

STGWT40HP65FB

Trench gate field-stop IGBT, HB series 650 V, 40 A high speed

Datasheet - production data

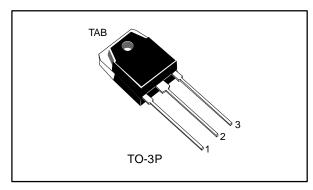
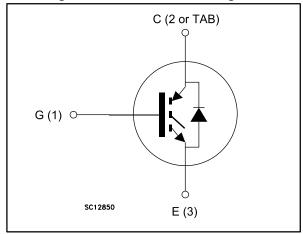



Figure 1: Internal schematic diagram

Features

- Maximum junction temperature: T_J = 175 °C
- Minimized tail current
- V_{CE(sat)} = 1.6 V (typ.) @ I_C = 40 A
- Tight parameter distribution
- Co-packed diode for protection
- Safe paralleling
- Low thermal resistance

Applications

Power factor corrector (PFC)

Description

This device is an IGBT developed using an advanced proprietary trench gate field-stop structure. The device is part of the new HB series of IGBTs, which represents an optimum compromise between conduction and switching loss to maximize the efficiency of any frequency converter. Furthermore, the slightly positive VCE(sat) temperature coefficient and very tight parameter distribution result in safer paralleling operation.

Table 1: Device summary

Order code	Marking	Package	Packing
STGWT40HP65FB	GWT40HP65FB	TO-3P	Tube

Contents STGWT40HP65FB

Contents

1	Electrical ratings				
2	Electric	cal characteristics	4		
	2.1	Electrical characteristics (curves)	6		
3	Test cir	cuits	12		
4		e information			
	4.1	TO-3P package information	14		
5	Revisio	n history	16		

STGWT40HP65FB Electrical ratings

1 Electrical ratings

Table 2: Absolute maximum ratings

Symbol	Parameter	Value	Unit
Vces	Collector-emitter voltage (V _{GE} = 0 V)	650	V
1.	Continuous collector current at T _C = 25 °C	80	А
lc	Continuous collector current at T _C = 100 °C	40	A
ICP ⁽¹⁾	Pulsed collector current	160	Α
V_{GE}	Gate-emitter voltage	± 30	V
IF ⁽²⁾	Continuous forward current at T _C = 25 °C	5	А
IF ⁽⁻⁾	Continuous forward current at T _C = 100 °C	5	A
I _{FP} ⁽³⁾	Pulsed forward current 10		Α
Ртот	Total dissipation at $T_C = 25$ °C 283		W
T _{STG}	Storage temperature range - 55 to 150		°C
TJ	Operating junction temperature range	- 55 to 175	

Notes

Table 3: Thermal data

Symbol	Parameter	Value	Unit
R _{th} JC	Thermal resistance junction-case IGBT	0.53	
R_{thJC}	Thermal resistance junction-case diode	5	°C/W
R _{thJA}	Thermal resistance junction-ambient 50		

 $[\]ensuremath{^{(1)}}\mbox{Pulse}$ width limited by maximum junction temperature.

⁽²⁾Limited by wires.

⁽³⁾Pulsed forward current.

2 Electrical characteristics

 $T_J = 25$ °C unless otherwise specified

Table 4: Static characteristics

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
V _{(BR)CES}	Collector-emitter breakdown voltage	V _{GE} = 0 V, I _C = 2 mA	650			V
		$V_{GE} = 15 \text{ V}, I_{C} = 40 \text{ A}$		1.6	2.0	
V _{CE(sat)} Collector-emitter saturation voltage	V _{GE} = 15 V, I _C = 40 A, T _J = 125 °C		1.7		V	
	V _{GE} = 15 V, I _C = 40 A, T _J = 175 °C		1.8			
		I _F = 5 A		2		
V_{F}	Forward on-voltage	I _F = 5 A, T _J = 125 °C		1.85		V
		I _F = 5 A, T _J = 175 °C		1.75		
$V_{GE(th)}$	Gate threshold voltage	$V_{CE} = V_{GE}$, $I_C = 1 \text{ mA}$	5	6	7	V
I _{CES}	Collector cut-off current	V _{GE} = 0 V, V _{CE} = 650 V			25	μΑ
I _{GES}	Gate-emitter leakage current	V _{CE} = 0 V, V _{GE} = ±20 V			±250	nA

Table 5: Dynamic characteristics

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
Cies	Input capacitance		-	5412	1	
Coes	Output capacitance $V_{CE} = 25 \text{ V}, f = 1 \text{ MHz}, V_{GE} = 0 \text{ V}$		-	198	ı	pF
Cres	Reverse transfer capacitance	VGL — V	-	107	ı	
Qg	Total gate charge V _{CC} = 520 V, I _C = 40 A,		-	210	ı	
Q_{ge}	Gate-emitter charge V _{GE} = 15 V (see <i>Figure 29</i> :		-	39	-	nC
Qgc	Gate-collector charge	"Gate charge test circuit")	-	82	-	

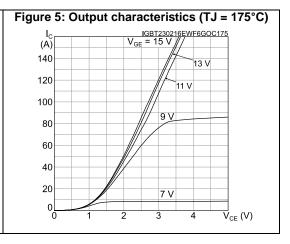
Table 6: IGBT switching characteristics (inductive load)

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
t _{d(off)}	Turn-off-delay time	V _{CE} = 400 V, I _C = 40 A,	-	142	-	ns
t _f	Current fall time	ime $V_{GE} = 15 \text{ V}, R_G = 5 \Omega \text{ (see}$ Figure 28: "Test circuit for		27	-	ns
E _{off} ⁽¹⁾	Turn-off switching energy	inductive load switching")	ı	363	1	μJ
$t_{d(off)}$	Turn-off-delay time $V_{CE} = 400 \text{ V}, I_C = 40 \text{ A},$		-	141	-	ns
t _f	Current fall time	$V_{GE} = 15 \text{ V}, R_G = 5 \Omega$ $T_J = 175 ^{\circ}\text{C} (\text{see } Figure 28:$	ı	61	ı	ns
Eoff	Turn-off switching energy	"Test circuit for inductive load switching")	-	764	1	μJ

Notes:

⁽¹⁾Including the tail of the collector current.

Table 7: Diode switching characteristics (inductive load)


Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
t _{rr}	Reverse recovery time		-	140		ns
Qrr	Reverse recovery charge	$I_F = 5 A, V_R = 400 V,$	-	21		nC
I _{rrm}	Reverse recovery current	V _{GE} = 15 V (see Figure 28: "Test circuit for	-	6.6		Α
dl _{rr} /dt	Peak rate of fall of reverse recovery current during t _b			430		A/µs
Err	Reverse recovery energy		-	1.6		μJ
t _{rr}	Reverse recovery time		-	200		ns
Qrr	Reverse recovery charge $I_F = 5 \text{ A}, V_R = 400 \text{ V}, V_{GE} = 15 \text{ V} \text{ T}_J = 175 ^{\circ}\text{C}$		-	47.3		nC
Irrm	Reverse recovery current	very current (see Figure 28: "Test		9.6		Α
dl _{rr} /dt	Peak rate of fall of reverse recovery current during t _b circuit for inductive load switching") di/dt = 1000 A/μs		-	428		A/µs
Err	everse recovery energy		-	3.2		μJ

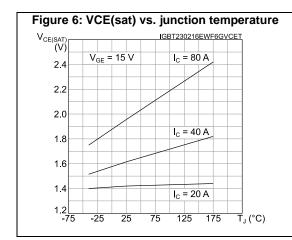

2.1 Electrical characteristics (curves)

Figure 2: Power dissipation vs. case temperature

PTOT GENT AND ADDRESS OF THE PROPERTY OF THE

Figure 3: Collector current vs. case temperature I_{C} $I_{$

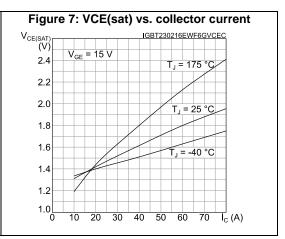
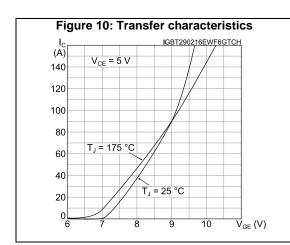
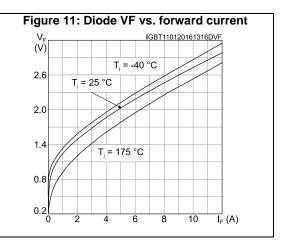
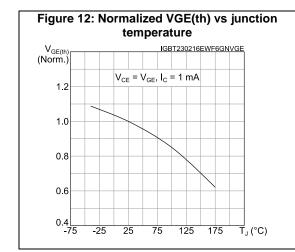





Figure 8: Collector current vs. switching frequency $\begin{array}{c|c} I_C & \text{IGBT230216EWF6GCCS} \\ \hline (A) & 100 & \\ \hline 80 & T_C = 80 \text{ °C} \\ \hline 60 & T_C = 100 \text{ °C} \\ \hline 40 & \\ \hline 20 & \\ \hline Rectangular current shape (duty cycle = 0.5, <math>V_{CC} = 400 \text{ V} \\ R_C = 5 \text{ Q}, V_{CE} = 0.15 \text{ V}, T_J = 175 \text{ °C} \\ \hline 10^0 & 10^1 & 10^2 & f \text{ (kHz)} \\ \hline \end{array}$

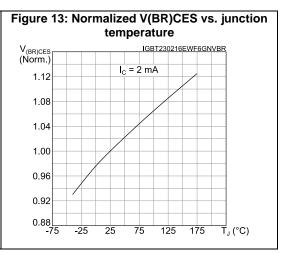
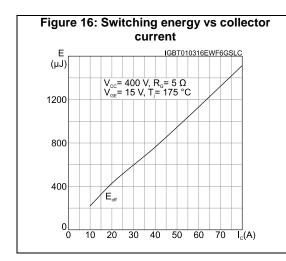
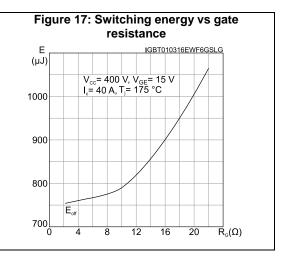
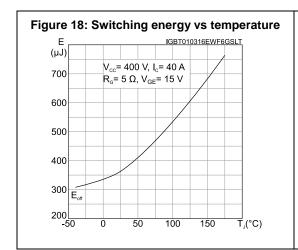
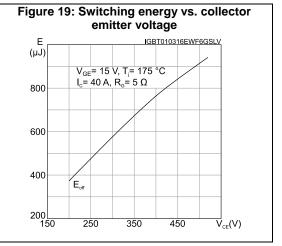


Figure 14: Capacitance variations

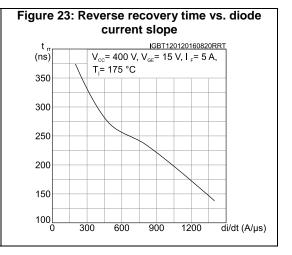

C
(pF)

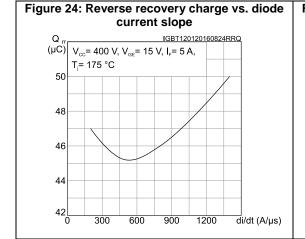

C
(


Figure 15: Gate charge vs. gate-emitter voltage

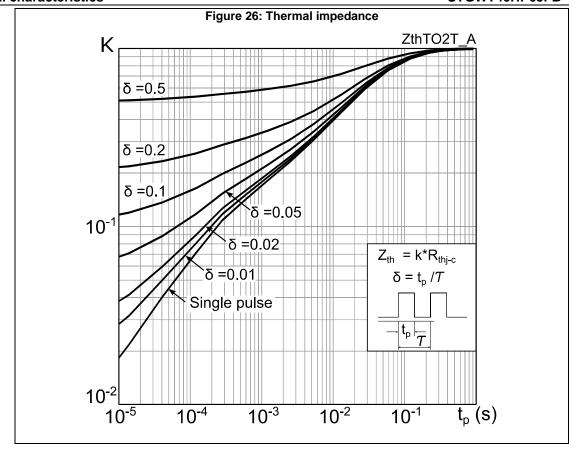

V_{GE} | GBT230216EWF6GGCGE |
(V) | V_{CC} = 520 V, I_C = 40 A |

15 | 10 | 5 |
0 | 40 | 80 | 120 | 160 | 200 | Q_g (nC)

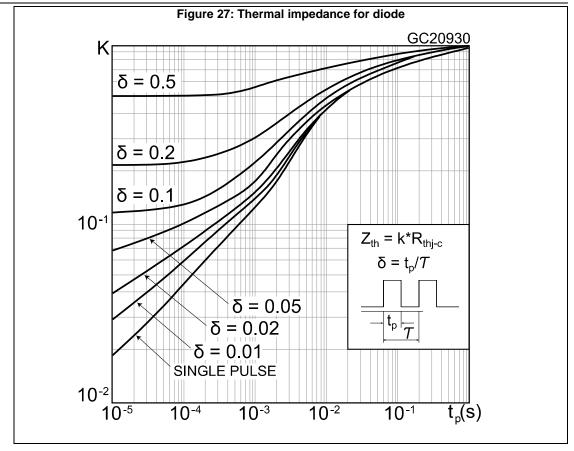


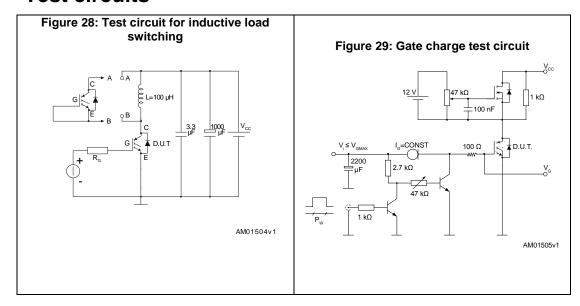


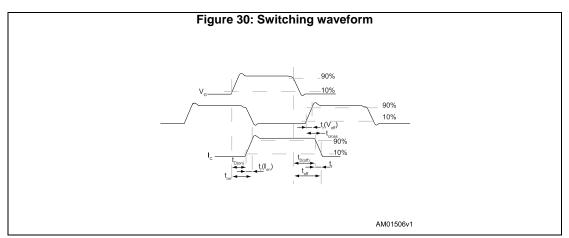




STGWT40HP65FB Electrical characteristics






STGWT40HP65FB Electrical characteristics

Test circuits STGWT40HP65FB

3 Test circuits

4 Package information

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK® packages, depending on their level of environmental compliance. ECOPACK® specifications, grade definitions and product status are available at: **www.st.com**. ECOPACK® is an ST trademark.

4.1 TO-3P package information

Figure 31: TO-3P package outline

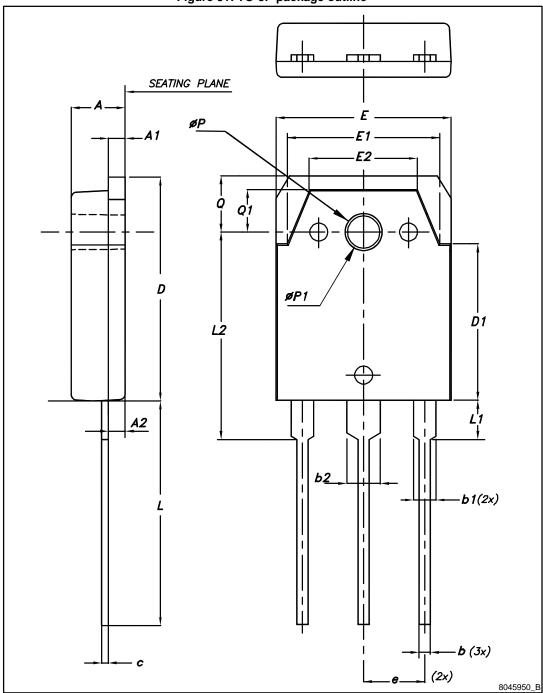


Table 8: TO-3P package mechanical data

Table 6. 10-5F package mechanical data					
Dim.		mm			
Dilli.	Min.	Тур.	Max.		
А	4.60	4.80	5.00		
A1	1.45	1.50	1.65		
A2	1.20	1.40	1.60		
b	0.80	1.00	1.20		
b1	1.80	2.00	2.20		
b2	2.80	3.00	3.20		
С	0.55	0.60	0.75		
D	19.70	19.90	20.10		
D1	13.70	13.90	14.10		
E	15.40	15.60	15.80		
E1	13.40	13.60	13.80		
E2	9.40	9.60	9.90		
е	5.15	5.45	5.75		
L	19.80	20.00	20.20		
L1	3.30	3.50	3.70		
L2	18.20	18.40	18.60		
ØP	3.30	3.40	3.50		
ØP1	3.10	3.20	3.30		
Q	4.80	5.00	5.20		
Q1	3.60	3.80	4		

Revision history STGWT40HP65FB

5 Revision history

Table 9: Document revision history

Date	Revision	Changes
20-Oct-2015	1	First release.
01-Mar-2016	2	Updated features in cover page. Inserted Section 2.1: "Electrical characteristics (curves)". Minor text changes
13-Jul-2016	3	Document status promoted from preliminary to production data.

IMPORTANT NOTICE - PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST's terms and conditions of sale in place at the time of order acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers' products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2016 STMicroelectronics - All rights reserved

