life.augmented

STY50N105DK5

N-channel 1050 V, 0.110 Ω typ., 46 A MDmesh[™] DK5 Power MOSFET in a Max247 package

Datasheet - production data

Figure 1: Internal schematic diagram

Features

Order code	V _{DS}	R _{DS(on)} max.	ID	Ртот
STY50N105DK5	1050 V	0.120 Ω	46 A	625 W

- Fast-recovery body diode
- Best R_{DS(on)} x area
- Low gate charge, input capacitance and resistance
- 100% avalanche tested
- Extremely high dv/dt ruggedness

Applications

• Switching applications

Description

This very high voltage N-channel Power MOSFET is part of the MDmeshTM DK5 fast recovery diode series. The MDmeshTM DK5 combines very low recovery charge (Q_{rr}) and recovery time (t_{rr}) with an excellent improvement in R_{DS(on)} * area and one of the most effective switching behaviors, ideal for half bridge and full bridge converters.

Table 1: Device summary

Order code	Marking	Packages	Packaging
STY50N105DK5	50N105DK5	Max247	Tube

DocID024200 Rev 2

This is information on a product in full production.

Contents

Contents

1	Electric	al ratings	3
2	Electric	al characteristics	4
	2.1	Electrical characteristics (curves)	6
3	Test cir	cuits	8
4	Packag	e information	9
	4.1	Max247 package information	9
5	Revisio	n history	11

1 Electrical ratings

Table 2: Absolute maximum ratings

Symbol	Parameter	Value	Unit
Vgs	Gate-source voltage	±30	V
1-	Drain current (continuous) at $T_C = 25 \ ^{\circ}C$	46	А
lo	Drain current (continuous) at T _c = 100 °C	30	А
I _{DM} ⁽¹⁾	Drain current (pulsed)	184	А
Ρτοτ	Total dissipation at $T_C = 25 \text{ °C}$	625	W
dv/dt ⁽²⁾	Peak diode recovery voltage slope	50	V/ns
dv/dt ⁽³⁾	MOSFET dv/dt ruggedness	50	V/ns
Tj	Operating junction temperature range	55 to 150	°C
T _{stg}	Storage temperature range	-55 to 150 °	

Notes:

 $^{(1)}\mbox{Pulse}$ width limited by safe operating area

 $^{(2)}I_{SD} \leq 23$ A, di/dt ≤ 400 A/µs; V_{DS peak} $\leq V_{(BR)DSS},$ V_{DD} = 525 V $^{(3)}V_{DS} \leq 840$ V

Table 3: Thermal data

Symbol	Parameter	Value	Unit
R _{thj-case}	Thermal resistance junction-case	0.2	°C/W
R _{thj-amb}	Thermal resistance junction-ambient		

Table 4: Avalanche characteristics

Symbol	Parameter	Value	Unit
las	Single pulse avalanche energy (pulse width limited by $T_{\mbox{\scriptsize JMAX}}$	16	А
E _{AS}	Single pulse avalanche energy (starting $T_J = 25^{\circ}C$, $I_D = I_{AS}$, $V_{DD} = 50 \text{ V}$)	1550	mJ

2 Electrical characteristics

(T_{CASE} = 25 °C unless otherwise specified)

Symbol	Parameter Test conditions		Min.	Тур.	Max.	Unit
V _{(BR)DSS}	Drain-source breakdown voltage	$I_D = 1 \text{ mA}, V_{GS} = 0 \text{ V}$	1050			V
	Zara gata valtaga drain	V_{DS} = 1050 V, V_{GS} = 0 V			1	μΑ
IDSS	IDSS Zero gate voltage drain current				50	μA
I _{GSS}	Gate-body leakage current	$V_{GS} = \pm 20 \text{ V}, V_{DS} = 0 \text{ V}$			±10	μA
V _{GS(th)}	Gate threshold voltage	$V_{DS} = V_{GS}$, $I_D = 100 \ \mu A$	3	4	5	V
R _{DS(on)}	Static drain-source on- resistance	$V_{GS} = 10 \text{ V}, \text{ I}_{D} = 23 \text{ A}$		0.110	0.120	Ω

Table 5: On /off states

Notes:

 $^{(1)}\mbox{Defined}$ by design, not subject to production test

Symbol	Parameter	Test conditions		Тур.	Max.	Unit
Ciss	Input capacitance		-	6675	-	pF
Coss	Output capacitance	V _{DS} = 100 V, f = 1 MHz,	-	370	-	pF
Crss	Reverse transfer capacitance	V _{GS} = 0 V	-	10	-	pF
C _{o(tr)} ⁽¹⁾	Equivalent capacitance time related	V _{GS} = 0 V, V _{DS} = 0 to 840 V	-	630	-	pF
C _{o(er)} ⁽²⁾	Equivalent capacitance energy related	$V_{\rm GS} = 0 V, V_{\rm DS} = 0 10 840 V$	-	219	-	
R_{G}	Intrinsic gate resistance	f = 1 MHz open drain	-	3	-	Ω
Qg	Total gate charge	$V_{DD} = 840 V, I_D = 46 A,$	-	204	-	nC
Qgs	Gate-source charge	Vgs = 10 V	-	36	-	nC
Q _{gd}	Gate-drain charge	(see Figure 15: "Test circuit for gate charge behavior")	-	133	-	nC

Table 6: Dynamic

Notes:

 $^{(1)}$ Time related is defined as a constant equivalent capacitance giving the same charging time as C_{oss} when V_{DS} increases from 0 to 80% V_{DSS} .

 $^{(2)}\mathsf{E}\mathsf{nergy}$ related is defined as a constant equivalent capacitance giving the same stored energy as C_{OSS} when V_{DS} increases from 0 to 80% V_{DSS} .

Electrical characteristics

Table 7: Switching times							
Symbol	Parameter	Min.	Тур.	Max.	Unit		
t _{d(on)}	Turn-on delay time	V _{DD} = 525 V, I _D = 23 A,	-	40.6	-	ns	
tr	Rise time	$R_G = 4.7 \Omega$, $V_{GS} = 10 V$	-	64.5	-	ns	
t _{d(off)}	Turn-off delay time	(see Figure 14: "Test circuit for resistive load switching times"	-	262	-	ns	
t _f	Fall time	and Figure 19: "Switching time waveform")	-	49.5	-	ns	

Table 8: Source drain diode

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
Isd	Source-drain current		-		46	А
Isdm	Source-drain current (pulsed)		-		184	А
V _{SD} ⁽¹⁾	Forward on voltage	I _{SD} = 46 A, V _{GS} = 0 V	-		1.5	V
trr	Reverse recovery time	I _{SD} = 46 A, V _{DD} = 60 V,	-	273		ns
Qrr	Reverse recovery charge	di/dt = 100 A/µs (see <i>Figure 16: "Test circuit for</i>	-	3		μC
I _{RRM}	Reverse recovery current	inductive load switching and diode recovery times")	-	23		А
trr	Reverse recovery time	I _{SD} = 46 A, V _{DD} = 60 V,	-	477		ns
Qrr	Reverse recovery charge	di/dt = 100 A/ μ s, T _j = 150 °C (see <i>Figure 16: "Test circuit for</i>	-	10		μC
Irrm	Reverse recovery current	inductive load switching and diode recovery times")	-	42		A

Notes:

 $^{(1)}\text{Pulsed:}$ pulse duration = 300 µs, duty cycle 1.5%

DocID024200 Rev 2

STY50N105DK5

57

Electrical characteristics

DocID024200 Rev 2

7/12

3 Test circuits

DocID024200 Rev 2

57

4 Package information

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK[®] packages, depending on their level of environmental compliance. ECOPACK[®] specifications, grade definitions and product status are available at: *www.st.com*. ECOPACK[®] is an ST trademark.

4.1 Max247 package information

DocID024200 Rev 2

Package information

STY50N105DK5

T.I.I. 0.14. 0/7			1.4.
Table 9: Max247	package	mecnanical	data

Dim.	mm				
Dim.	Min.	Тур.	Max.		
A	4.70	-	5.30		
A1	2.20	-	2.60		
b	1.00	-	1.40		
b1	2.00	-	2.40		
b2	3.00	-	3.40		
С	0.40	-	0.80		
D	19.70	-	20.30		
е	5.35	-	5.55		
E	15.30	-	15.90		
L	14.20	-	15.20		
L1	3.70	-	4.30		

5 Revision history

Date	Revision	Changes
24-Jan-2013	1	First release
19-Dec-2016	2	Datasheet status promoted from preliminary to production data. Updated features, description and internal schematic diagram on cover page. Updated Section 1: "Electrical ratings" and Section 2: "Electrical characteristics". Minor text changes

IMPORTANT NOTICE - PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST's terms and conditions of sale in place at the time of order acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers' products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2016 STMicroelectronics - All rights reserved

