STF8N80K5, STFI8N80K5 # N-channel 800 V, 0.8 Ω typ., 6 A Zener-protected SuperMESH™ 5 Power MOSFET in TO-220FP and I²PAKFP packages Datasheet - preliminary data Figure 1. Internal schematic diagram #### **Features** | Order codes | V _{DS} | R _{DS(on)} max. | I _D | P _{TOT} | |-------------|-----------------|--------------------------|----------------|------------------| | STF8N80K5 | 800 V | 0.95 Ω | 6 A | 25 W | | STFI8N80K5 | 000 V | 0.00 12 | 071 | 20 00 | - Worldwide best FOM (figure of merit) - Ultra low gate charge - 100% avalanche tested - Zener-protected #### **Applications** · Switching applications #### **Description** These N-channel Zener-protected Power MOSFETs are designed using ST's revolutionary avalanche-rugged very high voltage SuperMESH™ 5 technology, based on an innovative proprietary vertical structure. The result is a dramatic reduction in on-resistance, and ultra-low gate charge for applications which require superior power density and high efficiency. **Table 1. Device summary** | Order codes | Marking | Package | Packaging | |-------------|---------|-------------------------------|-----------| | STF8N80K5 | 8N80K5 | TO-220FP | Tube | | STFI8N80K5 | CNOONS | I ² PAKFP (TO-281) | Tube | ## **Contents** | 1 | Electrical ratings 3 | |---|---| | 2 | Electrical characteristics4 | | | 2.1 Electrical characteristics (curves) | | 3 | Test circuits9 | | 4 | Package mechanical data10 | | 5 | Revision history | # 1 Electrical ratings Table 2. Absolute maximum ratings | Symbol | Parameter | Value | Unit | |--------------------------------|---|-------------------|------| | V _{GS} | Gate-source voltage | ± 30 | V | | I _D | Drain current T _C = 25 °C | 6 ⁽¹⁾ | А | | I _D | Drain current T _C = 100 °C | 4 (1) | А | | I _{DM} ⁽²⁾ | Drain current (pulsed) | 24 ⁽¹⁾ | А | | P _{TOT} | Total dissipation at T _C = 25 °C | 25 | W | | I _{AR} ⁽³⁾ | Max current during repetitive or single pulse avalanche | 2 | А | | E _{AS} (4) | Single pulse avalanche energy (starting $T_J = 25$ °C, $I_D = I_{AS}$, $V_{DD} = 50$ V) | 114 | mJ | | V _{ISO} | Insulation withstand voltage (RMS) from all three leads to external heat sink (t=1 s;T _C =25 °C) | 2500 | V | | dv/dt (5) | Peak diode recovery voltage slope | 4.5 | V/ns | | dv/dt (6) | MOSFET dv/dt ruggedness | 50 | V/ns | | T _j | Operating junction temperature | 55 to 150 | °C | | T _{stg} | Storage temperature | -55 to 150 | °C | ^{1.} Limited by package. Table 3. Thermal data | Symbol | Parameter | Value | Unit | |-----------------------|---------------------------------------|-------|------| | R _{thj-case} | Thermal resistance junction-case max. | 5 | °C/W | | R _{thj-amb} | Thermal resistance junction-amb max. | 62.5 | °C/W | ^{2.} Pulse width limited by safe operating area. ^{3.} Pulse width limited by T_{Jmax} . ^{4.} Starting $T_J = 25$ °C, $I_D = I_{AS}$, $V_{DD} = 50$ V ^{5.} $I_{SD} \leq$ 6 A, di/dt \leq 100 A/ μ s, $V_{DS(peak)} \leq V_{(BR)DSS}$ $^{6. \}quad V_{DS} \leq 640 \ V$ ## 2 Electrical characteristics (T_{CASE} = 25 °C unless otherwise specified) Table 4. On/off states | Symbol | Parameter | Test conditions | Min. | Тур. | Max. | Unit | |----------------------|--|--|------|------|------|------| | V _{(BR)DSS} | Drain-source breakdown voltage | I _D = 1 mA, V _{GS} = 0 | 800 | | | ٧ | | 1 | I _{DSS} Zero gate voltage drain current (V _{GS} = 0) | V _{DS} = 800 V, | | | 1 | μΑ | | DSS | | V _{DS} = 800 V, Tc=125 °C | | | 50 | μΑ | | I _{GSS} | Gate body leakage current (V _{DS} = 0) | V _{GS} = ± 20 V | | | ±10 | μΑ | | V _{GS(th)} | Gate threshold voltage | $V_{DS} = V_{GS}, I_{D} = 100 \mu A$ | 3 | 4 | 5 | ٧ | | R _{DS(on)} | Static drain-source on-
resistance | V _{GS} = 10 V, I _D = 3 A | | 0.8 | 0.95 | Ω | Table 5. Dynamic | Symbol | Parameter | Test conditions | Min. | Тур. | Max. | Unit | |-----------------------------------|---------------------------------------|--|------|------|------|------| | C _{iss} | Input capacitance | | - | 450 | - | pF | | C _{oss} | Output capacitance | V _{DS} =100 V, f=1 MHz, V _{GS} =0 | ı | 50 | - | pF | | C _{rss} | Reverse transfer capacitance | VDS = 100 V, 1= 1 WH 12, VGS=0 | - | 1 | - | pF | | C _{o(tr)} ⁽¹⁾ | Equivalent capacitance time related | $V_{GS} = 0$, $V_{DS} = 0$ to 640 V | - | 57 | - | pF | | C _{o(er)} ⁽²⁾ | Equivalent capacitance energy related | | - | 24 | - | pF | | R _G | Intrinsic gate resistance | f = 1 MHz open drain | - | 6 | - | Ω | | Qg | Total gate charge | V _{DD} = 640 V, I _D = 6 A
V _{GS} =10 V | - | 16.5 | - | nC | | Q _{gs} | Gate-source charge | | - | 3.2 | - | nC | | Q_{gd} | Gate-drain charge | (see Figure 16) | - | 11 | - | nC | ^{1.} Time related is defined as a constant equivalent capacitance giving the same charging time as C_{oss} when V_{DS} increases from 0 to 80% V_{DSS} ^{2.} Energy related is defined as a constant equivalent capacitance giving the same stored energy as C_{oss} when V_{DS} increases from 0 to 80% V_{DSS} Table 6. Switching times | Symbol | Parameter | Test conditions | Min. | Тур. | Max. | Unit | |---------------------|---------------------|--|------|------|------|------| | t _{d(on)} | Turn-on delay time | $V_{DD} = 400 \text{ V}, I_{D} = 3 \text{ A},$ $R_{G} = 4.7 \Omega, V_{GS} = 10 \text{ V}$ (see Figure 18) | - | 12 | - | ns | | t _r | Rise time | | | 14 | - | ns | | t _{d(off)} | Turn-off delay time | | | 32 | - | ns | | t _f | Fall time | | | 20 | - | ns | Table 7. Source drain diode | Symbol | Parameter | Test conditions | Min. | Тур. | Max. | Unit | |--------------------------------|-------------------------------|---|------|------|------|------| | I _{SD} | Source-drain current | | - | | 6 | Α | | I _{SDM} | Source-drain current (pulsed) | | | | 24 | Α | | V _{SD} ⁽¹⁾ | Forward on voltage | I _{SD} = 6 A, V _{GS} =0 | - | | 1.5 | ٧ | | t _{rr} | Reverse recovery time | I _{SD} = 6 A, V _{DD} = 60 V | - | 300 | | ns | | Q _{rr} | Reverse recovery charge | $di/dt = 100 A/\mu s$, | | 3 | | μC | | I _{RRM} | Reverse recovery current | (see Figure 17) | | 20 | | Α | | t _{rr} | Reverse recovery time | I _{SD} = 6 A, V _{DD} = 60 V
di/dt=100 A/μs,
Ti=150 °C | - | 415 | | ns | | Q _{rr} | Reverse recovery charge | | - | 3.8 | | μC | | I _{RRM} | Reverse recovery current | (see Figure 17) | - | 18 | | Α | ^{1.} Pulsed: pulse duration = 300μ s, duty cycle 1.5% Table 8. Gate-source Zener diode | Symbol | Parameter | Test conditions | Min | Тур. | Max. | Unit | |----------------------|-------------------------------|------------------------------|-----|------|------|------| | V _{(BR)GSO} | Gate-source breakdown voltage | $I_{GS} = \pm 1$ mA, $I_D=0$ | 30 | ı | - | V | The built-in back-to-back Zener diodes have been specifically designed to enhance not only the device's ESD capability, but also to make them capable of safely absorbing any voltage transients that may occasionally be applied from gate to source. In this respect, the Zener voltage is appropriate to achieve efficient and cost-effective protection of device integrity. The integrated Zener diodes thus eliminate the need for external components. #### 2.1 Electrical characteristics (curves) Figure 2. Safe operating area Figure 3. Thermal impedance Figure 4. Output characteristics Figure 5. Transfer characteristics Figure 6. Gate charge vs gate-source voltage Figure 7. Static drain-source on-resistance 6/15 DocID024419 Rev 2 Figure 8. Capacitance variations Figure 9. Output capacitance stored energy Figure 10. Normalized gate threshold voltage vs. temperature Figure 11. Normalized on-resistance vs. temperature Figure 12. Drain-source diode forward characteristics Figure 13. Normalized V_{DS} vs. temperature Figure 14. Maximum avalanche energy vs. starting ${\sf T}_{\sf J}$ ### 3 Test circuits Figure 15. Switching times test circuit for resistive load Figure 16. Gate charge test circuit Figure 17. Test circuit for inductive load switching and diode recovery times Figure 18. Unclamped inductive load test circuit Figure 19. Unclamped inductive waveform Figure 20. Switching time waveform # 4 Package mechanical data In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK[®] packages, depending on their level of environmental compliance. ECOPACK[®] specifications, grade definitions and product status are available at: www.st.com. ECOPACK[®] is an ST trademark. 10/15 DocID024419 Rev 2 Table 9. TO-220FP mechanical data | Dim | | mm | | | | | |------|------|------|------|--|--|--| | Dim. | Min. | Тур. | Max. | | | | | Α | 4.4 | | 4.6 | | | | | В | 2.5 | | 2.7 | | | | | D | 2.5 | | 2.75 | | | | | E | 0.45 | | 0.7 | | | | | F | 0.75 | | 1 | | | | | F1 | 1.15 | | 1.70 | | | | | F2 | 1.15 | | 1.70 | | | | | G | 4.95 | | 5.2 | | | | | G1 | 2.4 | | 2.7 | | | | | Н | 10 | | 10.4 | | | | | L2 | | 16 | | | | | | L3 | 28.6 | | 30.6 | | | | | L4 | 9.8 | | 10.6 | | | | | L5 | 2.9 | | 3.6 | | | | | L6 | 15.9 | | 16.4 | | | | | L7 | 9 | | 9.3 | | | | | Dia | 3 | | 3.2 | | | | ш щ L6 L2 *L7* L3 Ľ5 F1 L4 F2 -E 7012510_Rev_K_B Figure 21. TO-220FP drawing Table 10. I²PAKFP (TO-281) mechanical data | Dim | | mm | | | | | |------|-------|------|-------|--|--|--| | Dim. | Min. | Тур. | Max. | | | | | А | 4.40 | | 4.60 | | | | | В | 2.50 | | 2.70 | | | | | D | 2.50 | | 2.75 | | | | | D1 | 0.65 | | 0.85 | | | | | E | 0.45 | | 0.70 | | | | | F | 0.75 | | 1.00 | | | | | F1 | | | 1.20 | | | | | G | 4.95 | - | 5.20 | | | | | Н | 10.00 | | 10.40 | | | | | L1 | 21.00 | | 23.00 | | | | | L2 | 13.20 | | 14.10 | | | | | L3 | 10.55 | | 10.85 | | | | | L4 | 2.70 | | 3.20 | | | | | L5 | 0.85 | | 1.25 | | | | | L6 | 7.30 | | 7.50 | | | | Figure 22. I²PAKFP (TO-281) drawing # 5 Revision history **Table 11. Document revision history** | Date | Revision | Changes | |-------------|----------|---| | 25-Mar-2012 | 1 | First release. Part numbers previously included in datasheet DM00062075 | | 27-Mar-2013 | 2 | Added: MOSFET dv/dt ruggedness on Table 2 | #### Please Read Carefully: Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice. All ST products are sold pursuant to ST's terms and conditions of sale. Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein. No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein. UNLESS OTHERWISE SET FORTH IN ST'S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT. ST PRODUCTS ARE NOT AUTHORIZED FOR USE IN WEAPONS. NOR ARE ST PRODUCTS DESIGNED OR AUTHORIZED FOR USE IN: (A) SAFETY CRITICAL APPLICATIONS SUCH AS LIFE SUPPORTING, ACTIVE IMPLANTED DEVICES OR SYSTEMS WITH PRODUCT FUNCTIONAL SAFETY REQUIREMENTS; (B) AERONAUTIC APPLICATIONS; (C) AUTOMOTIVE APPLICATIONS OR ENVIRONMENTS, AND/OR (D) AEROSPACE APPLICATIONS OR ENVIRONMENTS. WHERE ST PRODUCTS ARE NOT DESIGNED FOR SUCH USE, THE PURCHASER SHALL USE PRODUCTS AT PURCHASER'S SOLE RISK, EVEN IF ST HAS BEEN INFORMED IN WRITING OF SUCH USAGE, UNLESS A PRODUCT IS EXPRESSLY DESIGNATED BY ST AS BEING INTENDED FOR "AUTOMOTIVE, AUTOMOTIVE SAFETY OR MEDICAL" INDUSTRY DOMAINS ACCORDING TO ST PRODUCT DESIGN SPECIFICATIONS. PRODUCTS FORMALLY ESCC, QML OR JAN QUALIFIED ARE DEEMED SUITABLE FOR USE IN AEROSPACE BY THE CORRESPONDING GOVERNMENTAL AGENCY. Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST. ST and the ST logo are trademarks or registered trademarks of ST in various countries. Information in this document supersedes and replaces all information previously supplied. The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners. © 2013 STMicroelectronics - All rights reserved STMicroelectronics group of companies Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan - Malaysia - Malta - Morocco - Philippines - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America www.st.com