

STTH6004W

Ultrafast high voltage rectifier

Table 1: Main product characteristics

I _{F(AV)}	60 A
V _{RRM}	400 V
T _j (max)	175 °C
V _F (typ)	0.83 V
t _{rr} (max)	50 ns

Features and benefits

- Ultrafast switching
- Low reverse current
- Low thermal resistance
- Reduces switching & conduction losses

Description

The STTH6004W uses ST 400V technology and is specially suited for use in switching power supplies, welding equipment and industrial applications, as an output rectification diode.

Table 2: Order codes

Part number	Marking
STTH6004W	STTH6004W

Table 3: Absolute ratings (limiting values)

Symbol	Parameter	Value	Unit	
V _{RRM}	Repetitive peak reverse voltage	400	V	
I _{F(RMS)}	RMS forward current	90	А	
I _{F(AV)}	Average forward current	$T_{c} = 125 \ ^{\circ}C \delta = 0.5$	60	А
I _{FSM}	Surge non repetitive forward current $t_p = 10$ ms sinusoidal		600	А
T _{stg}	Storage temperature range	-65 to + 175	°C	
Тj	Maximum operating junction temperature	175	°C	

STTH6004W

Table 4: Thermal Resistance

Symbol	Parameter	Value (max).	Unit
R _{th(j-c)}	Junction to case	0.70	°C/W

Table 5: Static electrical characteristics

Symbol	Parameter	Test conditions		Min.	Тур	Max.	Unit
۱ _R *	Reverse leakage current	T _j = 25 °C	$V_{R} = V_{RRM}$			50	μA
		T _j = 150 °C			100	1000	
V _F **	Forward voltage drop	T _j = 25 °C	I _F = 60 A			1.2	V
		T _j = 150 °C			0.83	1.0	

Pulse test:

* t_p = 5 ms, δ < 2% ** t_p = 380 µs, δ < 2%

To evaluate the conduction losses use the following equation: $P = 0.8 \times I_{F(AV)} + 0.0033 I_{F}^{2}(RMS)$

Table 6: Dynamic characteristics

Symbol	Parameter		Test conditions	Min	Тур	Max	Unit
t _{rr}		T _j = 25 °C	$I_F = 1 \text{ A} \text{ dI}_F/\text{dt} = 50 \text{ A}/\mu \text{s} \text{ V}_R = 30 \text{ V}$		66	90	ns
	time		$I_F = 1 \text{ A} \text{ d}I_F/\text{d}t = 200 \text{ A}/\mu \text{s} \text{ V}_R = 30 \text{ V}$		36	50	
I _{RM}	Reverse recovery current	,	I _F = 60 A V _R = 200 V dI _F /dt = 100 A/μs			15	A
S _{factor}	Softness factor		I _F = 60 A V _R = 200 V dI _F /dt = 100 A/μs		0.4		
t _{fr}	Forward recovery time	1	I _F = 60 A dI _F /dt = 200 A/µs V _{FR} = 1.1 x V _{Fmax}			600	ns
V _{FP}	Forward recovery voltage	T _j = 25 °C	$I_F = 60 \text{ A}$ $dI_F/dt = 200 \text{ A}/\mu\text{s}$ $V_{FR} = 1.1 \text{ x} V_{Fmax}$		3.2		V

Figure 1: Conduction losses versus average forward current

Figure 2: Forward voltage drop versus forward current

57

Figure 3: Relative variation of thermal impedance junction to case versus pulse duration

Figure 5: Reverse recovery time versus dl_F/dt (typical values)

Figure 7: Reverse recovery softness factor versus dl_F/dt (typical values)

57

Figure 4: Peak reverse recovery current versus dl_F/dt (typical values)

Figure 6: Reverse recovery charges versus dl_F/dt (typical values)

Figure 8: Relative variations of dynamic parameters versus junction temperature

3/6

Figure 9: Transient peak forward voltage versus dl_F/dt (typical values)

Figure 11: Junction capacitance versus reverse voltage applied (typical values)

Figure 10: Forward recovery time versus dl_F/dt (typical values)

S

Max.

0.203

0.102

0.031

0.055

0.094

0.620

0.793

0.169

0.582

0.118

0.143

5°

60°

3.65 0.139

DIMENSIONS REF. Millimeters Inches Min. Typ. Max. Min. Typ. 4.85 5.15 0.191 A D 2.20 2.60 0.086 Dia Ε 0.40 0.80 0.015 F 1.00 1.40 0.039 F2 2.00 0.078 F3 2.00 2.40 0.078 0.429 G 10.90 Φ 0 L5 Н 15.45 15.75 0.608 L 19.85 20.15 0.781 L 4.30 0.145 L1 3.70 L2 L4 L2 18.50 0.728 ٠Ġ L3 14.20 14.80 0.559 \F2 1L1 L4 34.60 1.362 F3 L3 L5 5.50 0.216 Μ 2.00 3.00 0.078

Е

Μ

Figure 12: DO-247 Package mechanical data

In order to meet environmental requirements, ST offers these devices in ECOPACK® packages. These packages have a Lead-free second level interconnect. The category of second level interconnect is marked on the package and on the inner box label, in compliance with JEDEC Standard JESD97. The maximum ratings related to soldering conditions are also marked on the inner box label. ECOPACK is an ST trademark. ECOPACK specifications are available at: www.st.com.

V V2

Dia.

3.55

5°

60°

Table 7: Ordering information

Ordering type	Marking	Package	Weight	Base qty	Delivery mode
STTH6004W	STTH6004W	DO-247	4.40 g	30	Tube

- Epoxy meets UL94, V0
- Cooling method: by conduction (C)
- Recommended torque value: 0.8 Nm.
- Maximum torque value: 1.0 Nm.

Table 8: Revision history

Date	Revision	Description of Changes
18-Oct-2005	1	First issue

57

Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.

> The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners

> > © 2005 STMicroelectronics - All rights reserved

STMicroelectronics group of companies

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan -Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America www.st.com