

STL45N65M5

N-channel 650 V, 0.075 Ω typ., 22.5 A MDmesh[™] M5 Power MOSFET in a PowerFLAT[™] 8x8 HV package

Datasheet - production data

Figure 1: Internal schematic diagram

Features

Order code	V _{DS} @ T _{Jmax.}	R _{DS(on)} max.	ID	Ртот
STL45N65M5	710 V	0.086 Ω	22.5 A	160 W

- Extremely low RDS(on)
- Low gate charge and input capacitance
- Excellent switching performance
- 100% avalanche tested

Applications

• Switching applications

Description

This device is an N-channel Power MOSFET based on the MDmesh[™] M5 innovative vertical process technology combined with the wellknown PowerMESH[™] horizontal layout. The resulting product offers extremely low onresistance, making it particularly suitable for applications requiring high power and superior efficiency.

Table 1: Device summary

Order code	Marking	Package	Packing
STL45N65M5	45N65M5	PowerFLAT™ 8x8 HV	Tape and reel

DocID023354 Rev 2

This is information on a product in full production.

Contents

Contents

1	Electric	al ratings	3
2	Electric	al characteristics	4
	2.1	Electrical characteristics (curves)	6
3	Test cir	cuits	9
4	Packag	e information	10
	4.1	PowerFLAT 8x8 HV package information	11
	4.2	PowerFLAT 8x8 HV packing information	13
5	Revisio	n history	15

1 Electrical ratings

 Table 2: Absolute maximum ratings

Symbol	Parameter	Value	Unit
V _{DS}	Drain-source voltage	650	V
V _{GS}	Gate-source voltage	±25	V
(1)	Drain current (continuous) at T _{case} = 25 °C	22.5	٨
יישו	Drain current (continuous) at T _{case} = 100 °C	18	A
IDM ⁽¹⁾⁽²⁾	Drain current (pulsed)	90	А
P _{TOT} ⁽¹⁾	Total dissipation at T _{case} = 25 °C	160	W
lp ⁽³⁾	Drain current (continuous) at T _{amb} = 25 °C	3.8	٨
ID(-)	Drain current (continuous) at T _{amb} = 100 °C	2.4	A
Ртот ⁽³⁾	Total dissipation at T _{amb} = 25 °C	2.8	W
dv/dt ⁽⁴⁾	Peak diode recovery voltage slope	15	V/ns
T _{stg}	Storage temperature	55 to 150	°C
Tj	Operating junction temperature	-55 to 150	ι. U

Notes:

 $^{(1)}$ The value is rated according to $R_{thj\text{-}case}$ and limited by package.

 $^{\left(2\right) }$ Pulse width limited by safe operating area.

 $^{(3)}$ When mounted on a 1-inch² FR-4, 2oz Cu board.

 $^{(4)}$ ISD \leq 22.5 A, di/dt \leq 400 A/µs, VDD = 400 V, VDS(peak) < V(BR)DSS.

Table 3: Thermal data

Symbol	Parameter	Value	Unit
R _{thj} -case	Thermal resistance junction-case	0.78	°C/W
Rthj-amb ⁽¹⁾	Thermal resistance junction-ambient	45	C/VV

Notes:

 $^{(1)}$ When mounted on a 1-inch² FR-4, 2oz Cu board.

Table 4: Avalanche characteristics

Symbol	Parameter		Unit
lar ⁽¹⁾	Avalanche current, repetitive or not repetitive	8	А
Eas ⁽²⁾	Single pulse avalanche energy	810	mJ

Notes:

 $^{\left(1\right) }$ Pulse width limited by $T_{jmax}.$

 $^{(2)}$ starting T_{j} = 25 °C, I_{D} = $I_{AR},\,V_{DD}$ = 50 V.

2 Electrical characteristics

(T_{case} = 25 °C unless otherwise specified)

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
V _{(BR)DSS}	Drain-source breakdown voltage	V_{GS} = 0 V, I_D = 1 mA	650			V
	Zoro goto voltago drain	$V_{GS} = 0 V, V_{DS} = 650 V$			1	μA
IDSS	Zero gate voltage drain current	V _{GS} = 0 V, V _{DS} = 650 V, T _{case} = 125 °C			100	μA
Igss	Gate-body leakage current	$V_{DS} = 0 V$, $V_{GS} = \pm 25 V$			±100	nA
V _{GS(th)}	Gate threshold voltage	$V_{DS} = V_{GS}$, $I_D = 250 \ \mu A$	3	4	5	V
R _{DS(on)}	Static drain-source on- resistance	$V_{GS} = 10 \text{ V}, \text{ I}_{D} = 14.5 \text{ A}$		0.075	0.086	Ω

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
Ciss	Input capacitance		-	3470	-	
Coss	Output capacitance	V _{DS} = 100 V, f = 1 MHz,	-	82	-	pF
Crss	Reverse transfer capacitance	$V_{GS} = 0 V$	-	7	-	Pi
C _{o(er)} ⁽¹⁾	Equivalent output capacitance energy related	V _{GS} = 0 V, V _{DS} = 0 to 520 V	-	79	-	pF
C _{o(tr)} ⁽²⁾	Equivalent output capacitance time related		-	280	-	
RG	Intrinsic gate resistance	$f = 1 MHz$, $I_D = 0 A$	-	2	-	Ω
Qg	Total gate charge	V _{DD} = 520 V, I _D = 17.5 A,	-	82	-	
Q_{gs}	Gate-source charge	V _{GS} = 10 V (see <i>Figure 16:</i>	-	18.5	-	nC
Q_{gd}	Gate-drain charge	"Gate charge test circuit")	-	35	-	

Table 6: Dynamic

Notes:

 $^{(1)}$ Energy related is defined as a constant equivalent capacitance giving the same stored energy as C_{oss} when V_{DS} increases from 0 to 80% V_{DSS}

 $^{(2)}$ Time related is defined as a constant equivalent capacitance giving the same charging time as C_{OSS} when V_{DS} increases from 0 to 80% V_{DSS}

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
t _{d(v)}	Voltage delay time	V _{DD} = 400 V, I _D = 22.5 A	-	79.5	-	
t _{r(v)}	Voltage rise time	$R_{G} = 4.7 \Omega$, $V_{GS} = 10 V$ (see	-	11	-	
t _{f(i)}	Current fall time	Figure 20: "Switching time	-	9.3	-	ns
t _{c(off)}	Crossing time	waveform")	-	16	-	

Table 7: Switching times

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
Isd ⁽¹⁾	Source-drain current		-		22.5	А
ISDM ⁽¹⁾⁽²⁾	Source-drain current (pulsed)		-		90	А
V _{SD} ⁽³⁾	Forward on voltage	$V_{GS} = 0 V, I_{SD} = 22.5 A$	-		1.5	V
trr	Reverse recovery time	I _{SD} = 22.5 A, di/dt = 100 A/µs,	-	346		ns
Qrr	Reverse recovery charge	V _{DD} = 100 V (see Figure 17: " Test circuit for inductive load	-	6		μC
I _{RRM}	Reverse recovery current	switching and diode recovery times")	-	35		А
trr	Reverse recovery time	I _{SD} = 22.5 A, di/dt = 100 A/µs,	-	432		ns
Qrr	Reverse recovery charge	$V_{DD} = 100 \text{ V}, \text{ T}_{J} = 150 \text{ °C}$ (see Figure 17: " Test circuit for	-	8.4		μC
Irrm	Reverse recovery current	inductive load switching and diode recovery times")	-	39		A

Table 8: Source-drain diode	e
-----------------------------	---

Notes:

 $^{(1)}$ The value is rated according to $R_{thj\text{-case}}$ and limited by package.

 $^{\left(2\right) }$ Pulse width is limited by safe operating area.

 $^{(3)}$ Pulse test: pulse duration = 300 $\mu s,$ duty cycle 1.5%.

STL45N65M5

Electrical characteristics

57

Electrical characteristics

STL45N65M5

Notes:

 $^{(1)}\mathsf{E}_{on}$ including reverse recovery of a SiC diode

57

3 Test circuits

DocID023354 Rev 2

9/16

4 Package information

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK[®] packages, depending on their level of environmental compliance. ECOPACK[®] specifications, grade definitions and product status are available at: *www.st.com*. ECOPACK[®] is an ST trademark.

4.1 **PowerFLAT 8x8 HV package information**

57

Package information

STL45N65M5

	Table 9: PowerFLAT™ 8x8 HV mechanical data					
Dim		mm				
Dim.	Min.	Тур.	Max.			
A	0.75	0.85	0.95			
A1	0.00		0.05			
A3	0.10	0.20	0.30			
b	0.90	1.00	1.10			
D	7.90	8.00	8.10			
E	7.90	8.00	8.10			
D2	7.10	7.20	7.30			
E1	2.65	2.75	2.85			
E2	4.25	4.35	4.45			
e		2.00				
L	0.40	0.50	0.60			

Figure 22: PowerFLAT™ 8x8 HV footprint

All dimensions are in millimeters.

4.2

PowerFLAT 8x8 HV packing information

Figure 24: PowerFLAT™ 8x8 HV package orientation in carrier tape

Figure 25: PowerFLAT™ 8x8 HV reel

5 Revision history

Table 10: Document revision history

Date	Revision	Changes
20-Sep-2012	1	First release.
09-Oct-2015	2	Text and formatting changes throughout document Datasheet status changed from preliminary to production data In section Electrical ratings: - added table Avalanche characteristics In section Electrical characteristics: - renamed table Static (was On /off states) Updated section Test circuits Updated and renamed section Package information (was Package mechanical data)

IMPORTANT NOTICE – PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST's terms and conditions of sale in place at the time of order acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers' products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2015 STMicroelectronics - All rights reserved

