SY89230U # 3.2GHz Precision, LVPECL ÷3, ÷5 Clock Divider ### **Preliminary** ### **General Description** The SY89230U is a precision, low jitter 3.2 GHz $\div 3$, $\div 5$ clock divider with an LVPECL output. The differential input includes Micrel's unique, 3-pin internal termination architecture that allows the input to interface to any differential signal (AC- or DC-coupled) as small as 100mV (200mV_{PP}) without any level shifting or termination resistor networks in the signal path. The outputs are 800mV, 100K-compatible LVPECL with fast rise/fall times guaranteed to be less than 200ps. The SY89230U operates from a 2.5V $\pm 5\%$ or 3.3V $\pm 10\%$ supply and is guaranteed over the full industrial temperature range of -40° C to $+85^{\circ}$ C. The SY89230U is part of Micrel's high-speed, Precision Edge® product line. All support documentation can be found on Micrel's web site at: www.micrel.com. #### **Block Diagram** Precision Edge® #### **Features** - Accepts a high-speed input and provides a precision ÷3 and ÷5 sub-rate, LVPECL output - Guaranteed AC performance over temperature and supply voltage: - DC-to >3.2 GHz throughput - < 850ps Propagation Delay (In-to-Q)</p> - < 200ps Rise/Fall times</p> - Ultra-low jitter design: - <1ps_{RMS} random jitter - <1ps_{RMS} cycle-to-cycle jitter - <10ps_{PP} total jitter (clock) - < 0.7ps_{RMS} MUX crosstalk induced jitter - Unique patented internal termination and VT pin accepts DC- and AC-coupled inputs (CML, PECL, LVDS) - Wide input voltage range VCC to GND - 800mV LVPECL output - TBD% to TBD% Duty Cycle - 2.5V ±5% or 3.3V ±10% supply voltage - -40°C to +85°C industrial temperature range - Available in 16-pin (3mm x 3mm) MLF[®] package ### **Applications** • Fail-safe clock protection #### Markets - LAN/WAN - · Enterprise servers - ATE - · Test and measurement Precision Edge is a registered trademark of Micrel, Inc. MLF and *Micro*LeadFrame are registered trademarks of Amkor Technology. Micrel Inc. • 2180 Fortune Drive • San Jose, CA 95131 • USA • tel +1 (408) 944-0800 • fax + 1 (408) 474-1000 • http://www.micrel.com ## Ordering Information⁽¹⁾ | Part Number | Package
Type | Operating
Range | Package Marking | Lead
Finish | |-----------------------------|-----------------|--------------------|---|-------------------| | SY89230UMG | MLF-16 | Industrial | 230U with
Pb-Free bar-line Indicator | NiPdAu
Pb-Free | | SY89230UMGTR ⁽²⁾ | MLF-16 | Industrial | 230U with Pb-Free bar-line Indicator | NiPdAu
Pb-Free | #### Notes: - 1. Contact factory for die availability. Dice are guaranteed at $T_A = 25$ °C, DC Electricals Only. - 2. Tape and Reel. ### **Pin Configuration** 16-Pin MLF® (MLF-16) ## **Pin Description** | Pin Number | Pin Name | Pin Function | |---------------|---|--| | 1, 4 | IN, /IN | Differential Input: This input pair is the differential signal input to the device, which accepts AC- or DC-coupled signal as small as 100mV. The input internally terminates to a VT pin through 50Ω and has level shifting resistors of $3.72~k\Omega$ to VCC. This allows a wide input voltage range from VCC to GND. See Figure 3a, Simplified Differential Input Stage for details. Note that this input will default to a valid (either HIGH or LOW) state if left open. See "Input Interface Applications" subsection. | | 2 | VT | Input Termination Center-Tap: Each side of the differential input pair terminates to the VT pin. The VT pin provides a center-tap for the input (IN, /IN) to a termination network for maximum interface flexibility. See "Input Interface Applications" section for more details. | | 3 | VREF-AC | Reference Voltage: This output biases to V_{CC} –1.2V. It is used for AC-coupling inputs IN and /IN. Connect VREF-AC directly to the VT pin. Bypass with 0.01µF low ESR capacitor to VCC. Due to limited drive capability, the VREF-AC pin is only intended to drive its respective VT pin. Maximum sink/source current is ± 0.5 mA. See "Input Interface Applications" subsection. | | 5 | EN | Single-ended Input: This TTL/CMOS-compatible input disables and enables the output. It is internally connected to a 25k Ω pull-up resistor and will default to a logic HIGH state if left open. When disabled, Q goes LOW and /Q goes HIGH. EN being synchronous, outputs will be enabled/disabled after a rising and a falling edge of the input clock. $V_{TH} = V_{CC}/2$. | | 6 | Single-ended Input: This TTL/CMOS-compatible input, when pulled LOV | | | 7 | NC | No Connect | | 8, 13 | VCC | Positive Power Supply: Bypass with $0.1\mu F$ in parallel with $0.01\mu F$ low ESR capacitors as close to the V_{CC} pins as possible. | | 12, 9 | Q, /Q | Differential Output: The LVPECL output swing is typically 800mV and is terminated with 50Ω to V_{CC} -2V. See the "Truth Table" below for the logic function. | | 10, 11, 14,15 | GND,
Exposed Pad | Ground: Ground and exposed pad must be connected to a ground plane that is the same potential as the ground pins. | | 16 | DIV_SEL | Single-ended Input: This TTL/CMOS-compatible input selects divide-by-3 when pulled LOW and divide-by-5 when pulled HIGH. Note that this input is internally connected to a 25k Ω pull-up resistor and will default to logic HIGH state if left open. $V_{TH} = V_{CC}/2$. | ### **Truth Table** | | Out | puts | | | |---------|-----|------|----|----| | DIV_SEL | EN | /MR | Q | /Q | | Х | Х | 0 | 0 | 1 | | 0 | 1 | 1 | ÷3 | ÷3 | | 1 | 1 | 1 | ÷5 | ÷5 | | Х | 0 | 1 | 0 | 1 | ## Absolute Maximum Ratings⁽¹⁾ | Supply Voltage (V_{CC})0.5V to Input Voltage (V_{IN})0.5V LVPECL Output Current (I_{OUT}) | to V _{CC} | |---|--------------------| | Continuous | | | Surge | | | Current (V _T) | | | Source or sink current on V _T pin± | 100mA | | Input Current | | | Source or sink current on (IN, /IN) | ±50mA | | Current (V _{REF-AC}) | | | Source/Sink Current on V _{REF-AC} ⁽⁴⁾ ± | 0.5mA | | Maximum Operating Junction Temperature | .125°C | | Lead Temperature (soldering, 20 sec.)+ | | | Storage Temperature (T _s)–65°C to | 150°C | ### Operating Ratings⁽²⁾ | Supply Voltage (V _{CC}) | +2.375V to +2.625V | |---------------------------------------|--------------------| | | +3.0V to +3.6V | | Ambient Temperature (T _A) | 40°C to +85°C | | Package Thermal Resistance (3) | | | MLF [®] (θ _{JA}) | | | Still-Air | 75°C/W | | MLF [®] (Ψ JB) | | | Junction-to-Board | 33°C/W | ### DC Electrical Characteristics⁽⁵⁾ $T_A = -40$ °C to +85°C, unless otherwise stated. | Symbol | Parameter | Condition | Min | Тур | Max | Units | |----------------------|---|------------------------------|----------------------|----------------------|----------------------|--------| | V _{CC} | Power Supply | | 2.375
3.0 | 2.5
3.3 | 2.625
3.6 | V
V | | Icc | Power Supply Current | No load, max V _{CC} | | 62 | 85 | mA | | R _{IN} | Input Resistance
(IN-to-V _T) | | 45 | 50 | 55 | Ω | | R _{DIFF_IN} | Differential Input Resistance (IN-to-/IN) | | 90 | 100 | 110 | Ω | | V _{IH} | Input High Voltage
(IN, /IN) | | 1.2 | | V _{CC} | V | | V _{IL} | Input Low Voltage
(IN, /IN) | | 0 | | V _{IH} -0.1 | V | | V _{IN} | Input Voltage Swing (IN, /IN) | See Figure 2a. Note 6. | 0.1 | | 1.0 | V | | V_{DIFF_IN} | Differential Input Voltage Swing IN-/IN | See Figure 2b. | 0.2 | | | V | | V _{IN_FSI} | Input Voltage Threshold that Triggers FSI | | | 30 | 100 | mV | | V_{REF-AC} | Output Reference Voltage | | V _{CC} -1.3 | V _{CC} -1.2 | V _{CC} -1.1 | V | | V_{T_IN} | Voltage from Input to V _T | | | | 1.28 | V | #### Notes: - 1. Permanent device damage may occur if absolute maximum ratings are exceeded. This is a stress rating only and functional operation is not implied at conditions other than those detailed in the operational sections of this data sheet. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. - 2. The data sheet limits are not guaranteed if the device is operated beyond the operating ratings. - 3. Package thermal resistance assumes exposed pad is soldered (or equivalent) to the devices most negative potential on the PCB. θ_{JA} and ψ_{JB} values are determined for a 4-layer board in still air unless otherwise stated. - 4. Due to limited drive capability use for input of the same package only. - 5. The circuit is designed to meet the DC specifications shown in the above table after thermal equilibrium has been established. - 6. V_{IN} (max) is specified when V_T is floating. ### LVPECL Outputs DC Electrical Characteristics⁽⁷⁾ V_{CC} = 2.5V ±5% or 3.3V ±10%; R_L = 50 Ω to V_{CC} -2V; T_A = -40°C to + 85°C, unless otherwise stated. | Symbol | Parameter | Condition | Min | Тур | Max | Units | |-----------------------|---|----------------|------------------------|------|------------------------|-------| | V _{OH} | Output HIGH Voltage Q, /Q | | V _{CC} -1.145 | | V _{CC} -0.895 | ٧ | | V _{OL} | Output LOW Voltage Q, /Q | | V _{CC} -1.945 | | V _{CC} -1.695 | V | | V _{OUT} | Output Voltage Swing Q, /Q | See Figure 2a. | 550 | 800 | 950 | mV | | V _{DIFF_OUT} | Differential Output Voltage Swing Q, /Q | See Figure 2b. | 1100 | 1600 | | mV | ## LVTTL/CMOS DC Electrical Characteristics⁽⁷⁾ V_{CC} = 2.5V ±5% or 3.3V ±10%; T_A = -40°C to + 85°C, unless otherwise stated. | Symbol | Parameter | Condition | Min | Тур | Max | Units | |-----------------|--------------------|-----------|------|-----|-----|-------| | V _{IH} | Input HIGH Voltage | | 2.0 | | | V | | V _{IL} | Input LOW Voltage | | | | 0.8 | V | | I _{IH} | Input HIGH Current | | -125 | | 30 | μA | | I _{IL} | Input LOW Current | | -300 | | | μA | #### Note: ^{7.} The circuit is designed to meet the DC specifications shown in the above table after thermal equilibrium has been established. ### **AC Electrical Characteristics**(8) V_{CC} = 2.5V ±5% or 3.3V ±10%; R_L = 50 Ω to V_{CC} -2V; T_A = -40°C to + 85°C, unless otherwise stated. | Symbol | Parameter | Condition | Min | Тур | Max | Units | |---------------------|------------------------------------|--------------------------|-----|-----|-----|-------------------| | f _{MAX} | Maximum Input Operating Frequency | V _{OUT} ≥ 200mV | 3.2 | | | GHz | | tw | Minimum Pulse Width | | 100 | | | ps | | t _{pd} | Differential Propagation Delay | Note 9 | 450 | 650 | 850 | ps | | | In-to-Q | | | | | | | | /MR(H-L)-to-Q | | 250 | 450 | 650 | ps | | t _{RR} | Reset Recovery Time | /MR(L-H)-to-IN | 300 | | | ps | | t _S EN | Set-up Time EN-to-CLK | Note 10 | 50 | | | ps | | t _H EN | Hold Time CLK-to-EN | Note 10 | 250 | | | ps | | t _{skew} | Part-to-Part Skew | Note 10 | | | 300 | ps | | t _{JITTER} | Clock | | | | | | | | Random Jitter | Note 11 | | | 1 | ps _{RMS} | | | Cycle-to-Cycle Jitter | Note 12 | | | 1 | ps _{RMS} | | | Total Jitter | Note 13 | | | 10 | ps _{PP} | | $t_{r,}$ t_{f} | Output Rise/Fall Time (20% to 80%) | At full output swing. | 90 | | 200 | ps | | | Duty Cycle (input) | | 40 | | 60 | % | | | Duty Cycle (output) | f ≤ 2GHz, Note 14 | 47 | | 53 | % | | | | f > 2GHz, Note 14 | 45 | | 55 | % | #### Notes: - 8. High-frequency AC-parameters are guaranteed by design and characterization. - The propagation delay is function of the rise and fall times at IN. Input t_f / t_f ≤ 300ps (20% to 80%). See "Typical Operating Characteristics" for details. - 10. Set-up and hold times apply to synchronous applications that intend to enable/disable before the next clock cycle. For asynchronous applications, set-up and hold do not apply. - 11. Random Jitter is measured with a K28.7 character pattern, measured at <f_{MAX}. - 12. Cycle-to-Cycle Jitter definition: the variation of periods between adjacent cycles, $T_n T_{n-1}$ where T is the time between rising edges of the output signal. - 13. Total Jitter definition: with an ideal clock input of frequency < f_{MAX}, no more than one output edge in 10¹² output edges will deviate by more than the specified peak-to-peak jitter value. - 14. For Input Duty Cycle different from 50%, see "Output Duty Cycle Equation" in "Functional Description" subsection. ### **Functional Description** #### **Output Duty Cycle Equation** For divide by 3, output Duty Cycle is: $$\frac{1+\frac{X}{100}}{3}$$ For divide by 5, output Duty Cycle is: $$\frac{2 + \frac{X}{100}}{5}$$ X = input Duty Cycle #### Enable (EN) EN is a synchronous TTL/CMOS-compatible input that enables/disables the outputs based on the input to this pin. Internal 25k Ω pull-up resistor defaults the input to logic HIGH if left open. Input switching threshold is $V_{\rm CC}/2$. The Enable function operates as follows: The enable/disable function is synchronous so that the clock outputs will be enabled or disabled following a rising and a falling edge of the input clock when switching from EN = LOW to EN = HIGH. However, when switching from EN = HIGH to EN = LOW, the clock outputs will be disable following an input clock rising edge and an output clock falling edge. The enable/disable function always guarantees the full pulse width at the output before the clock outputs are disabled, non-depending on the divider ratio. Refer to Figure 1b for examples. #### **Divider Operation** The divider operation uses both the rising and falling edge of the input clock. For divide by 3, the falling edge of the second input clock cycle will determine the falling edge of the output. For divide by 5, the falling edge of the third input clock cycle. Refer to Figure 1c. ## **Timing Diagrams** Figure 1a. Propagation Delay Figure 1b. Enable Output Timing Diagram Examples Figure 1c. Divider Operation Timing Diagram ### **Typical Operating Characteristics** V_{CC} = 3.3V, GND = 0V, $t_r / t_f \le 300$ ps, R_L = 50 Ω to V_{CC} = 2V; T_A = 25°C, unless otherwise stated. #### **Functional Characteristics** V_{CC} = 2.5V, GND = 0V, V_{IN} = 100mV, Q = Divide by 3, $t_r/t_f \le$ 300ps, R_L = 50 Ω to V_{CC} -2V; T_A = 25°C, unless otherwise stated. TIME (1ns/div.) ## **Single-Ended and Differential Swings** Figure 2a. Single-Ended Voltage Swing Figure 2b. Differential Voltage Swing ### **Input and Output Stages** Figure 3a. Simplified Differential Input Stage Figure 3b. Simplified Differential Output Stage ## **Input Interface Applications** Figure 4a. LVPECL Interface (DC-Coupled) Figure 4b. LVPECL Interface (AC-Coupled) Option: may connect V_T to V_{CC} Figure 4c. CML Interface (DC-Coupled) Figure 4d. CML Interface (AC-Coupled) Figure 4e. LVDS Interface (DC-Coupled) SY89230U Micrel, Inc. ### **PECL Output Interface Applications** PECL has a high input impedance, a very low output impedance (open emitter), and a small signal swing which results in low EMI. PECL is ideal for driving $50\Omega\text{-}$ and $100\Omega\text{-}controlled$ impedance transmission lines. There are several techniques for terminating the PECL output: parallel termination-thevenin equivalent, parallel termination (3-resistor), and ACcoupled termination. Unused output pairs may be left floating. However, single-ended outputs must be terminated, or balanced. Figure 5a. Parallel Termination-Thevenin Equivalent #### Notes: - 1. Power-saving alternative to Thevenin termination. - 2. Place termination resistors as close to destination inputs as possible. - 3. Rb resistor sets the DC bias voltage, equal to $V_{CC} 2V$. - 4. For 2.5V systems, R_b = 19 Ω . For 3.3V systems, R_b = 50 Ω . Figure 5b. Parallel Termination (3-Resistor) ### **Related Product and Support Documentation** | Part Number | Function | Datasheet Link | |---------------|---|--| | SY89228U | 1GHz Precision, LVPECL ÷3, ÷5 Clock
Divider with Fail-Safe Input and Internal
Termination | | | SY89229U | 1GHz Precision, LVDS ÷3, ÷5 Clock Divider with Fail-Safe Input and Internal Termination | | | SY89231U | 3.2GHz Precision, LVDS ÷3, ÷5 Clock
Divider | | | | MLF® Application Note | www.amkor.com/products/notes_papers/MLFAppNote.pdf | | HBW Solutions | New Products and Applications | www.micrel.com/product-info/products/solutions.shtml | ### **Package Information** TE: ALL DIMENSIONS ARE IN MILLIMETERS. MAX. PACKAGE WARPAGE IS 0.05 mm. MAXIMUM ALLOWABE BURRS IS 0.076 mm IN ALL DIRECTIONS. PIN #1 ID ON TOP WILL BE LASER/INK MARKED. APPLIED ONLY FOR TERMINALS. APPLIED FOR EXPOSED PAD AND TERMINALS. SIDE VIEW #### 16-Pin MicroLeadFrame® (MLF-16) #### **Packages Notes:** - Package meets Level 2 Moisture Sensitivity Classification. - All parts are dry-packed before shipment. - Exposed pad must be soldered to a ground for proper thermal management. NUTE #### MICREL, INC. 2180 FORTUNE DRIVE SAN JOSE, CA 95131 USA TEL +1 (408) 944-0800 FAX +1 (408) 474-1000 WEB http://www.micrel.com The information furnished by Micrel in this data sheet is believed to be accurate and reliable. However, no responsibility is assumed by Micrel for its use. Micrel reserves the right to change circuitry and specifications at any time without notification to the customer. Micrel Products are not designed or authorized for use as components in life support appliances, devices or systems where malfunction of a product can reasonably be expected to result in personal injury. Life support devices or systems are devices or systems that (a) are intended for surgical implant into the body or (b) support or sustain life, and whose failure to perform can be reasonably expected to result in a significant injury to the user. A Purchaser's use or sale of Micrel Products for use in life support appliances, devices or systems is a Purchaser's own risk and Purchaser agrees to fully indemnify Micrel for any damages resulting from such use or sale. © 2007 Micrel. Inc.