

STV8179F

Vertical Deflection Booster for Slim CRTs

DATASHEET

OVERVIEW

- Power Amplifier
- Thermal Protection
- Output Current up to 3.6 App
- Flyback Voltage up to 90V (on Pin 5)
- Suitable for DC Coupling Application
- External Flyback Supply

DESCRIPTION

Designed for monitors and high performance TVs, the STV8179F vertical deflection booster can handle flyback voltages of up to 90V. In addition, it is possible to have a flyback voltage which is more than double that of the supply (Pin 2). This allows decreasing power consumption or decreasing the flyback time for a given supply voltage.

The STV8179F operates with supplies of up to 42V and outputs up to $3.6A_{PP}$ to drive the yoke.

The STV8179F is offered in a HEPTAWATT package.

Table of Contents

Chapter 1	Absolute Maximum Ratings
Chapter 2	Thermal Data
Chapter 3	Electrical Characteristics4
Chapter 4	Application Circuits
Chapter 5	Package Mechanical Data

1 Absolute Maximum Ratings

Symbol	Parameter	Value	Unit
V _S	Supply Voltage (Pin 2) (see note 1)	50	V
V ₆	Flyback Peak Voltage (Pin 6) (see note 1)	120	V
V ₁ ,V ₇	Amplifier Input Voltage (Pins 1-7) (see note 1)	-0.3, + V _S	V
Ι _Ο	Maximum Output Peak Current (see notes 2 and 3)	3.0	Α
I ₃	Maximum Sink Current (t < 1ms)	3.0	А
l ₃	Maximum Source Current (t < 1 ms) (in the diode, see Block Diagram) (see note 2)	3.0	A
V _{ESD}	ESD Susceptibility: EIAJ Norm (200pF discharged through 0Ω)	300	V
V ₃ -V ₂	Voltage Difference between Flyback Supply and Supply Voltage	50	V
T _{OPER}	Operating Ambient Temperature	-20, +75	°C
T _{STG}	Storage Temperature	-40, +150	°C
TJ	Junction Temperature	+ 150	°C

Note: 1 Versus Pin 4.

- 2 The output current can reach 6A peak for $t \le 10\mu s$ (up to 120 Hz)
- 3 Provided SOAR is respected (see Figures 3 and 4).

2 Thermal Data

Symbol	Parameter	Value	Unit
R _{th (j-c)}	Junction-Case Thermal Resistance Max.	3	°C/W
TT	Temperature for Thermal Shutdown	150	°C
T _{JR}	Recommended Max. Junction Temperature	120	°C

3 Electrical Characteristics

(V_S = 42V, T_A = 25 °C, unless otherwise specified)

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
V _S	Operating Supply Voltage Range	Versus Pin 4	10		42	V
V _{3M}	Operating Flyback Supply Voltage $(V_{3M} \leq V_S + 50V)$	Versus Pin 4	VS		90	V
I ₂	Pin 2 Quiescent Current	$I_3 = 0, I_5 = 0$		13	20	mA
I ₆	Pin 6 Quiescent Current	$I_3 = 0, I_5 = 0$	7	12	35	mA
۱ _٥	Max. Operating Peak Output Current	Refer to Note 1			1.8	А
I ₁	Amplifier Bias Current	$V_1 = 22V, V_7 = 23V$		-0.15	- 1	μA
l ₃	Flyback current during scanning period	V _{FLYBACK} = 100V		2.0	5.0	mA
I ₇	Amplifier Bias Current	$V_1 = 23V, V_7 = 22V$		-0.15	- 1	μA
V _{IO}	Offset Voltage				7	mV
$\Delta V_{IO}/dt$	Offset Drift Versus Temperature			- 10		µV/°C
GV	Voltage Gain		80			dB
V _{5L}	Output Saturation Voltage to GND (Pin 4)	I ₅ = 1.8A		1.35	2.2	V
V _{5H}	Output Saturation Voltage to Supply (Pin 6)	I ₅ = -1.8A		2.2	3.0	V
V _{D5-6}	Diode Forward Voltage between Pins 5-6	I ₅ = 1.8A		1.8	2.3	V
V _{D3-6}	Diode Forward Voltage between Pins 3-6	I ₃ = 1.8A		2.3	3.3	V
V ₃₋₆	Voltage Drop between Pin 3-6 (2nd part of flyback)	I ₃ = - 1.8A		3.6	4.2	V
V _{5Th}	Threshold voltage for triggering Flyback			Vs+Vd		V

Note: 1 Provided SOA for the output transistors is respected (see Figures 3 and 4).

4 Application Circuits

Figure 1: AC Coupling

Note: To prevent spurious voltages during power-on/power-off phases, you must refer the flyback voltage to $+V_S$ rather than to Ground.

Figure 2: DC Coupling

Note: To prevent spurious voltages during power-on/power-off phases, you must refer the flyback voltage to $+V_S$ rather than to Ground.

Figure 3: Output Transistor SOA (for Secondary Breakdown)

Figure 4: Secondary Breakdown Temperature De-rating Curve (ISB = Secondary Breakdown Current)

5 Package Mechanical Data

Figure 5: 7-pin Plastic Heptawatt Package

Table 1: Heptawatt Package

Dim.	mm			inches			
	Min.	Тур.	Max.	Min.	Тур.	Max.	
Α			4.8			0.189	
С			1.37			0.054	
D	2.40		2.80	0.094		0.110	
D1	1.20		1.35	0.047		0.053	
E	0.35		0.55	0.014		0.022	
E1	0.70		0.97	0.028		0.038	
F	0.60		0.80	0.024		0.031	
G	2.34	2.54	2.74	0.095	0.100	0.105	
G1	4.88	5.08	5.28	0.193	0.200	0.205	
G2	7.42	7.62	7.82	0.295	0.300	0.307	
H2			10.40			0.409	
H3	10.05		10.40	0.396		0.409	
L	16.70	16.90	17.10	0.657	0.668	0.673	

Dim.	mm			inches			
	Min.	Тур.	Max.	Min.	Тур.	Max.	
L1		14.92			0.587		
L2	21.24	21.54	21.84	0.386	0.848	0.860	
L3	22.27	22.52	22.77	0.877	0.891	0.896	
L4			1.29			0.051	
L5	2.60	2.80	3.00	0.102	0.110	0.118	
L6	15.10	15.50	15.80	0.594	0.610	0.622	
L7	6.00	6.35	6.60	0.0236	0.250	0.260	
L9		0.20			0.008		
L10	2.10		2.70	0.082		0.106	
L11	4.30		4.80	0.169		0.190	
М	2.55	2.80	3.05	0.100	0.110	0.120	
M1	4.83	5.08	5.33	0.190	0.200	0.210	
V4	40 (Typ.)						
Dia.	3.65		3.85	0.144		0.152	

Table 1: Heptawatt Package (continued)

Notes:

Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.

The ST logo is a trademark of STMicroelectronics.

All other names are the property of their respective owners.

© 2006 STMicroelectronics - All Rights Reserved

STMicroelectronics Group of Companies

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan - Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America

http://www.st.com