

STPSC40065C

650 V power Schottky silicon carbide diode

Datasheet - production data

Description The SiC diode is a high voltage power Schottky

diode. It is manufactured using a silicon carbide substrate. The wide band gap material allows the design of a Schottky diode structure with a 650 V rating. Due to the Schottky construction, no recovery is shown at turn-off and ringing patterns are negligible. The minimal capacitive turn-off behavior is independent of temperature.

Used as a freewheeling or output rectification diode, this rectifier will enhance the performance and form factor of the targeted power supply or inverter.

Table 1: Device s	summary
-------------------	---------

Symbol	Value
I _{F(AV)}	2 x 20 A
Vrrm	650 V
T _j (max.)	175 °C
V _F (typ.)	1.30 V

Features

- No reverse recovery charge in application current range
- Switching behavior independent of temperature
- Dedicated to PFC applications
- ECOPACK[®]2 compliant component

DocID027965 Rev 3

1/9

This is information on a product in full production.

1 Characteristics

Table 2: Absolute ratings per diode (limiting values at 25 °C unless otherwise specified)

Symbol	P	Parameter	Value	Unit	
Vrrm	Repetitive peak reverse volt	Repetitive peak reverse voltage			
I _{F(RMS)}	Forward rms current	40	А		
	Average forward every	$T_c = 140 \ ^{\circ}C^{(1)}$, DC, per diode	20	^	
IF(AV)	IF(AV) Average forward current	$T_c = 130 \ ^{\circ}C^{(1)}$, DC, per device	40	A	
I _{FRM}	Repetitive peak forward current $T_c = 140 \ ^{\circ}C, T_j = 175 \ ^{\circ}C, \delta = 0.1$		87	А	
		t_p = 10 ms sinusoidal, T_c = 25 $^\circ C$	90		
IFSM	Surge non repetitive forward current	$t_p = 10 \text{ ms}$ sinusoidal, $T_c = 125 \text{ °C}$	70	А	
		$t_p = 10 \ \mu s \ square, \ T_c = 25 \ ^\circ C$	400		
T _{stg}	Storage temperature range	-55 to +175	°C		
Tj	Operating junction temperat	Dperating junction temperature range ⁽²⁾			

Notes:

 $^{(1)}\mbox{Value}$ based on $R_{th(j\text{-}c)}$ max.

 $^{(2)}(dP_{tot}/dT_j) < (1/R_{th(j\cdot a)})$ condition to avoid thermal runaway for a diode on its own heatsink.

Table 3: Thermal parameters

Symbol	Parameter	Value	Unit	
Bu a s	Rth(i-c) Junction to case	Per diode	0.90	
R _{th(j-c)} Junction to	Junction to case	Total	0.60	°C/W
R _{th(c)}	Coupling		0.30	

Table 4: Static electrical characteristics (per diode)

Symbol	Parameter	Test conditions		Min.	Тур.	Max.	Unit
		T _j = 25 °C		-	30	300	
IR ⁽¹⁾	IR ⁽¹⁾ Reverse leakage current	T _j = 150 °C	Vr = Vrrm	-	280	2000	μA
		T _j = 25 °C	$V_{R} = 600 V$	-	15	150	
		T _j = 25 °C		-	1.30	1.45	
VF ⁽²⁾	Forward voltage drop	T _j = 150 °C	I _F = 20 A	-	1.45	1.65	V
		T _j = 175 °C		-	1.50		

Notes:

 $^{(1)}$ Pulse test: tp = 5 ms, δ < 2% $^{(2)}$ Pulse test: tp = 500 μ s, δ < 2%

To evaluate the conduction losses use the following equation:

 $P = 1.02 \text{ x } I_{F(AV)} + 0.039 \text{ x } I_{F^2(RMS)}$

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
Oymbol	T al allieter	Test conditions		тур.	max.	Unit
Q _{cj} ⁽¹⁾	Total capacitive charge	V _R = 400 V	-	62	-	nC
C _j Total capacitance	Total conscitors	$V_R = 0 V, T_c = 25 \text{ °C}, F = 1 \text{ MHz}$	-	1250	-	
	I otal capacitance	$V_R = 400 \text{ V}, T_c = 25 ^\circ\text{C}, \text{F} = 1 \text{MHz}$	-	100	-	рF

Table 5: Dynamic electrical characteristics (per diode)

Notes:

 $^{(1)}\ensuremath{\mathsf{Most}}$ accurate value for the capacitive charge:

 $Q_{cj} = \int_0^{V_{OUT}} C_J(V_R) \, . \ \ dV_R$

Characteristics

STPSC40065C

DocID027965 Rev 3

Characteristics

2 Package information

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK[®] packages, depending on their level of environmental compliance. ECOPACK[®] specifications, grade definitions and product status are available at: *www.st.com*. ECOPACK[®] is an ST trademark.

- Epoxy meets UL 94,V0
- Recommended torque value: 0.8 N·m
- Maximum torque value: 1 N m

2.1 TO-247 package information

STPSC40065C

Package information

	Table 6: TO-247 package mechanical data						
	Dimensions						
Ref.		Millimeters			Inches		
	Min.	Тур.	Max.	Min.	Тур.	Max.	
A	4.85		5.15	0.191		0.203	
A1	2.20		2.60	0.086		0.102	
b	1.00		1.40	0.039		0.055	
b1	2.00		2.40	0.078		0.094	
b2	3.00		3.40	0.118		0.133	
с	0.40		0.80	0.015		0.031	
D ⁽¹⁾	19.85		20.15	0.781		0.793	
E	15.45		15.75	0.608		0.620	
е	5.30	5.45	5.60	0.209	0.215	0.220	
L	14.20		14.80	0.559		0.582	
L1	3.70		4.30	0.145		0.169	
L2		18.50			0.728		
ØP ⁽²⁾	3.55		3.65	0.139		0.143	
ØR	4.50		5.50	0.177		0.217	
S	5.30	5.50	5.70	0.209	0.216	0.224	

Notes:

 $^{(1)}\mbox{Dimension}$ D plus gate protusion does not exceed 20.5 mm

 $^{\rm (2)} {\rm Resin}$ thickness around the mounting hole is not less than 0.9 mm.

3 Ordering information

Table 7: Ordering information						
Order code	Marking	Package	Weight	Base qty.	Delivery mode	
STPSC40065CW	PSC40065CW	TO-247	4.43 g	30	Tube	

4 Revision history

Table 8: Document revision history

Date	Revision	Changes
19-Jun-2015	1	First issue.
17-May-2016	2	Datasheet curves and device parameters updated following optimization of the die layout.
27-Sep-2016	3	Updated Section 1: "Characteristics".

STPSC40065C

IMPORTANT NOTICE - PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST's terms and conditions of sale in place at the time of order acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers' products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2016 STMicroelectronics - All rights reserved

