

STM6522

Dual push-button Smart Reset[™] with capacitor-adjustable setup delay

Features

- Dual Smart Reset[™] push-button inputs with capacitor-adjustable extended reset setup delay (t_{SRC})
- No power-on reset
- Dual RST output, active-low, open-drain
- Fixed Smart Reset[™] input logic voltage levels
- Broad operating voltage range 1.65 V to 5.5 V, inactive reset output levels valid down to 1.0 V
- Low supply current (1.5 μA)
- Operating temperature: industrial grade –40 °C to +85 °C
- TDFN8 package: 2 mm x 2 mm x 0.75 mm
- RoHS compliant

Applications

- Mobile phones, smartphones
- e-books
- MP3 players
- Games
- Portable navigation devices
- Any application that requires delayed reset push-button(s) response for improved system stability

Contents

1	Desc	cription	5
2	Pin d	descriptions	9
	2.1	Power supply (V _{CC})	9
	2.2	Ground (V _{SS})	9
	2.3	Primary Smart Reset™ input (SR0)	9
	2.4	Secondary Smart Reset™ input (SR1)	9
	2.5	Adjustable delay of Smart Reset™ (SRC pin)	0
	2.6	Reset output (RST1) 10	0
	2.7	Reset output (RST2) 10	0
3	Турі	cal operating characteristics1	1
4	Maxi	imum ratings	3
5	DC a	and AC parameters	4
6	Pack	age mechanical data 10	6
7	Pack	age footprint	8
8	Таре	e and reel information 19	9
9	Part	numbering	2
10	Pack	age marking	3
11	Revi	sion history	4

List of tables

Table 1.	Signal names	6
Table 2.	t _{SBC} programmed by an ideal external capacitor	
Table 3.	Absolute maximum ratings	
Table 4.	Operating and measurement conditions1	4
Table 5.	DC and AC characteristics 1	5
Table 6.	TDFN – 8-lead 2 x 2 x 0.75 mm, 0.5 mm pitch package mechanical data 1	7
Table 7.	Parameters for landing pattern - TDFN – 8-lead 2 x 2 mm package 1	8
Table 8.	Carrier tape dimensions 1	
Table 9.	Reel dimensions	20
Table 10.	Ordering information scheme	
Table 11.	Package marking	23
Table 12.	Document revision history	24

List of figures

Figure 1.	Logic diagram	5
Figure 2.	Pin connections	6
Figure 3.	Block diagram	6
Figure 4.	Single-button Smart Reset™ typical hookup	7
Figure 5.	Dual-button Smart Reset™ typical hookup	
Figure 6.	Timing waveforms.	8
Figure 7.	STM6522 timing	9
Figure 8.	Supply current (I _{CC}) vs. temperature 1	1
Figure 9.	Smart Reset delay (t _{SRC}) vs. temperature, C _{SRC} = 0.6 µF 1	1
Figure 10.	Reset timeout period (t _{REC}) vs. temperature	2
Figure 11.	Smart Reset [™] input voltage threshold vs. temperature	2
Figure 12.	AC testing input/output waveforms	4
Figure 13.	TDFN – 8-lead 2 x 2 x 0.75 mm, 0.5 mm pitch package outline	7
Figure 14.	Landing pattern - TDFN – 8-lead 2 x 2 mm without thermal pad	8
Figure 15.	Carrier tape	9
Figure 16.	Reel dimensions	0
Figure 17.	Tape trailer/leader	1
Figure 18.	Pin 1 orientation	
Figure 19.	Package marking, top view2	3

1 Description

The Smart ResetTM devices provide a useful feature that ensures that inadvertent short reset push-button closures do not cause system resets as the extended Smart ResetTM delay setup periods are implemented. Once the valid Smart ResetTM input levels and setup delay are met, the device generates an output reset pulse for a fixed timeout period (t_{BFC}).

The typical application hookup shows that either a single Smart ResetTM input, or both reset inputs can be connected to the applications interrupt and control both the interrupt pin and the hard reset functions. If the push-button is closed for a short time, the processor is only interrupted. If the system still does not respond properly, holding the push-button(s) for the extended setup time (t_{SRC}) causes a hard reset of the processor. The Smart ResetTM feature helps significantly increase system stability and eliminates the need for a dedicated reset button.

The STM65xx family of Smart Reset[™] devices consists of low-current microprocessor reset circuits targeted at applications such as MP3 players, portable navigation or mobile phones, generally any application that requires delayed reset push-button(s) response for improved system stability. The devices in the STM65xx Smart Reset[™] family include various combinations of useful features for the targeted applications.

The STM6522 has two combined Smart ResetTM inputs ($\overline{SR0}$ and $\overline{SR1}$) with delayed reset setup time (t_{SRC}) programmed by an external capacitor on the SRC pin.

Table 1.	Sign	ainames				
Symbol	Input/ output	Description				
RST1	Output	Open-drain reset output, active-low, no internal pull-up resistor.				
RST2	Output	Open-drain reset output, active-low, no internal pull-up resistor.				
SR0	Input	Primary push-button Smart Reset™ input, active-low, fixed voltage input logic levels, no internal pull-up.				
SR1	Input	Secondary push-button Smart Reset™ input - combines with the primary push- button reset to provide setup delay time, active-low, fixed voltage input logic levels, no internal pull-up.				
SRC	Input	Smart Reset TM input delay setup control: connect to an external capacitor to adjust the delay setup time (t_{SRC}).				
V _{CC}	Supply	Supply voltage input. Power supply for the device. A 0.1 μF decoupling ceramic capacitor is recommended to be connected between V _{CC} and V _{SS} pins.				
V _{SS}	Supply	Supply ground.				
NC		No connect (not bonded); should be connected to V _{SS} .				

Table 1.Signal names

Figure 2. Pin connections

Figure 3. Block diagram

57

Figure 4. Single-button Smart Reset[™] typical hookup

Figure 5. Dual-button Smart Reset[™] typical hookup

2 Pin descriptions

2.1 Power supply (V_{CC})

This pin is used to provide the power to the device. A 0.1 μF decoupling ceramic capacitor is recommended to be connected between V_{CC} and V_{SS} pins.

2.2 Ground (V_{SS})

This is the supply ground for the device.

2.3 Primary Smart Reset[™] input (SR0)

The primary push-button Smart Reset[™] input, active-low pin is connected to the pushbutton switch. The input logic voltage levels are set to a fixed voltage level and have no internal pull-up resistor.

2.4 Secondary Smart Reset[™] input (SR1)

The secondary push-button Smart Reset[™] input, active-low pin is connected to the second push-button switch. The input logic voltage levels are set to a fixed voltage level and have no internal pull-up resistor. Keeping both Smart Reset[™] inputs SR0 and SR1 active for longer than t_{SRC} activates the reset output pulse.

Reset is asserted "low" right after the Smart ResetTM setup delay (t_{SRC}) has been met and returns to high after the t_{REC} period.

2.5 Adjustable delay of Smart Reset[™] (SRC pin)

This pin controls the setup time before the push-button action is validated by the reset output. It is connected to an external capacitor (C_{SRC}), which is tied to ground to provide the desired value of setup time (t_{SRC}).

Selected calculated t_{SRC} and C_{SRC} examples are given in *Table 2*. Refer also to *Table 5*.

Calculated C _{SRC}	Se	Closest common					
value [µF]	Min.	Тур.	Max.	C _{SRC} value [µF]			
0.2	2	2.5	3.0	0.22			
0.3	3	3.75	4.5	0.33			
0.6	6	7.5	9	0.56			
1	10	12.5	15	1			

Table 2. t_{SRC} programmed by an ideal external capacitor

1. At 25 °C. Example calculations based on an ideal capacitor. During application design and component selection it should be considered that the current flowing into the external t_{SRC} programming capacitor (C_{SRC}) is on the order of 100 nA, therefore a low-leakage capacitor (ceramic or film capacitor) should be used and placed as close as possible to the SRC pin. Also an adequate low-leakage PCB environment should be ensured to prevent t_{SRC} accuracy from being affected. A recommended minimum value of C_{SRC} is 0.1 µF.

2. In case of quickly repeated activations of t_{SRC} counter, an interval of 10 ms min. is needed between the activations to fully discharge C_{SRC} , so that the next t_{SRC} is as specified.

2.6 Reset output (RST1)

This output is active-low, open-drain with no internal pull-up resistor.

2.7 Reset output (RST2)

This output is active-low, open-drain with no internal pull-up resistor.

3 Typical operating characteristics

Figure 8. Supply current (I_{CC}) vs. temperature

Figure 10. Reset timeout period (t_{REC}) vs. temperature

Figure 11. Smart Reset[™] input voltage threshold vs. temperature

4 Maximum ratings

Stressing the device above the ratings listed in *Table 3: Absolute maximum ratings* may cause permanent damage to the device. These are stress ratings only and operation of the device at these or any other conditions above those indicated in the operating sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. Refer also to the STMicroelectronics SURE Program and other relevant quality documents.

Symbol	Parameter	Value	Unit	
T _{STG}	Storage temperature (V _{CC} off)	-55 to +150	°C	
T _{SLD} ⁽¹⁾	Lead solder temperature for 10 seconds	260	°C	
θ_{JA}	Thermal resistance (junction to ambient)	149.0	°C/W	
V _{IO}	Input or output voltage	–0.3 to V _{CC} +0.3	V	
V _{CC}	Supply voltage		-0.3 to 7	V

Table 3. Absolute maximum ratings

1. Reflow at peak temperature of 260 °C. The time above 255 °C must not exceed 30 seconds.

5 DC and AC parameters

This section summarizes the operating measurement conditions, and the DC and AC characteristics of the device. The parameters in the DC and AC characteristics tables that follow, are derived from tests performed under the measurement conditions summarized in *Table 4: Operating and measurement conditions*. Designers should check that the operating conditions in their circuit match the operating conditions when relying on the quoted parameters.

Parameter	Value	Unit
V _{CC} supply voltage	1.65 to 5.5	V
Ambient operating temperature (T _A)	-40 to +85	°C
Input rise and fall times	≤ 5	ns
Input pulse voltages	0.2 to 0.8 V _{CC}	V
Input and output timing ref. voltages	0.3 to 0.7 V _{CC}	V

Table 4. Operating and measurement conditions

Figure 12. AC testing input/output waveforms

Parameter	Test conditions ⁽¹⁾	Min.	Тур. ⁽²⁾	Max.	Unit			
Supply voltage range		1.65		5.5	V			
Supply ourrept	V _{CC} = 5.0 V		2	3	μA			
Supply current	V _{CC} = 3.0 V		1.5		μA			
	$V_{CC} \geq 4.5$ V, sinking 3.2 mA			0.3	V			
Reset output voltage low (active-low reset asserted)	$V_{CC} \geq 3.3$ V, sinking 2.5 mA			0.3	V			
	$V_{CC} \ge 1.65$ V, sinking 1 mA			0.3	V			
Reset timeout delay, factory programmed		140	210	280	ms			
set™ inputs								
SR0, SR1 input voltage low		V _{SS} -0.3		0.3	V			
SR0, SR1 input voltage high		0.85		5.5	V			
Input leakage current, SRx input		-1		+1	μA			
Smart Reset™ delay								
Delayed Smart Reset [™] setup time. Refer to <i>Table 2</i> .	T _A = 25 °C	10 x C _{SRC} (μF)	12.5 x C _{SRC} (μF)	15 x C _{SRC} (μF)	s			
	Supply voltage range Supply current Reset output voltage low (active-low reset asserted) Reset timeout delay, factory programmed set™ inputs SR0, SR1 input voltage low SR0, SR1 input voltage high Input leakage current, SRx input set™ delay Delayed Smart Reset™	Supply voltage rangeSupply current $V_{CC} = 5.0 \text{ V}$ Supply current $V_{CC} = 3.0 \text{ V}$ Reset output voltage low (active-low reset asserted) $V_{CC} \ge 4.5 \text{ V}$, sinking 3.2 mA $V_{CC} \ge 4.5 \text{ V}$, sinking 2.5 mA $V_{CC} \ge 3.3 \text{ V}$, sinking 2.5 mAReset timeout delay, factory programmed $V_{CC} \ge 1.65 \text{ V}$, sinking 1 mAReset timeout delay, factory programmedSetTM inputsSR0, SR1 input voltage lowSR0, SR1 input voltage highInput leakage current, SRx inputInput leakage current, SRX inputDelayed Smart ResetTMTu = 25 °C	Supply voltage range1.65Supply current $V_{CC} = 5.0 \text{ V}$ Supply current $V_{CC} = 3.0 \text{ V}$ Reset output voltage low (active-low reset asserted) $V_{CC} \ge 4.5 \text{ V}$, sinking 3.2 mA $V_{CC} \ge 3.3 \text{ V}$, sinking 2.5 mA $V_{CC} \ge 3.3 \text{ V}$, sinking 1 mAReset timeout delay, factory programmed $V_{CC} \ge 1.65 \text{ V}$, sinking 1 mAReset timeout delay, factory programmed140Set TM inputs $V_{SS} - 0.3$ SR0, SR1 input voltage low SR0, SR1 input voltage high Input leakage current, SRx input $V_{ASS} - 0.3$ Input leakage current, SRX input -1 set TM delay $T_A = 25 \text{ °C}$ $10 \times C_{SRC}$	Supply voltage range1.65Supply current $V_{CC} = 5.0 \text{ V}$ 2Supply current $V_{CC} = 3.0 \text{ V}$ 1.5Reset output voltage low (active-low reset asserted) $V_{CC} \ge 4.5 \text{ V}$, sinking 3.2 mA1.5Reset timeout delay, factory programmed $V_{CC} \ge 1.65 \text{ V}$, sinking 1 mA140Reset timeout delay, factory programmed140210SR0, SR1 input voltage low $V_{SS} - 0.3$ 140SR0, SR1 input voltage low $V_{SS} - 0.3$ 140SR0, SR1 input voltage low -1 -1 SR0, SR1 input voltage high 0.85 10 x C SRCInput leakage current, SRx input $T_A = 25 ^{\circ}$ C $10 \times C_{SRC}$ $12.5 \times C_{SRC}$	Supply voltage range 1.65 5.5 Supply current $V_{CC} = 5.0 V$ 2 3 $V_{CC} = 3.0 V$ 1.5 $V_{CC} = 3.0 V$ 1.5 Reset output voltage low (active-low reset asserted) $V_{CC} \ge 4.5 V$, sinking 3.2 mA 0.3 $V_{CC} \ge 3.3 V$, sinking 2.5 mA 0.3 Reset timeout delay, factory programmed $V_{CC} \ge 1.65 V$, sinking 1 mA 0.3 0.3 Reset timeout delay, factory programmed 140 210 280 Set TM inputs SR0, SR1 input voltage low $V_{SS} - 0.3$ 0.3 SR0, SR1 input voltage high 0.85 5.5 Input leakage current, SRX input -1 $+1$ set TM delay $T_A = 25 °C$ $10 \times C_{SRC}$ $12.5 \times C_{SRC}$ $15 \times C_{SRC}$			

Table 5.DC and AC characteristics

1. Valid for ambient operating temperature: $T_A = -40$ to +85 °C; $V_{CC} = 1.65$ to 5.5 V (except where noted).

2. Typical value is at 25 $^\circ\text{C}$ and V_{CC} = 3.3 V unless otherwise noted.

3. Input glitch immunity is equal to $t_{\mbox{SRC}}$ (when both $\overline{\mbox{SR}}$ inputs are low, otherwise infinite).

6 Package mechanical data

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK[®] packages, depending on their level of environmental compliance. ECOPACK[®] specifications, grade definitions and product status are available at: *www.st.com*. ECOPACK[®] is an ST trademark.

Figure 13. TDFN – 8-lead 2 x 2 x 0.75 mm, 0.5 mm pitch package outline

Table 6.	TDFN – 8-lead 2 x 2 x 0.75 mm, 0.5 mm pitch package mechanical data
----------	---

Symbol	Dimension (mm)			Dimension (inches)		
	Min.	Nom.	Max.	Min.	Nom.	Max.
А	0.70	0.75	0.80	0.028	0.030	0.031
A1	0.00	0.02	0.05	0.000	0.001	0.002
b	0.15	0.20	0.25	0.006	0.008	0.010
D BSC	1.9	2.00	2.1	0.075	0.079	0.083
E BSC	1.9	2.00	2.1	0.075	0.079	0.083
е		0.50			0.020	
L	0.45	0.55	0.65	0.018	0.022	0.026

7 Package footprint

Figure 14. Landing pattern - TDFN – 8-lead 2 x 2 mm without thermal pad

Table 7.	Parameters for landing pattern - TDFN – 8-lead 2 x 2 mm package
----------	---

Devemeter	Description	Dimension (mm)			
Parameter	Description	Min.	Nom.	Max.	
L	Contact length	1.05	_	1.15	
b	Contact width	0.25	_	0.30	
E	Max. land pattern Y-direction	—	2.85	—	
E1	Contact gap spacing	—	0.65	—	
D	Max. land pattern X-direction	—	1.75	—	
Р	Contact pitch		0.5		

8 Tape and reel information

Figure 15. Carrier tape

Table 8.Carrier tape dimensions

Package	w	D	Е	P ₀	P ₂	F	A ₀	B ₀	K ₀	P ₁	т	Unit	Bulk qty.
TDFN8	8.00 +0.30 -0.10	1.50 +0.10/ -0.00	1.75 ±0.10	4.00 ±0.10	2.00 ±0.10	3.50 ±0.05	2.30 ±0.05	2.30 ±0.05	1.00 ±0.05	4.00 ±0.10	0.250 ±0.05	mm	3000

Table 9.	able 9. Reel dimensions							
Tape sizes	A max.	B min.	С	D min.	N min.	G	T max.	
8 mm	180 (7 inches)	1.50	13.0 +/- 0.20	20.20	60	8.4 +2/-0	14.40	

Figure 17. Tape trailer/leader

Note: 1 Drawings are not to scale.

2 All dimensions are in mm, unless otherwise noted.

9 Part numbering

Table 10. Ordering information scheme

Example:	STM6522	Α	Α	Α	Α	DG	6	F
Device type								
STM6522								
V _{CC} monitoring, power-o	n reset							
$A = no V_{CC}$ monitoring, no	power-on reset							
Smart Reset™ setup dela pull-up on all Smart Rese		of internal	input					
A = user-programmed (ext	ernal capacitor); no i	nput pull-u	р					
Output type								
A = both $\overline{\text{RST1}}$ and $\overline{\text{RST2}}$	open-drain, no pull-u	p, active-lo	w					
Reset timeout period (t _{RI}	_{EC})							
A = 140 ms min.								
Package								
DG = TDFN8 2 x 2 x 0.75	mm, 0.5 mm pitch							
Temperature range								
6 = -40 °C to +85 °C								
Shipping method								

F = ECOPACK[®] package, tape and reel

For device options currently available refer to *Table 11*. For other options, or for more information on any aspect of this device, please contact the ST sales office nearest you.

10 Package marking

Part number	t _{SRC} delay control	Smart Reset™ inputs ⁽¹⁾	Power-on reset, V _{CC} monitoring	RST1 output ⁽¹⁾	RST2 output ⁽¹⁾	t _{REC} option	Topmark	
STM6522AAAADG6F	C_{SRC}	AL		AL, OD	AL, OD	А	AAL	

1. AL = active-low, AH = active-high, PU = with internal pull-up resistor, OD = open-drain.

Figure 19. Package marking, top view

11 Revision history

Date Revision		Changes				
03-Feb-2010	1 Initial release.					
10-May-2010	2	Updated title, Features, Applications, Section 1, Figure 1, Table 1, Figure 2, Figure 3, Figure 4, Figure 5, Figure 6, Section 2.4, Figure 7, note 1 below Table 2, Section 2.6, added Section 2.7, Section 3, Table 5, Table 6, Table 7, Table 10, Section 8, Table 11.				

Please Read Carefully:

Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice.

All ST products are sold pursuant to ST's terms and conditions of sale.

Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein.

UNLESS OTHERWISE SET FORTH IN ST'S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

UNLESS EXPRESSLY APPROVED IN WRITING BY AN AUTHORIZED ST REPRESENTATIVE, ST PRODUCTS ARE NOT RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY, DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER'S OWN RISK.

Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST.

ST and the ST logo are trademarks or registered trademarks of ST in various countries.

Information in this document supersedes and replaces all information previously supplied.

The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.

© 2010 STMicroelectronics - All rights reserved

STMicroelectronics group of companies

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan -Malaysia - Malta - Morocco - Philippines - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America

www.st.com

Doc ID 17045 Rev 2