

TAB

G(1)

DPAK

Figure 1: Internal schematic diagram

D(2, TAB)

් S(3)

STD16N60M2

N-channel 600 V, 0.280 Ω typ., 12 A MDmesh[™] M2 Power MOSFET in a DPAK package

Datasheet - production data

Order code	V _{DS} R _{DS(on)} max.		ID
STD16N60M2	600 V	0.320 Ω	12 A

- Extremely low gate charge
- Excellent output capacitance (C_{OSS}) profile
- 100% avalanche tested
- Zener-protected

Applications

• Switching applications

Description

This device is an N-channel Power MOSFET developed using MDmesh[™] M2 technology. Thanks to its strip layout and an improved vertical structure, the device exhibits low on-resistance and optimized switching characteristics, rendering it suitable for the most demanding high efficiency converters.

Table 1: Device summary

AM15572v1 tab

Order code	Marking	Package	Packing
STD16N60M2	16N60M2	DPAK	Tape and reel

DocID027191 Rev 2

This is information on a product in full production.

www.st.com

Contents

Contents

1	Electric	al ratings	3
2	Electric	al characteristics	4
	2.1	Electrical characteristics (curves)	6
3	Test cir	cuits	8
4	Packag	e mechanical data	9
	4.1	DPAK (TO-252) type A2 package information	10
	4.2	Packing information	13
5	Revisio	n history	15

1 Electrical ratings

 Table 2: Absolute maximum ratings

Symbol	Parameter	Value	Unit
V _{GS}	Gate-source voltage	± 25	V
I _D	Drain current (continuous) at T _C = 25 °C	12	А
ID	Drain current (continuous) at T _C = 100 °C	7.6	А
I _{DM} ⁽¹⁾	Drain current (pulsed)	48	А
P _{TOT}	Total dissipation at $T_C = 25 \text{ °C}$	110	W
dv/dt ⁽²⁾	Peak diode recovery voltage slope	15	V/ns
dv/dt ⁽³⁾	MOSFET dv/dt ruggedness	50	V/ns
T _{stg}	Storage temperature	- 55 to 150	℃
Tj	Max. operating junction temperature	150	C

Notes:

 $^{\left(1\right) }$ Pulse width limited by safe operating area.

 $^{(2)}$ I_{SD} \leq 12 A, di/dt \leq 400 A/µs; V_{DS peak} < V_{(BR)DSS}, V_DD = 80% V_{(BR)DSS}.

⁽³⁾ $V_{DS} \le 480 \text{ V}.$

Table 3: Thermal data

Symbol	Parameter	Value	Unit
R _{thj-case}	Thermal resistance junction-case max.	1.14	°C/W
R _{thj-pcb} ⁽¹⁾	Thermal resistance junction-pcb max.	50	°C/W

Notes:

 $^{(1)}$ When mounted on a 1-inch² FR-4, 2 oz Cu board

Table 4: Avalanche characteristics

Symbol	Parameter	Value	Unit
I _{AR}	Avalanche current, repetetive or not repetetive (pulse width limited by T_{jmax})	2.9	А
E _{AS}	Single pulse avalanche energy (starting $T_j = 25 \text{ °C}, I_D = I_{AR}, V_{DD} = 50 \text{ V}$)	130	mJ

2 Electrical characteristics

 $(T_c = 25 \text{ °C unless otherwise specified}).$

Table 5: Static							
Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit	
V _{(BR)DSS}	Drain-source breakdown voltage	V_{GS} = 0 V, I _D = 1 mA	600			V	
	Zara sata valtara dusin	$V_{GS} = 0 V, V_{DS} = 600 V$			1	μA	
I _{DSS}	Zero gate voltage drain current	$V_{GS} = 0 V, V_{DS} = 600 V,$ $T_{C} = 125 \ ^{\circ}C$			100	μA	
I _{GSS}	Gate-body leakage current	$V_{DS} = 0 V, V_{GS} = \pm 25 V$			±10	μA	
V _{GS(th)}	Gate threshold voltage	V_{DS} = V_{GS} , I_D = 250 μ A	2	3	4	V	
R _{DS(on)}	Static drain-source on- resistance	$V_{GS} = 10 \text{ V}, I_D = 6 \text{ A}$		0.280	0.320	Ω	

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
C _{iss}	Input capacitance		•	700	•	pF
Coss	Output capacitance	V_{DS} = 100 V, f = 1 MHz,	•	38	•	pF
C _{rss}	Reverse transfer capacitance	$V_{GS} = 0 V$	-	1.2	-	pF
Coss eq. ⁽¹⁾	Equivalent output capacitance	$V_{DS} = 0 V$ to 480 V, $V_{GS} = 0 V$	-	140	-	pF
R _G	Intrinsic gate resistance	f = 1 MHz open drain	-	5.3	-	Ω
Qg	Total gate charge	V _{DD} = 480 V, I _D = 12 A,	-	19	-	nC
Q _{gs}	Gate-source charge	$V_{GS} = 10 V$ (see <i>Figure 15:</i>	-	3.3	-	nC
Q _{gd}	Gate-drain charge	"Gate charge test circuit")	-	9.5	-	nC

Table 6: Dynamic

Notes:

 $^{(1)}$ $C_{\text{oss eq.}}$ is defined as a constant equivalent capacitance giving the same charging time as C_{oss} when V_{DS} increases from 0 to 80% V_{DSS} .

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit	
t _{d(on)}	Turn-on delay time	$V_{DD} = 300 \text{ V}, \text{ I}_{D} = 6 \text{ A}$	-	10.5	-	ns	
tr	Rise time	$R_G = 4.7 \Omega$, $V_{GS} = 10 V$ (see Figure 14: "Switching	-	9.5	•	ns	
t _{d(off)}	Turn-off delay time	times test circuit for	-	58	-	ns	
t _f	Fall time	resistive load" and Figure 19: "Switching time waveform")	-	18.5	-	ns	

Table 7: Switching times

Electrical characteristics

Table 8: Source drain diode								
Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit		
I _{SD}	Source-drain current		-		12	Α		
I _{SDM} ⁽¹⁾	Source-drain current (pulsed)		-		48	А		
V _{SD} ⁽²⁾	Forward on voltage	$V_{GS} = 0 V, I_{SD} = 12 A$	-		1.6	V		
t _{rr}	Reverse recovery time	I _{SD} = 12 A,	-	316		ns		
Qrr	Reverse recovery charge	di/dt = 100 A/ μ s, V _{DD} = 60 V (see <i>Figure 16</i> :	-	3.25		μC		
I _{RRM}	Reverse recovery current	"Test circuit for inductive load switching and diode recovery times")	-	20.5		A		
t _{rr}	Reverse recovery time	I _{SD} = 12 A,	-	454		ns		
Qrr	Reverse recovery charge	di/dt = 100 A/µs, V _{DD} = 60 V, T _i = 150 °C	-	4.8		μC		
I _{RRM}	Reverse recovery current	(see Figure 16: "Test circuit for inductive load switching and diode recovery times")	-	21		A		

Notes:

 $^{\left(1\right) }$ Pulse width is limited by safe operating area.

⁽²⁾ Pulse test: pulse duration = 300 μ s, duty cycle 1.5%.

DocID027191 Rev 2

57

3 Test circuits

4 Package mechanical data

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK[®] packages, depending on their level of environmental compliance. ECOPACK[®] specifications, grade definitions and product status are available at: *www.st.com*. ECOPACK[®] is an ST trademark.

Package mechanical data

4.1 DPAK (TO-252) type A2 package information

Figure 20: DPAK (TO-252) type A2 package outline

DocID027191 Rev 2

STD16N60M2

Package mechanical data

Table 9: DPAK (TO-252) type A2 mechanical data					
Dim.		mm			
Dim.	Min.	Тур.	Max.		
A	2.20		2.40		
A1	0.90		1.10		
A2	0.03		0.23		
b	0.64		0.90		
b4	5.20		5.40		
С	0.45		0.60		
c2	0.48		0.60		
D	6.00		6.20		
D1	4.95	5.10	5.25		
E	6.40		6.60		
E1	5.10	5.20	5.30		
е	2.16	2.28	2.40		
e1	4.40		4.60		
Н	9.35		10.10		
L	1.00		1.50		
L1	2.60	2.80	3.00		
L2	0.65	0.80	0.95		
L4	0.60		1.00		
R		0.20			
V2	0°		8°		

Package mechanical data

STD16N60M2

DocID027191 Rev 2

4.2 Packing information

Figure 22: Tape for DPAK (TO-252)

Figure 23: Reel for DPAK (TO-252)

	Таре			Reel	
Dim	mm		Dim.	r	nm
Dim.	Min.	Max.	Dini.	Min.	Max.
A0	6.8	7	А		330
B0	10.4	10.6	В	1.5	
B1		12.1	С	12.8	13.2
D	1.5	1.6	D	20.2	
D1	1.5		G	16.4	18.4
E	1.65	1.85	N	50	
F	7.4	7.6	Т		22.4
K0	2.55	2.75			
P0	3.9	4.1	Base	e qty.	2500
P1	7.9	8.1	Bulk	qty.	2500
P2	1.9	2.1			
R	40				
Т	0.25	0.35			
W	15.7	16.3			

Table 10: DPAK (TO-252) tape and reel mechanical data

5 Revision history

Table 11: Document revision history

Date	Revision	Changes
26-Nov-2014	1	First release.
24-Mar-2015	2	Text edits throughout document On cover page: updated cover page title description, updated features table. In Section 1, Electrical ratings: updated "Avalanche characteristics" table In Section 2, Electrical characteristics: renamed "On/off states" table to "Static" and updated table
		In Section 2, Electrical characteristics: updated tables "Dynamic", "Switching times" and "Source-drain diode"
		Added Section 2.1, Electrical characteristics (curves)
		Updated 4.1, DPAK (TO-252) type A2 package information

IMPORTANT NOTICE – PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST's terms and conditions of sale in place at the time of order acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers' products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2015 STMicroelectronics - All rights reserved

