STGIPN3H60T-H

SLLIMM[™]-nano small low-loss intelligent molded module IPM, 3 A, 600 V, 3-phase IGBT inverter bridge

Datasheet - production data

Features

- IPM 3 A, 600 V, 3-phase IGBT inverter bridge including control ICs for gate driving and freewheeling diodes
- Optimized for low electromagnetic interference
- V_{CE(sat)} negative temperature coefficient
- 3.3 V, 5 V, 15 V CMOS/TTL input comparators with hysteresis and pulldown/pull-up resistors
- Undervoltage lockout
- Internal bootstrap diode
- Interlocking function
- Smart shutdown function
- Comparator for fault protection against overtemperature and overcurrent
- Op-amp for advanced current sensing
- Optimized pinout for board layout
- NTC for temperature control (UL 1434 CA 2 and 4)

Applications

- 3-phase inverters for motor drives
- Dish washers, refrigerator compressors, heating systems, air-conditioning fans, draining and recirculation pumps

Description

This SLLIMM (small low-loss intelligent molded module) nano provides a compact, high performance AC motor drive in a simple, rugged design. It is composed of six MOSFETs and three half-bridge HVICs for gate driving, providing low electromagnetic interference (EMI) characteristics with optimized switching speed. The package is optimized for thermal performance and compactness in built-in motor applications, or other low power applications where assembly space is limited. This IPM includes an operational amplifier, completely uncommitted, and a comparator that can be used to design a fast and efficient protection circuit. SLLIMM[™] is a trademark of STMicroelectronics.

Table 1: Device summary

Order code	Marking	Package	Packing
STGIPN3H60T-H	GIPN3H60T-H	NDIP-26L	Tube

March 2017

DocID025716 Rev 7

This is information on a product in full production.

Contents

Con	tents		
1	Internal s	schematic diagram and pin configuration	3
2	Electrica	I ratings	6
	2.1	Absolute maximum ratings	6
	2.2	Thermal data	7
3	Electrica	I characteristics	.8
	3.1	Inverter part	8
	3.2	Control part	10
		3.2.1 NTC thermistor	
	3.3	Waveform definitions	15
4	Smart sh	utdown function	16
5	Applicati	on circuit example	18
	5.1	Guidelines	19
6	Package	information	21
	6.1	NDIP-26L type C package information	22
	6.2	NDIP-26L packing information	24
7	Revision	history	25

1 Internal schematic diagram and pin configuration

Figure 1: Internal schematic diagram

Internal schematic diagram and pin configuration

STGIPN3H60T-H

	5	Table 2: Pin description
Pin	Symbol	Description
1	GND	Ground
2	T/ SD / OD	NTC thermistor terminal / shutdown logic input (active low) / open-drain (comparator output)
3	Vcc W	Low voltage power supply W phase
4	HIN W	High-side logic input for W phase
5	LIN W	Low-side logic input for W phase
6	OP+	Op-amp non-inverting input
7	OPout	Op-amp output
8	OP-	Op-amp inverting input
9	Vcc V	Low voltage power supply V phase
10	HIN V	High-side logic input for V phase
11	LIN V	Low-side logic input for V phase
12	CIN	Comparator input
13	Vcc U	Low voltage power supply for U phase
14	HIN U	High-side logic input for U phase
15	T/ SD / OD	NTC thermistor terminal / shutdown logic input (active low) / open-drain (comparator output)
16	LIN U	Low-side logic input for U phase
17	V _{BOOT} U	Bootstrap voltage for U phase
18	Р	Positive DC input
19	U, OUTu	U phase output
20	Nu	Negative DC input for U phase
21	V _{BOOT} V	Bootstrap voltage for V phase
22	V, OUT _V	V phase output
23	Nv	Negative DC input for V phase
24	Vboot W	Bootstrap voltage for W phase
25	W, OUT _W	W phase output
26	Nw	Negative DC input for W phase

STGIPN3H60T-H

Internal schematic diagram and pin configuration

2 Electrical ratings

2.1 Absolute maximum ratings

Table 3: Inverter part						
Symbol	Parameter	Value	Unit			
VCES	Each IGBT collector emitter voltage $(V_{IN}^{(1)}=0)$	600	V			
± lc ⁽²⁾	Each IGBT continuous collector current at $T_C = 25$ °C	3	А			
± I _{CP} ⁽³⁾	Each IGBT pulsed collector current	18	А			
Ртот	Each IGBT total dissipation at T_C = 25 °C	8	W			

Notes:

 $^{(1)}\mbox{Applied}$ among HIN_i, LIN_i and G_{ND} for i = U, V, W.

⁽²⁾Calculated according to the iterative formula:

$$I_{C}(T_{C}) = \frac{T_{j(max)} - T_{C}}{R_{thj-c} \times V_{CE(sat)(max)}(T_{j(max)}, I_{C}(T_{C}))}$$

 $^{\rm (3)}{\rm Pulse}$ width limited by max. junction temperature.

Symbol	Parameter	Min.	Max.	Unit
Vout	Output voltage applied among OUT_U , OUT_V , OUT_W - GND	V _{boot} - 21	V _{boot} + 0.3	V
Vcc	Low voltage power supply	- 0.3	21	V
V _{CIN}	Comparator input voltage	- 0.3	V _{CC} + 0.3	V
V _{op+}	Op-amp non-inverting input	- 0.3	Vcc + 0.3	V
V _{op-}	Op-amp inverting input	- 0.3	Vcc + 0.3	V
V _{boot}	Bootstrap voltage	- 0.3	620	V
Vin	Logic input voltage applied among HIN, LIN and GND	- 0.3	15	V
$V_{T/\overline{SD}/OD}$	Open-drain voltage	- 0.3	15	V
$\Delta V_{\text{OUT/dT}}$	Allowed output slew rate		50	V/ns

Table 4: Control part

Table 5: Total system	otal system	Tot	5:	ble	Та
-----------------------	-------------	-----	----	-----	----

Symbol	Parameter	Value	Unit
V _{ISO}	Isolation withstand voltage applied among each pin and heatsink plate (AC voltage, $t = 60 \text{ s}$)	1000	V
Tj	Power chip operating junction temperature range	-40 to 150	°C
Tc	Module operation case temperature range	-40 to 125	°C

2.2 Thermal data

Table 6: Thermal data

Symbol	Parameter	Value	Unit
RthJA	Thermal resistance junction-ambient	50	°C/W

3 Electrical characteristics

3.1 Inverter part

 $T_J = 25$ °C unless otherwise specified.

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
V _{CE(sat)} Collector-emitter voltage	Collector omitter octuration	$V_{CC} = V_{boot} = 15 V,$ $V_{IN}^{(1)} = 0 \text{ to } 5 V, I_C = 1 A$	-	2.15	2.6	
			-	1.65		V
ICES	Collector cut-off current $(V_{IN}^{(1)} = 0$ "logic state")	$\label{eq:Vce} \begin{array}{l} V_{CE} = 550 \ V, \\ V_{CC} = V_{Boot} = 15 \ V \end{array}$	-		250	μA
VF	Diode forward voltage	$V_{IN}^{(1)} = 0$ "logic state", I _C = 1 A	-		1.7	V

Notes:

 $^{(1)}\mbox{Applied}$ among HIN_i, LIN_i and G_{ND} for i = U, V, W.

	Table 0. Inductive load Switching time and energy								
Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit			
ton ⁽¹⁾	Turn-on time		-	275	-				
t _{c(on)} ⁽¹⁾	Crossover time (on)	$V_{DD} = 300 V,$	-	90	-				
t _{off} ⁽¹⁾	Turn-off time	$V_{CC} = V_{boot} = 15 V,$	-	890	-	ns			
t _{c(off)} ⁽¹⁾	Crossover time (off)	$V_{IN}^{(2)} = 0$ to 5 V, Ic = 1 A	-	125	-				
trr	Reverse recovery time	(see Figure 4: "Switching	-	50	-				
Eon	Turn-on switching energy	time definition")	-	18	-	1			
E _{off}	Turn-off switching energy		-	13	-	μJ			

Table 8: Inductive load switching time and energy

Notes:

 $^{(1)}\mbox{ton}$ and toFF include the propagation delay time of the internal drive. $t_{C(ON)}$ and $t_{C(OFF)}$ are the switching time of MOSFET itself under the internally given gate driving conditions.

 $^{(2)}\mbox{Applied}$ among HINi, LINi and G_{ND} for i = U, V, W.

STGIPN3H60T-H

Electrical characteristics

Figure 4: "Switching time definition" refers to HIN, LIN inputs (active high).

3.2 Control part

Table 9: Low voltage power supply (Vcc = 15 V unless otherwise specified)

				•		
Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
Vcc_hys	V _{CC} UV hysteresis		1.2	1.5	1.8	V
V _{CC_thON}	V _{CC} UV turn-ON threshold		11.5	12	12.5	V
Vcc_thOFF	V _{CC} UV turn-OFF threshold		10	10.5	11	V
Iqccu	Undervoltage quiescent supply current	$V_{CC} = 10 \text{ V}, \text{ T/ SD} /\text{OD} = 5 \text{ V}; \text{ LIN} = 0,$ $H_{IN} = 0, \text{ C}_{IN} = 0 \text{ V}$			150	μA
Iqcc	Quiescent current	$V_{cc} = 15 \text{ V}, \text{ T/ SD} \text{ /OD} = 5 \text{ V}; \text{ LIN} = 0;$ $H_{IN} = 0, C_{IN} = 0 \text{ V}$			1	mA
V _{ref}	Internal comparator (CIN) reference voltage		0.5	0.54	0.58	V

Table 10: Bootstrapped voltage (V_{CC} = 15 V unless otherwise specified)

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
V _{BS_hys}	V _{BS} UV hysteresis		1.2	1.5	1.8	V
VBS_thON	V _{BS} UV turn-ON threshold		11.1	11.5	12.1	V
$V_{\text{BS}_\text{thOFF}}$	V _{BS} UV turn-OFF threshold		9.8	10	10.6	V
Iqbsu	Undervoltage V _{BS} quiescent current	$V_{BS} < 9 \text{ V}, \text{ T/ SD} /OD = 5 \text{ V}, \text{LIN} = 0$ HIN=5 V, $C_{IN} = 0 \text{ V}$		70	110	μA
I _{QBS}	V _{BS} quiescent current	V _{BS} =15 V, T/ SD /OD = 5 V, LIN = 0 HIN=5 V, C _{IN} = 0 V		150	210	μA
R _{DS(on)}	Bootstrap driver on-resistance	LVG ON		120		Ω

Table 11: Logic inputs (Vcc = 15 V unless otherwise specified)

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
Vil	Low logic level voltage				0.8	V
Vih	High logic level voltage		2.25			V
HINh	HIN logic "1" input bias current	HIN = 15 V	20	40	100	μA
I _{HINI}	HIN logic "0" input bias current	HIN = 0 V			1	μA
I _{LINh}	LIN logic "1" input bias current	LIN = 15 V	20	40	100	μA
ILINI	LIN logic "0" input bias current	LIN = 0 V			1	μA
ISDh	SD logic "0" input bias current	<u>SD</u> = 15 V	220	295	370	μA
Isdi	SD logic "1" input bias current	$\overline{SD} = 0 V$			3	μA
Dt	Dead time	see Figure 9: "Dead time and interlocking waveform definitions"		180		ns

STGIPN3H60T-H

Electrical characteristics

	Table 12: Op-amp characteristics (Vcc = 15 V unless otherwise specified)					
Symbol	Parameter	Test conditions		Тур.	Max.	Unit
Vio	Input offset voltage	$V_{ic} = 0 V, V_o = 7.5 V$			6	mV
lio	Input offset current			4	40	nA
lib	Input bias current ⁽¹⁾	$V_{ic} = 0 V, V_o = 7.5 V$		100	200	nA
Vicm	Input common mode voltage range		0			V
V _{OL}	Low level output voltage	R_L = 10 k Ω to V_{CC}		75	150	mV
Vон	High level output voltage	R_L = 10 k Ω to GND	14	14.7		V
		Source, V_{id} = + 1 V; V_o = 0 V	16	30		mA
lo	Output short-circuit current	Sink, $V_{id} = -1 V$; $V_o = V_{CC}$	50	80		mA
SR	Slew rate	$V_i = 1 - 4 V$; $C_L = 100 pF$; unity gain	2.5	3.8		V/µs
GBWP	Gain bandwidth product	V _o = 7.5 V	8	12		MHz
A _{vd}	Large signal voltage gain	$R_L = 2 k\Omega$	70	85		dB
SVR	Supply voltage rejection ratio	vs. V _{CC}	60	75		dB
CMRR	Common mode rejection ratio		55	70		dB

Notes:

 $^{(1)}\mbox{The}$ direction of input current is out of the IC.

Table 13: Sense comparator characteristics (Vcc = 15 V unless otherwise specified)

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
l _{ib}	Input bias current	V _{CIN} = 1 V			3	μA
V_{od}	Open-drain low level output voltage	I _{od} = 3 mA			0.5	V
Ron_od	Open-drain low level output resistance	l _{od} = 3 mA		166		Ω
R _{PD_SD}	SD pull-down resistor ⁽¹⁾			125		kΩ
td_comp	Comparator delay	T/ \overline{SD} /OD pulled to 5 V through 100 k Ω resistor		90	130	ns
SR	Slew rate	$C_L = 180 \text{ pF}; R_{pu} = 5 \text{ k}\Omega$		60		V/µs
t _{sd}	Shutdown to high / low-side driver propagation delay	$\label{eq:Vout} \begin{array}{l} V_{\text{OUT}}=0, \ V_{\text{boot}}=V_{\text{CC}}, \\ V_{\text{IN}}=0 \ \text{to} \ 3.3 \ \text{V} \end{array}$	50	125	200	
t _{isd}	Comparator triggering to high / low- side driver turn-off propagation delay	Measured applying a voltage step from 0 V to 3.3 V to pin CIN	50	200	250	ns

Notes:

⁽¹⁾Equivalent value derived from the resistances of three drivers in parallel

Electrical characteristics

STGIPN3H60T-H

	Table 14: T	ruth table			
	L	Output			
Condition	T/ SD /OD	LIN	HIN	LVG	HVG
Shutdown enable half-bridge tri-state	L	X ⁽¹⁾	X ⁽¹⁾	L	L
Interlocking half-bridge tri-state	н	Н	Н	L	L
0 "logic state" half-bridge tri-state	н	L	L	L	L
1 "logic state" low-side direct driving	н	Н	L	Н	L
1 "logic state" high-side direct driving	н	L	Н	L	Н

Notes:

⁽¹⁾X: don't care.

3.2.1 NTC thermistor

RPD_SD: equivalent value as result of resistances of three drivers in parallel.

57

DocID025716 Rev 7

Electrical characteristics

STGIPN3H60T-H

Figure 8: Voltage of T/SD/OD pin according to NTC temperature

3.3 Waveform definitions

4 Smart shutdown function

The device integrates a comparator for fault sensing purposes. The comparator has an internal voltage reference V_{REF} connected to the inverting input, while the non-inverting input on pin (C_{IN}) can be connected to an external shunt resistor for simple overcurrent protection.

When the comparator triggers, the device goes to the shutdown state and both of its outputs are set to low level, causing the half-bridge to enter tri-state.

In common overcurrent protection architectures, the comparator output is usually connected to the shutdown input through an RC network so to provide a monostable circuit which implements a protection time following to a fault condition.

Our smart shutdown architecture immediately turns off the output gate driver in case of overcurrent through a preferential path for the fault signal, which directly switches off the outputs. The time delay between the fault and output shutdown no longer depends on the RC values of the external network connected to the shutdown pin. At the same time, the

DMOS connected to the open-drain output (pin T/ SD /OD) is turned on by the internal

logic, which holds it on until the shutdown voltage is lower than the minimum value of logic input threshold (Vil).

Besides, the smart shutdown function allows the real disable time to be increased while the constant time of the external RC network remains as it is.

An NTC thermistor for temperature monitoring is internally connected in parallel to the

SD pin. To avoid undesired shutdown, keep the voltage $V_{T/SD/OD}$ higher than the high level logic threshold by setting the pull-up resistor $R_{\overline{SD}}$ to 1 k Ω or 2.2 k Ω for the 3.3 V or 5 V MCU power supplies, respectively.

Please refer to *Table 13:* "Sense comparator characteristics (VCC = 15 V unless otherwise *specified*)" for internal propagation delay time details.

5 Application circuit example

Application designers are free to use a different scheme according to the specifications of the device.

DocID025716 Rev 7

5.1 Guidelines

- Input signals HIN, LIN are active high logic. A 375 k Ω (typ.) pull-down resistor is builtin for each input. To avoid the input signal oscillation, the wiring of each input should be as short as possible and the use of RC filters (R₁, C₁) on each input signal is suggested. The filters should be with a time constant of about 100 ns and placed as close as possible to the IPM input pins.
- The use of a bypass capacitor C_{VCC} (aluminum or tantalum) can help to reduce the transient circuit demand on the power supply. Besides, to reduce high frequency switching noise distributed on the power lines, a decoupling capacitor C₂ (100 to 220 nF, with low ESR and low ESL) should be placed as close as possible to V_{cc} pin and in parallel whit the bypass capacitor.
- The use of an RC filter (R_{SF}, C_{SF}) is recommended to avoid protection circuit malfunction. The time constant (R_{SF} x C_{SF}) should be set to 1 μs and the filter must be placed as close as possible to the C_{IN} pin.
- The SD is an input/output pin (open-drain type if it is used as output). A built-in

thermistor NTC is internally connected between the \overline{SD} pin and GND. The voltage V_{SD}-GND decreases as the temperature increases, due to the pull-up resistor R_{SD}. In order to keep the voltage always higher than the high level logic threshold, the pull-up resistor is suggested to be set to 1 k Ω or 2.2 k Ω for 3.3 V or 5 V MCU power supply,

respectively. The C_{SD} capacitor of the filter on \overline{SD} should be fixed no higher than 3.3

nF to ensure the SD activation time $\tau 1 \le 500$ ns; the filter should be placed as close

as possible to the SD pin.

- The decoupling capacitor C₃ (from 100 to 220 nF, ceramic with low ESR and low ESL), in parallel with each C_{boot}, filters the high frequency disturbance. Both C_{boot} and C₃ (if present) should be placed as close as possible to the U, V, W and V_{boot} pins. Bootstrap negative electrodes should be connected to U, V, W terminals directly and separated from the main output wires.
- To prevent the overvoltage on V_{cc} pin, a Zener diode (Dz1) can be used. Similarly on the V_{boot} pin, a Zener diode (Dz2) can be placed in parallel with each C_{boot}.
- The use of the decoupling capacitor C₄ (100 to 220 nF, with low ESR and low ESL) in parallel with the electrolytic capacitor C_{vdc} avoids surge destruction. Both capacitors C4 and C_{vdc} should be placed as close as possible to the IPM (C4 has priority over C_{vdc}).
- By integrating an application specific type HVIC inside the module, direct coupling to the MCU terminals without an optocoupler is possible.
- Low inductance shunt resistors should be used for phase leg current sensing.
- In order to avoid malfunctions, the wiring among N pins, the shunt resistor and PWR_GND should be as short as possible. These guidelines ensure the specifications of the device for the application design. For further details, please refer to the relevant application note AN4043.

Application circuit example

STGIPN3H60T-H

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
Vpn	Supply voltage	Applied among P-Nu, Nv, Nw		300	500	V
Vcc	Control supply voltage	Applied to Vcc-GND	13.5	15	18	V
V _{BS}	High-side bias voltage	Applied to V_{BOOTi} -OUTi for i = U, V, W	13		18	V
t _{dead}	Blanking time to prevent arm- short	For each input signal	1.5			μs
fрwм	PWM input signal	-40 °C < T _c < 100 °C -40 °C < T _j < 125 °C			25	kHz
Tc	Case operation temperature				100	°C

Table 15: Recommended operating conditions

6 Package information

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK[®] packages, depending on their level of environmental compliance. ECOPACK[®] specifications, grade definitions and product status are available at: *www.st.com*. ECOPACK[®] is an ST trademark.

6.1 NDIP-26L type C package information

57

DocID025716 Rev 7

STGIPN3H60T-H

Package information

160T-H			Package information			
Table 16: NDIP-26L type C mechanical data						
Dim.		mm				
Dini.	Min.	Тур.	Max.			
A			4.40			
A1	0.80	1.00	1.20			
A2	3.00	3.10	3.20			
A3	1.70	1.80	1.90			
A4	5.70	5.90	6.10			
b	0.53		0.72			
b1	0.52	0.60	0.68			
b2	0.83		1.02			
b3	0.82	0.90	0.98			
С	0.46		0.59			
c1	0.45	0.50	0.55			
D	29.05	29.15	29.25			
D1	0.50	0.77	1.00			
D2	0.35	0.53	0.70			
D3			29.55			
E	12.35	12.45	12.55			
e	1.70	1.80	1.90			
e1	2.40	2.50	2.60			
eB1	16.10	16.40	16.70			
eB2	21.18	21.48	21.78			
L	1.24	1.39	1.54			

6.2 NDIP-26L packing information

Figure 13: NDIP-26L tube (dimensions are in mm)

Table 17: Shipping details		
Parameter	Value	
Base quantity	17 pieces	
Bulk quantity	476 pieces	

7 Revision history

Table 18: Document revision history

Date	Revision	Changes
19-Dec-2013	1	Initial release.
23-Apr-2014	2	Updated Figure 1: Internal schematic diagram and Section 3: Electrical characteristics. Minor text changes.
05-May-2014	3	Updated features in cover page.
04-Nov-2014	4	Updated: - Figure 1: Internal schematic diagram - Table 10: Logic inputs (VCC = 15 V unless otherwise specified) - Table 12: Sense comparator characteristics (VCC = 15 V unless otherwise specified) - Section 3.1.1: NTC thermistor - Section 4: Smart shutdown function description - Figure 10: Smart shutdown timing waveforms - Figure 11: Typical application circuit - Section 5.1: Recommendations - minor text changes
07-Nov-2014	5	Minor text and formatting edits throughout document.
08-Jun-2015 6		Updated Section 6: Package information. Minor text changes.
16-Mar-2017	7	Updated Section 6.1: "NDIP-26L type C package information" and Section 6.2: "NDIP-26L packing information" Minor text changes

IMPORTANT NOTICE – PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST's terms and conditions of sale in place at the time of order acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers' products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2017 STMicroelectronics - All rights reserved

