
September 2015 DocID17922 Rev 6 1/18

1

STM8AL3xxx STM8Lxxxx6/8
Errata sheet

STM8AL318x, STM8AL3L8x, STM8AL3xE8x, STM8L052R8,
STM8L15xx6/8 and STM8L162x8 device limitations

Silicon identification

This errata sheet applies to the revision Z of STMicroelectronics STM8L052R8,
STM8L15xM8/R8/C8/R6, STM8L162x8, STM8AL318x, STM8AL3L8x and STM8AL3xE8x
devices.

The products are identifiable as shown in Table 1:

 by the revision code marked below the product identification area on the package

 by the last three digits of the Internal order code printed on the box label

 .

Table 1. Device identification(1)

1. Refer to STM8AL3xxxx, STM8L052R8, STM8L15xx6/8 and STM8L162x8 product datasheets for details on
the device marking.

Part number Revision code marked on device

STM8L052R8 “Z”

STM8L151M8, STM8L152M8, STM8L151R8, STM8L152R8,
STM8L151C8, STM8L152C8, STM8L151R6, STM8L152R6,
STM8L162M8, STM8L162R8

“Z”

STM8AL318x, STM8AL3L8x, STM8AL3xE8x “Z”

Table 2. Device summary

Reference Part number

STM8L052R8 STM8L052R8

STM8L15xM8 STM8L151M8, STM8L152M8

STM8L15xR8 STM8L151R8, STM8L152R8

STM8L15xC8 STM8L151C8, STM8L152C8

STM8L15xR6 STM8L151R6, STM8L152R6

STM8L162x8 STM8L162M8, STM8L162R8

STM8AL318x STM8AL3188, STM8AL3189, STM8AL318A

STM8AL3L8x STM8AL3L88, STM8AL3L89, STM8AL3L8A

STM8AL3xE8x
STM8AL31E88, STM8AL31E89, STM8AL31E8A, STM8AL3LE88,
STM8AL3LE89, STM8AL3LE8A

www.st.com

http://www.st.com

Contents STM8AL3xxx STM8L052R8 STM8L1xxx6/8

2/18 DocID17922 Rev 6

Contents

1 Silicon limitations . 4

1.1 Core limitations . 6

1.1.1 Interrupt service routine (ISR) executed with priority of main process . . 6

1.1.2 Main CPU execution is not resumed after an ISR resets the AL bit 6

1.1.3 Unexpected DIV/DIVW instruction result in ISR 6

1.1.4 Incorrect code execution when WFE execution is interrupted by ISR
or event . 7

1.1.5 Core kept in stall mode when DMA transfer occurs during program/
erase operation to EEPROM . 8

1.1.6 Incorrect code execution when FLASH/EEPROM memory wakes up
from power down mode . 10

1.2 System limitations .11

1.2.1 Default DAC output level when output buffer is enabled 11

1.2.2 32.768 kHz LSE crystal accuracy may be disturbed by the use of
adjacent I/Os . 11

1.2.3 RTC LSE failure can be detected just once after power-on reset 11

1.3 Peripheral limitations . 12

1.3.1 SPI2 peripheral limitations . 12

1.3.2 I2C peripheral limitations . 12

1.3.3 USART peripheral limitations . 15

1.3.4 Timer limitations . 16

2 Revision history . 17

DocID17922 Rev 6 3/18

STM8AL3xxx STM8L052R8 STM8L1xxx6/8 List of tables

3

List of tables

Table 1. Device identification . 1
Table 2. Device summary . 1
Table 3. Summary of STM8AL3xxx, STM8L052R8, STM8L15xx6/8 and STM8L162x8 silicon

 limitations. 4
Table 4. Document revision history . 17

Silicon limitations STM8AL3xxx STM8L052R8 STM8L1xxx6/8

4/18 DocID17922 Rev 6

1 Silicon limitations

Table 3 gives a summary of the fix status.

Legend for Table 3: A = workaround available; N = no workaround available; P = partial
workaround available; N/A: not applicable; ‘-’ and grayed = fixed.

Table 3. Summary of STM8AL3xxx, STM8L052R8, STM8L15xx6/8 and STM8L162x8 silicon
 limitations

Section Limitation

STM8L15xM8/R8/C8/R6
STM8L162x8,
STM8AL318x,
STM8AL3L8x,
STM8AL3xE8x

rev. Z

STM8L052R8
rev. Z

Section 1.1: Core
limitations

Section 1.1.1: Interrupt service routine (ISR)
executed with priority of main process

N N

Section 1.1.2: Main CPU execution is not resumed
after an ISR resets the AL bit

A A

Section 1.1.3: Unexpected DIV/DIVW instruction
result in ISR

A A

Section 1.1.4: Incorrect code execution when WFE
execution is interrupted by ISR or event

A A

Section 1.1.5: Core kept in stall mode when DMA
transfer occurs during program/ erase operation to
EEPROM

A A

Section 1.1.6: Incorrect code execution when
FLASH/EEPROM memory wakes up from power
down mode

A A

Section 1.2:
System
limitations

Section 1.2.1: Default DAC output level when output
buffer is enabled

N N/A

Section 1.2.2: 32.768 kHz LSE crystal accuracy may
be disturbed by the use of adjacent I/Os

N N

Section 1.2.3: RTC LSE failure can be detected just
once after power-on reset

N N

DocID17922 Rev 6 5/18

STM8AL3xxx STM8L052R8 STM8L1xxx6/8 Silicon limitations

17

Section 1.3:
Peripheral
limitations

Section 1.3.1:
SPI2 peripheral
limitations

SPI2_MOSI cannot be configured
as pseudo open-drain on 48-pin
packages

N N

Section 1.3.2:
I2C peripheral
limitations

I2C event management A A

Corrupted last received data in I2C
Master Receiver mode

A A

Wrong behavior of the I2C
peripheral in Master mode after
misplaced STOP

A A

Violation of I2C “setup time for
repeated START condition”
parameter

A A

In I2C slave “NOSTRETCH” mode,
underrun errors may not be
detected and may generate bus
errors

A A

SMBus standard not fully
supported in I2C peripherals

A A

Section 1.3.3:
USART
peripheral
limitations

USART IDLE frame detection not
supported in the case of a clock
deviation

N N

PE flag can be cleared in USART
Duplex mode by writing to the data
register

A A

PE flag is not set in USART Mute
mode using address mark
detection

N N

IDLE flag is not set using address
mark detection in the USART
peripheral

N N

Section 1.3.4:
Timer limitations

TIM1 advanced timer: Bad
regulation for 100% PWM

N N

Table 3. Summary of STM8AL3xxx, STM8L052R8, STM8L15xx6/8 and STM8L162x8 silicon
 limitations (continued)

Section Limitation

STM8L15xM8/R8/C8/R6
STM8L162x8,
STM8AL318x,
STM8AL3L8x,
STM8AL3xE8x

rev. Z

STM8L052R8
rev. Z

Silicon limitations STM8AL3xxx STM8L052R8 STM8L1xxx6/8

6/18 DocID17922 Rev 6

1.1 Core limitations

1.1.1 Interrupt service routine (ISR) executed with priority of main process

Description

If an interrupt is cleared or masked when the context saving has already started, the
corresponding ISR is executed with the priority of the main process.

Workaround

None.

No fix is planned for this limitation.

1.1.2 Main CPU execution is not resumed after an ISR resets the AL bit

Description

If the CPU is in wait for interrupt state and the AL bit is set, the CPU returns to wait for
interrupt state after executing an ISR. To continue executing the main program, the AL bit
must be reset by the ISR. When AL is reset just before exiting the ISR, the CPU may remain
stalled.

Workaround

Reset the AL bit at least two instructions before the IRET instruction.

No fix is planned for this limitation.

1.1.3 Unexpected DIV/DIVW instruction result in ISR

Description

In very specific conditions, a DIV/DIVW instruction may return a false result when executed
inside an interrupt service routine (ISR). This error occurs when the DIV/DIVW instruction is
interrupted and a second interrupt is generated during the execution of the IRET instruction
of the first ISR. Under these conditions, the DIV/DIVW instruction executed inside the
second ISR, including function calls, may return an unexpected result.

The applications that do not use the DIV/DIVW instruction within ISRs are not impacted.

Workaround 1

If an ISR or a function called by this routine contains a division operation, the following
assembly code should be added inside the ISR before the DIV/DIVW instruction:

push cc

pop a

and a,#$BF

push a

pop cc

This sequence should be placed by C compilers at the beginning of the ISR using
DIV/DIVW. Refer to your compiler documentation for details on the implementation and
control of automatic or manual code insertion.

DocID17922 Rev 6 7/18

STM8AL3xxx STM8L052R8 STM8L1xxx6/8 Silicon limitations

17

Workaround 2

To optimize the number of cycles added by workaround 1, you can use this workaround
instead. Workaround 2 can be used in applications with fixed interrupt priorities, identified at
the program compilation phase:

push #value

pop cc

where bits 5 and 3 of #value have to be configured according to interrupt priority given by I1
and I0, and bit 6 kept cleared.

In this case, compiler workaround 1 has to be disabled by using compiler directives.

No fix is planned for this limitation.

1.1.4 Incorrect code execution when WFE execution is interrupted by ISR
or event

Description

Two types of failures can occur:

Case 1:

In case WFE instruction is placed in the two MSB of the 32-bit word within the memory,
an event which occurs during the WFE execution cycle or re-execution cycle (when
returning from ISR handler) will cause an incorrect code execution.

Case 2:

An interrupt request, which occurs during the WFE execution cycle will lead to incorrect
code execution. This is also valid for the WFE re-execution cycle, while returning from
an ISR handler.

The above failures have no impact on the core behavior when the ISR request or events
occur in Wait for Event mode itself, out of the critical single cycle of WFE instruction
execution.

Workaround

General solution is to ensure no interrupt request or event occurs during WFE instruction
execution or re-execution cycle by proper application timing.

Dedicated workarounds:

Case 1:

Replace the WFE instruction with

WFE

JRA next

next:

Silicon limitations STM8AL3xxx STM8L052R8 STM8L1xxx6/8

8/18 DocID17922 Rev 6

Case 2:

It is recommended to avoid any interrupts before WFE mode is entered. This can be
done by disabling all interrupts before the device enters Wait for event mode.

SIM

WFE

RIM

This workaround also prevents WFE re-execution in case 1.

No fix is planned for this limitation.

1.1.5 Core kept in stall mode when DMA transfer occurs during program/
erase operation to EEPROM

Description

When the MCU performs EEPROM program/erase operation, the core is stalled during data
transfer to the memory controller, which occurs at the beginning of the program/erase
operation. If a DMA request servicing starts while the core is stalled, the core does not
return from stall mode to program execution.

The core is stalled for 11 cycles during byte program/erase, 8 cycles during word
program/erase and 3 cycles during each word transfer in block programming mode. For
block erase, the core is stalled for 127 cycles.

When a DMA request arises, it is only served if the DMA priority is higher than the core
access priority.

If the current DMA priority is lower than the core one, the DMA service is delayed until the
core access becomes idle.

The DMA also includes a programmable timeout function, configurable by DMA_GCSR
register. If the core does not release the bus during this timeout, the DMA automatically
increases its own priority and forces the core to release the bus for DMA service.

No fix is planned for this limitation.

Several workarounds are available for this limitation.

Workaround 1

Disable all DMA requests during data transfer to the EEPROM.

This workaround is applicable for all program/erase operations.

Workaround 2

Configure DMA programmable timeout in the DMA_GCSR register to exceed the number of
stall cycles required during the transfer. DMA priority must never be configured to a very
high level.

This workaround is applicable for all program/erase operations except block erase.

In order to apply this workaround to block erase, use block programming to 0x00 instead of
block erase. This takes ~6 ms instead of ~3 ms.

DocID17922 Rev 6 9/18

STM8AL3xxx STM8L052R8 STM8L1xxx6/8 Silicon limitations

17

Workaround 3

This workaround can be used if block erase cannot be replaced by block programming.

In this workaround, DMA is used to transfer data to the EEPROM instead of the core. All
other DMA transfers are delayed once the core is stalled due to data transfer to memory
controller.

/* start of the workaround in user code, using FW Library */
#ifdef USE_EVENT_MODE
 DMA1_Channel3->CCR= DMA_CCR_MEM | DMA_CCR_IDM | DMA_CCR_TCIE; /*
Config DMA Chn3 Mem, incr, disable, interrupt) */
#else
 DMA1_Channel3->CCR= DMA_CCR_MEM | DMA_CCR_IDM; /* Config DMA
Chn3 (Mem, incr,disable) */
#endif

DMA1_Channel3->CM0ARH= (uint8_t)0; /* Source address */
 DMA1_Channel3->CM0ARL= (uint8_t)0;
 DMA1_Channel3->CPARH= (uint8_t)(addr_begin >> 8); /* Destination
address */
 DMA1_Channel3->CPARL= (uint8_t)(addr_begin);
 DMA1_Channel3->CNBTR= 2; /* Number of data to be transferred */
 DMA1_Channel3->CSPR= 8; /* Low priority, 16 bit mode */
 DMA1_Channel3->CSPR &= ~DMA_CSPR_TCIF;/* Clear TCIF */
 DMA1->GCSR|= 1; /* Global DMA enable */

#ifdef USE_EVENT_MODE
 WFE->CR3 = WFE_CR3_DMA1CH23_EV; /* Enable event generation on
DMA */

#endif
 FLASH->DUKR = 0xAE; /* Unprotect data memory */
 FLASH->DUKR = 0x56;
 while((FLASH->IAPSR & FLASH_IAPSR_DUL) == 0)
 {} /* Polling DUL */
 FLASH_Block_Load();
/* end of the workaround in user code */

/* following routine has to be placed in the RAM */
void FLASH_Block_Load(){
 __asm("sim\n"); /* Disable interrupts */

 FLASH->CR2 |= FLASH_CR2_ERASE; /* Enable erase block mode */
 DMA1_Channel3->CCR|= DMA_CCR_CE; /* Enable DMA MEM transfer */
#ifdef USE_EVENT_MODE
 __asm("wfe"); /* Wait for end of DMA operation */
#else
 while((DMA1_Channel3->CSPR & DMA_CSPR_TCIF) == 0)
 {} /* Polling for end of DMA operation */
#endif

 __asm("rim\n"); /* Enable interrupts */
}

Silicon limitations STM8AL3xxx STM8L052R8 STM8L1xxx6/8

10/18 DocID17922 Rev 6

1.1.6 Incorrect code execution when FLASH/EEPROM memory wakes up
from power down mode

Description

In case FLASH/EEPROM memory is put in power down mode (IDDQ), first read after
wakeup could return an incorrect content when FCPU is above 8 MHz + 5%.

FLASH/EEPROM memory is put in IDDQ mode by default during Halt mode and could be
forced to IDDQ mode by software for wait mode and during RAM execution.

As a consequence, following behavior may be seen on some devices:

 After wakeup from Low power mode with FLASH memory in IDDQ mode, program
execution gets lost due to incorrect read of vector table.

 Code running from RAM read an incorrect value from FLASH/EEPROM memory, when
forced in IDDQ mode.

 Program execution gets corrupted when returning from RAM execution to FLASH
memory execution in case FLASH memory is forced in IDDQ mode.

Workaround

Slow down FSYSCLK before entering Low power mode to ensure correct FLASH memory
wakeup. This could be done using clock divider (CLK_CKDIVR) or by activation of fast
wakeup feature by setting FHWU bit in CLK_ICKCR register. Original clock setting can be
reconfigured back by software after wakeup.

Code example, assuming no divider is used in application by default.

CLK_CKDIVR = 0x01;

_asm(“HALT”);

CLK_CKDIVR = 0x00;

The interrupt service routine executed after wakeup could either stay at slower clock speed,
or reconfigure clock setting. Care has to be taken to restore previous clock divider at the end
of interrupt routines when modifying clock divider.

No fix planned for this limitation.

DocID17922 Rev 6 11/18

STM8AL3xxx STM8L052R8 STM8L1xxx6/8 Silicon limitations

17

1.2 System limitations

1.2.1 Default DAC output level when output buffer is enabled

Description

When the DAC is enabled in buffered mode configuration, the output is set to a voltage
which corresponds to the code 0xFFF, whatever the data output register value. The output
recovers the correct voltage as soon as a new data is written into the data holding register.

Workaround

None.

The following software sequence must be executed at the highest speed to limit the duration
of this transient behavior:

DAC->CR1=01; //Enable DAC

DAC->DHR8 = 0x0; //Update the data holding register with 0 (as
an example), or with any other data.

Note: The DAC in unbuffered mode is not affected by this limitation.

1.2.2 32.768 kHz LSE crystal accuracy may be disturbed by the use of
adjacent I/Os

Description

The activity on the PC4 and PC7 I/Os (input or output) can lead to missing pulses on the low
speed external oscillator (32.768 kHz external crystal).

Workaround

None.

If a high LSE accuracy is required, PC4 and PC7 must be tied to VDD or VSS.

No fix planned for this limitation.

1.2.3 RTC LSE failure can be detected just once after power-on reset

Description

When the CSS on LSE is enabled (CSSEN=1 in CSSLSE_CSR), the CSS on LSE Flag
(CSSF) can be set only once after power-on reset. Consequently, in case of several LSE
perturbations in the application, only the first one can be detected and set the CSSF flag.

Workaround

None.

No fix planned for this limitation.

Silicon limitations STM8AL3xxx STM8L052R8 STM8L1xxx6/8

12/18 DocID17922 Rev 6

1.3 Peripheral limitations

1.3.1 SPI2 peripheral limitations

SPI2_MOSI cannot be configured as pseudo open-drain on 48-pin packages

Description

On UFQFPN48 and LQFP48 packages, when the SPI2 peripheral is enabled and
SPI2_MOSI/PD5 is configured as pseudo open-drain output in the GPIO Port D control
register 1 (PD_CR1), PD5 remains in push-pull mode.

SPI2_MOSI can be configured as pseudo open-drain output on LQFP80 and LQFP64
packages.

Workaround

None. However, as SPI2_MOSI is usually configured as push-pull output, this limitation
should not have any impact.

No fix planned for this limitation.

1.3.2 I2C peripheral limitations

I2C event management

Description

As described in the I2C section of the STM8L05x/15x microcontroller family reference
manual (RM0031), the application firmware has to manage several software events before
the current byte is transferred. If the EV7, EV7_1, EV6_1, EV6_3, EV2, EV8 and EV3
events are not managed before the current byte is transferred, problems may occur such as
receiving an extra byte, reading the same data twice or missing data.

Workarounds

When the EV7, EV7_1, EV6_1, EV6_3, EV2, EV8, and EV3 events cannot be managed
before the current byte transfer and before the acknowledge pulse when the ACK control bit
changes, it is recommended to:

1. Use the I2C with DMA in general, except when the Master is receiving a single byte.

2. Use I2C interrupts in nested mode and boost their priorities to the highest one in the
application to make them uninterruptible.

No fix planned for this limitation.

DocID17922 Rev 6 13/18

STM8AL3xxx STM8L052R8 STM8L1xxx6/8 Silicon limitations

17

Corrupted last received data in I2C Master Receiver mode

Conditions

In Master Receiver mode, when the communication is closed using method 2, the content of
the last read data may be corrupted. The following two sequences are concerned by the
limitation:

 Sequence 1: transfer sequence for master receiver when N 2
a) BTF = 1 (Data N-1 in DR and Data N in shift register)

b) Program STOP = 1

c) Read DR twice (Read Data N-1 and Data N) just after programming the STOP bit.

 Sequence 2: transfer sequence for master receiver when N 2
a) BTF = 1 (Data N-2 in DR and Data N-1 in shift register)

b) Program ACK = 0

c) Read Data N-2 in DR

d) Program STOP bit to 1

e) Read Data N-1.

Description

The content of the shift register (data N) is corrupted (data N is shifted 1 bit to the left) if the
user software is not able to read the data N-1 before the STOP condition is generated on the
bus. In this case, reading data N returns a wrong value.

Workaround 1

– Sequence 1

When sequence 1 is used to close communication using method 2, mask all active
interrupts between STOP bit programming and Read data N-1.

– Sequence 2

When sequence 2 is used to close communication using method 2, mask all active
interrupts between Read data N-2, STOP bit programming and Read data N-1.

Workaround 2

Manage I2C RxNE and TxE events with DMA or interrupts of the highest priority level, so
that the condition BTF = 1 never occurs.

Wrong behavior of the I2C peripheral in Master mode after misplaced STOP

Description

The I2C peripheral does not enter Master mode properly if a misplaced STOP is generated
on the bus. This can happen in the following conditions:

 If a void message is received (START condition immediately followed by a STOP): the
BERR (bus error) flag is not set, and the I2C peripheral is not able to send a START
condition on the bus after writing to the START bit in the I2C_CR2 register.

 In the other cases of a misplaced STOP, the BERR flag is set in the IC2_CR2 register.
If the START bit is already set in I2C_CR2, the START condition is not correctly
generated on the bus and can create bus errors.

Silicon limitations STM8AL3xxx STM8L052R8 STM8L1xxx6/8

14/18 DocID17922 Rev 6

Workaround

In the I²C standard, it is allowed to send a Stop only at the end of the full byte (8 bits +
acknowledge), so this scenario is not allowed. Other derived protocols like CBUS allow it,
but they are not supported by the I²C peripheral.

In case of noisy environment in which unwanted bus errors can occur, it is recommended to
implement a timeout to ensure that the SB (start bit) flag is set after the START control bit is
set. In case the timeout has elapsed, the peripheral must be reset by setting the SWRST bit
in the I2C_CR2 control register. The I2C peripheral should be reset in the same way if a
BERR is detected while the START bit is set in I2C_CR2.

No fix is planned for this limitation.

Violation of I2C “setup time for repeated START condition” parameter

Description

In case of a repeated Start, the “setup time for repeated START condition” parameter
(named tSU(STA) in the datasheet and Tsu:sta in the I2C specifications) may be slightly
violated when the I2C operates in Master Standard mode at a frequency ranging from 88 to
100 kHz. tSU(STA) minimum value may be 4 µs instead of 4.7 µs.

The issue occurs under the following conditions:

1. The I2C peripheral operates in Master Standard mode at a frequency ranging from 88
to 100 kHz (no issue in Fast mode)

2. and the SCL rise time meets one of the following conditions:

– The slave does not stretch the clock and the SCL rise time is more than 300 ns
(the issue cannot occur when the SCL rise time is less than 300 ns).

– or the slave stretches the clock.

Workaround

Reduce the frequency down to 88 kHz or use the I2C Fast mode if it is supported by the
slave.

In I2C slave “NOSTRETCH” mode, underrun errors may not be detected
and may generate bus errors

Description

The data valid time (tVD;DAT, tVD;ACK) described by the I2C specifications may be violated as
well as the maximum current data hold time (tHD;DAT) under the conditions described below.
In addition, if the data register is written too late and close to the SCL rising edge, an error
may be generated on the bus: SDA toggles while SCL is high. These violations cannot be
detected because the OVR flag is not set (no transmit buffer underrun is detected).

This issue occurs under the following conditions:

1. The I2C peripheral operates In Slave transmit mode with clock stretching disabled
(NOSTRETCH=1)

2. and the application is late to write the DR data register, but not late enough to set the
OVR flag (the data register is written before the SCL rising edge).

DocID17922 Rev 6 15/18

STM8AL3xxx STM8L052R8 STM8L1xxx6/8 Silicon limitations

17

Workaround

If the master device supports it, use the clock stretching mechanism by programming the bit
NOSTRETCH=0 in the I2C_CR1 register.

If the master device does not support it, ensure that the write operation to the data register
is performed just after TXE or ADDR events. You can use an interrupt on the TXE or ADDR
flag and boost its priority to the higher level or use DMA.

Using the “NOSTRETCH” mode with a slow I2C bus speed can prevent the application from
being late to write the DR register (second condition).

Note: The first data to be transmitted must be written into the data register after the ADDR flag is
cleared, and before the next SCL rising edge, so that the time window to write the first data
into the data register is less than tLOW.

If this is not possible, a possible workaround can be the following:

1. Clear the ADDR flag

2. Wait for the OVR flag to be set

3. Clear OVR and write the first data.

The time window for writing the next data is then the time to transfer one byte. In that case,
the master must discard the first received data.

SMBus standard not fully supported in I2C peripherals

Description

The I2C peripheral is not fully compliant with the SMBus v2.0 standard since it does not
support the capability to NACK an invalid byte/command.

Workarounds

A higher-level mechanism should be used to verify that a write operation is being performed
correctly at the target device, such as:

 The use of the SMBA pin if supported by the host

 The alert response address (ARA) protocol

 The Host notify protocol.

1.3.3 USART peripheral limitations

USART IDLE frame detection not supported in the case of a clock deviation

Description

An idle frame cannot be detected if the receiver clock is deviated.

If a valid idle frame of a minimum length (depending on the M and Stop bit numbers) is
followed without any delay by a start bit, the IDLE flag is not set if the receiver clock is
deviated from the RX line (only if the RX line switches before the receiver clock).

Consequently, the IDLE flag is not set even if a valid idle frame occurred.

Workaround

None.

No fix planned for this limitation.

Silicon limitations STM8AL3xxx STM8L052R8 STM8L1xxx6/8

16/18 DocID17922 Rev 6

PE flag can be cleared in USART Duplex mode by writing to the data register

Description

The PE flag can be cleared by a read to the USART_SR register followed by a read or a
write to the USART_DR register.

When working in duplex mode, the following event can occur: the PE flag set by the receiver
at the end of a reception is cleared by the software transmitter reading the USART_SR (to
check TXE or TC flags) and writing a new data into the USART_DR.

The software receiver can also read a PE flag at ‘0’ if a parity error occurred.

Workaround

The PE flag should be checked before writing to the USART_DR.

PE flag is not set in USART Mute mode using address mark detection

Description

If, when using address mark detection, the receiver recognizes in Mute mode a valid
address frame but the parity check fails, it exits from the Mute mode without setting the PE
flag.

Workaround

None.

IDLE flag is not set using address mark detection in the USART peripheral

Description

The IDLE flag is not set when the address mark detection is enabled, even when the
USART is in Run mode (not only in Mute mode).

Workaround

None.

1.3.4 Timer limitations

TIM1 advanced timer: Bad regulation for 100% PWM

Description

When the OCREFCLR functionality is activated, the OCxREF signal becomes deasserted
(and consequently OCx is deasserted / OCxN is asserted) when a high level is applied on
the OCREF_CLR signal. Then, the PWM restarts (output re-enabled) at the next counter
overflow.

But if the PWM is configured at 100% (CCxR->ARR), then it does not restart and OCxREF
remains de-asserted.

Consequently, current feedbacks cannot be generated without programming a minimum off-
time (there cannot be a 100% PWM for this usage).

Workaround

None.

No fix planned for this limitation.

DocID17922 Rev 6 17/18

STM8AL3xxx STM8L052R8 STM8L1xxx6/8 Revision history

17

2 Revision history

Table 4. Document revision history

Date Revision Changes

09-Sep-2010 1 Initial release.

18-Jan-2011 2 Updated for rev Z devices.

01-Aug-2011 3

Added Section 1.1.4: Incorrect code execution when WFE execution
is interrupted by ISR or event and Section 1.1.5: Core kept in stall
mode when DMA transfer occurs during program/ erase operation to
EEPROM.

Updated format of Table 3: Summary of STM8AL3xxx,
STM8L052R8, STM8L15xx6/8 and STM8L162x8 silicon limitations.

18-Feb-2013 4

Added STM8L052R8 part number.

Updated Section 1.1.4: Incorrect code execution when WFE
execution is interrupted by ISR or event.

Updated cover page.

20-Jun-2013 5
Added Section 1.1.6: Incorrect code execution when
FLASH/EEPROM memory wakes up from power down mode.

11-Sep-2015 6

Removed the Appendix: Revision code on device marking.

Extended the applicability to STM8AL3xxxx devices. Updated:

– Table 1: Device identification,

– Table 2: Device summary,

– the heading of Table 3: Summary of STM8AL3xxx, STM8L052R8,
STM8L15xx6/8 and STM8L162x8 silicon limitations.

STM8AL3xxx STM8L052R8 STM8L1xxx6/8

18/18 DocID17922 Rev 6

IMPORTANT NOTICE – PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries (“ST”) reserve the right to make changes, corrections, enhancements, modifications, and
improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on
ST products before placing orders. ST products are sold pursuant to ST’s terms and conditions of sale in place at the time of order
acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or
the design of Purchasers’ products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2015 STMicroelectronics – All rights reserved

	Table 1. Device identification
	Table 2. Device summary
	1 Silicon limitations
	Table 3. Summary of STM8AL3xxx, STM8L052R8, STM8L15xx6/8 and STM8L162x8 silicon limitations
	1.1 Core limitations
	1.1.1 Interrupt service routine (ISR) executed with priority of main process
	1.1.2 Main CPU execution is not resumed after an ISR resets the AL bit
	1.1.3 Unexpected DIV/DIVW instruction result in ISR
	1.1.4 Incorrect code execution when WFE execution is interrupted by ISR or event
	1.1.5 Core kept in stall mode when DMA transfer occurs during program/ erase operation to EEPROM
	1.1.6 Incorrect code execution when FLASH/EEPROM memory wakes up from power down mode

	1.2 System limitations
	1.2.1 Default DAC output level when output buffer is enabled
	1.2.2 32.768 kHz LSE crystal accuracy may be disturbed by the use of adjacent I/Os
	1.2.3 RTC LSE failure can be detected just once after power-on reset

	1.3 Peripheral limitations
	1.3.1 SPI2 peripheral limitations
	1.3.2 I2C peripheral limitations
	1.3.3 USART peripheral limitations
	1.3.4 Timer limitations

	2 Revision history
	Table 4. Document revision history

