range ⁽²⁾	1.2		V _{CC}	1.2	_	V _{CC}	1.2		V _{CC}	V	

Notes:

100KEP circuits are designed to meet the DC specifications shown in the above table after thermal equilibrium has been established. The circuit is in a
test socket or mounted on a printed circuit board and traverse airflow greater than 500lfpm is maintained. Input and output parameters vary 1:1 with V_{CC}.
Output load is 50Ω to V_{CC}-2V.

2. The V_{IHCMR} range is referenced to the most positive side of the differential input signal.

(100KEP) LVPECL DC ELECTRICAL CHARACTERISTICS⁽¹⁾

$V_{CC} = 3.3V \pm 10\%, V_{EE} = 0V$

		Т	T _A = −40°C		Т	T _A = +25°C			_A = +85°	С		
Symbol	Parameter	Min.	Тур.	Max.	Min.	Тур.	Max.	Min.	Тур.	Max.	Unit	Condition
V _{IL}	Input LOW Voltage (Single-Ended)	1355		1675	1355		1675	1355		1675	mV	V _{CC} = 3.3V
V _{IH}	Input HIGH Voltage (Single-Ended)	2075		2420	2075		2420	2075		2420	mV	V _{CC} = 3.3V
V _{OL}	Output LOW Voltage	1355	1480	1605	1355	1480	1605	1355	1480	1605	mV	$V_{CC} = 3.3V$
V _{OH}	Output HIGH Voltage	2155	2280	2405	2155	2280	2405	2155	2280	2405	mV	$V_{CC} = 3.3V$
V _{IHCMR}	Input HIGH Voltage Common Mode Range ⁽²⁾	1.2	_	V _{CC}	1.2		V _{CC}	1.2		V _{CC}	V	

Notes:

100KEP circuits are designed to meet the DC specifications shown in the above table after thermal equilibrium has been established. The circuit is in a
test socket or mounted on a printed circuit board and traverse airflow greater than 500lfpm is maintained. Input and output parameters vary 1:1 with V_{CC}.
Output load is 50Ω to V_{CC} –2V.

2. The V_{IHCMR} range is referenced to the most positive side of the differential input signal.

(100KEP) PECL DC ELECTRICAL CHARACTERISTICS⁽¹⁾

 $V_{CC} = 5.0V \pm 10\%, V_{EE} = 0V$

		T	$T_A = -40^{\circ}C$		Т	_A = +25°	Ő	T	_A = +85°	С		
Symbol	Parameter	Min.	Тур.	Max.	Min.	Тур.	Max.	Min.	Тур.	Max.	Unit	Condition
V _{IL}	Input LOW Voltage (Single-Ended)	3055	_	3375	3055		3375	3055	_	3375	mV	V _{CC} = 5.0V
V _{IH}	Input HIGH Voltage (Single-Ended)	3775		4120	3775	_	4120	3775	_	4120	mV	$V_{CC} = 5.0 V$
V _{OL}	Output LOW Voltage	3055	3180	3305	3055	3180	3305	3055	3180	3305	mV	$V_{CC} = 5.0V$
V _{OH}	Output HIGH Voltage	3855	3980	4105	3855	3980	4105	3855	3980	4105	mV	$V_{CC} = 5.0V$
V _{IHCMR}	Input HIGH Voltage ⁽²⁾ Common Mode Range	1.2		V _{CC}	1.2	_	V _{CC}	1.2		V _{CC}	V	

Notes:

100KEP circuits are designed to meet the DC specifications shown in the above table after thermal equilibrium has been established. The circuit is in a
test socket or mounted on a printed circuit board and traverse airflow greater than 500lfpm is maintained. Input and output parameters vary 1:1 with V_{CC}.
Output load is 50Ω to V_{CC} –2V.

2. The V_{IHCMR} range is referenced to the most positive side of the differential input signal.

(100KEP) LVECL DC ELECTRICAL CHARACTERISTICS⁽¹⁾

 $V_{CC} = 0V, V_{EE} = -2.375V \text{ to } -3.63V$

		Т	T _A = -40°C		T	T _A = +25°C			_A = +85°	С		
Symbol	Parameter	Min.	Тур.	Max.	Min.	Тур.	Max.	Min.	Тур.	Max.	Unit	Condition
V _{IL}	Input LOW Voltage (Single-ended)	-1945		-1625	-1945		-1625	-1945	_	-1625	mV	
V _{IH}	Input HIGH Voltage (Single-ended)	-1225		-880	-1225		-880	-1225		-880	mV	
V _{OL}	Output LOW Voltage	-1945	-1820	-1695	-1945	-1820	-1695	-1945	-1820	-1695	mV	50 Ω to V_CC-2V
V _{OH}	Output HIGH Voltage	-1145	-1020	-895	-1145	-1020	-895	-1145	-1020	-895	mV	50 Ω to V_CC-2V
V _{IHCMR}	Input HIGH Voltage Common Mode Range ⁽²⁾	V _{EE} +1.2		0.0	V _{EE} +1.2		0.0	V _{EE} +1.2	_	0.0	V	

Notes:

1. 100KEP circuits are designed to meet the DC specifications shown in the above table after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and traverse airflow greater than 500lfpm is maintained.

2. The V_{IHCMR} range is referenced to the most positive side of the differential input signal.

(100KEP) ECL DC ELECTRICAL CHARACTERISTICS⁽¹⁾

 $V_{CC} = 0V, V_{EE} = -4.5V \text{ to } -5.5V$

		T	T _A = -40°C			_A = +25°	C	T,	_A = +85°	С		
Symbol	Parameter	Min.	Тур.	Max.	Min.	Тур.	Max.	Min.	Тур.	Max.	Unit	Condition
V _{IL}	Input LOW Voltage (Single-ended)	-1945	-	-1625	-1945	—	-1625	-1945	-	-1625	mV	
V _{IH}	Input HIGH Voltage (Single-ended)	-1225	_	-880	-1225	—	-880	-1225	_	-880	mV	
V _{OL}	Output LOW Voltage	-1945	-1820	-1695	-1945	-1820	-1695	-1945	-1820	-1695	mV	50 Ω to V_CC–2V
V _{OH}	Output HIGH Voltage	-1145	-1020	-895	-1145	-1020	-895	-1145	-1020	-895	mV	50 Ω to V_CC–2V
V _{IHCMR}	Input HIGH Voltage Common Mode Range ⁽²⁾	V _{EE} +1.2	_	0.0	V _{EE} +1.2	_	0.0	V _{EE} +1.2		0.0	V	

Notes:

1. 100KEP circuits are designed to meet the DC specifications shown in the above table after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and traverse airflow greater than 500lfpm is maintained.

2. The V_{IHCMR} range is referenced to the most positive side of the differential input signal.

HSTL INPUT DC ELECTRICAL CHARACTERISTICS

 V_{CC} = 2.375V to 3.63V, V_{EE} = 0V

		$T_A = -40^{\circ}C$			T _A = +25°C			Т			
Symbol	Parameter	Min.	Тур.	Max.	Min.	Тур.	Max.	Min.	Тур.	Max.	Unit
V _{IH}	Input HIGH Voltage	1200		_	1200			1200	_		mV
V _{IL}	Input LOW Voltage	_	—	400	_	_	400	_	_	400	mV

AC ELECTRICAL CHARACTERISTICS

LVPECL: $V_{CC} = 2.375V$ to 3.63V, $V_{FF} = 0V$; PECL: $V_{CC} = 4.50V$ to 5.50V, $V_{FF} = 0V$	
LVECL: $V_{CC} = 0V$, $V_{EE} = -2.375V$ to $-3.63V$; ECL: $V_{CC} = 0V$, $V_{EE} = -4.50V$ to $-5.5V$	

		T _A = −40°C			T _A = +25°C			T _A = +85°C			
Symbol	Parameter	Min.	Тур.	Max.	Min.	Тур.	Max.	Min.	Тур.	Max.	Unit
f _{MAX} ⁽¹⁾	Maximum Frequency	2.5	_	—	2.5	—	—	2.5	—	_	GHz
t _{PD}	Propagation Delay to Output LVPECL/LVECL										
	Diff. IN (150mV)	—	—	—	—	375	—	—	—	—	ps
	Diff. IN (800mV)	300	350	450	300	350	450	300	350	450	ps
	Single-Ended IN		_			375	—		—	—	ps
	PECL/ECL Diff. IN (150mV)	_	_	_	_	375	_	_	_	_	ps
	Diff. IN (800mV)	275	350	425	275	350	425	275	350	425	ps
	Single-Ended IN	_	_			355	—	_	—	_	ps
	HSTL	325	_	500	300	_	450	300	—	450	ps
t _{SKEW} ⁽²⁾	Within-Device Skew (Diff.) Part-to-Part Skew (Diff.)	_	15 100	25 150	_	15 100	25 150		15 100	25 150	ps ps
t _{SW}	Select to Valid Output Switchover Time	_	_	450	_	400	450	_	—	450	ps
t _S ⁽³⁾	Set-Up Time /EN to CLK	100	0	_	100	0	_	100	0	_	ps
t _H ⁽³⁾	Hold Time /EN to CLK	200	50		200	50	_	200	50	_	ps
t _{JITTER}	Cycle-to-Cycle ⁽⁴⁾ Total Jitter (622MHz clock) ⁽⁵⁾		0.2 <15	1		0.2 <15	1		0.2 <15	1	ps _{RMS} ps _{PP}
V _{ID}	Input Voltage Swing	150	800	1200	150	800	1200	150	800	1200	mV
t _r , t _f	Output Rise/Fall Times (20% to 80%)	75	—	225	75	130	225	85	—	225	ps

Notes:

f_{MAX} is defined as the maximum toggle frequency. Measured with 750mV input signal, 50% duty cycle, output swing ≥ 400mV (diff), all loading with 50Ω to V_{CC}−2V.

2. Skew is measured between outputs under identical transitions.

3. Set-up and hold times apply to synchronous applications that intend to enable/disable before the next cycle. For asynchronous applications, set-up and hold time does not apply.

4. Cycle-to-cycle jitter definition: The variation in period between adjacent cycles over a random sample of adjacent cycle pairs. T_{JITTER_CC} = T_n-T_{n+1} where T is the time between rising edges of the output signal.

5. Total jitter definition: with an ideal clock input applied to one channel of the MUX, no more than one output edge in 10¹² output edges will deviate by more than the specified peak-to-peak jitter value.

TYPICAL OPERATING CHARACTERISTICS

 V_{CC} = 3.3V, V_{EE} = GND, T_A = 25°C, unless otherwise stated.

FUNCTIONAL CHARACTERISTICS

M9999-110705 hbwhelp@micrel.com or (408) 955-1690

TERMINATION RECOMMENDATIONS

Figure 1. Parallel Termination–Thevenin Equivalent

Notes:

- 1. For +2.5V systems:
 - R1 = 250Ω
 - $R2 = 62.5\Omega$
- 2. For +5.0V systems:
 - R1 = 82Ω
 - R2 = 130Ω

Figure 2. Three-Resistor "Y-Termination"

Notes:

- 1. Power-saving alternative to Thevenin termination.
- 2. Place termination resistors as close to destination inputs as possible.
- 3. R_b resistor sets the DC bias voltage, equal to V_t. For +3.3V systems R_b = 46 Ω to 50 Ω . For +5V systems, R_b = 110 Ω .
- 4. C1 is an optional bypass capacitor intended to compensate for any tr/tf mismatches.

Figure 3. Terminating Unused I/O

Notes:

- 1. Unused output (/Q) must be terminated to balance the output.
- 2. For +2.5V systems: R1 = 250Ω , R2 = 62.5Ω , R3 = $1.25k\Omega$, R4 = $1.2k\Omega$.

16 LEAD TSSOP (K4-16-1)

SIDE VIEW

Rev. 01

MICREL, INC. 2180 FORTUNE DRIVE SAN JOSE, CA 95131 USA

тец + 1 (408) 944-0800 FAX + 1 (408) 474-1000 web http://www.micrel.com

The information furnished by Micrel in this data sheet is believed to be accurate and reliable. However, no responsibility is assumed by Micrel for its use. Micrel reserves the right to change circuitry and specifications at any time without notification to the customer.

Micrel Products are not designed or authorized for use as components in life support appliances, devices or systems where malfunction of a product can reasonably be expected to result in personal injury. Life support devices or systems are devices or systems that (a) are intended for surgical implant into the body or (b) support or sustain life, and whose failure to perform can be reasonably expected to result in a significant injury to the user. A Purchaser's use or sale of Micrel Products for use in life support appliances, devices or systems is at Purchaser's own risk and Purchaser agrees to fully indemnify Micrel for any damages resulting from such use or sale.

© 2005 Micrel, Incorporated.