# **Power MOSFET** # 24 V, 110 A, N-Channel DPAK #### **Features** - Planar HD3e Process for Fast Switching Performance - Low R<sub>DS(on)</sub> to Minimize Conduction Loss - Low C<sub>iss</sub> to Minimize Driver Loss - Low Gate Charge - Optimized for High Side Switching Requirements in High–Efficiency DC–DC Converters - S Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC-Q101 Qualified and PPAP Capable - These Devices are Pb-Free and are RoHS Compliant # **MAXIMUM RATINGS** (T<sub>J</sub> = 25°C unless otherwise noted) | Rating | Symbol | Value | Unit | |-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------|--------------------|----------------| | Drain-to-Source Voltage | V <sub>DSS</sub> | 24 | V | | Gate-to-Source Voltage - Continuous | V <sub>GS</sub> | ±20 | V | | Thermal Resistance – Junction–to–Case Total Power Dissipation @ T <sub>C</sub> = 25°C Drain Current | R <sub>θJC</sub><br>P <sub>D</sub> | 1.35<br>110 | °C/W<br>W | | - Continuous @ T <sub>C</sub> = 25°C, Chip - Continuous @ T <sub>C</sub> = 25°C | I <sub>D</sub> | 110<br>110 | A<br>A | | – Continuous @ T <sub>A</sub> = 25°C | I <sub>D</sub> | 32 | Α | | Limited by Wires – Single Pulse (t <sub>p</sub> = 10 μs) | I <sub>D</sub> | 110 | Α | | Thermal Resistance - Junction-to-Ambient (Note 1) - Total Power Dissipation @ T <sub>A</sub> = 25°C - Drain Current – Continuous @ T <sub>A</sub> = 25°C | R <sub>θJA</sub><br>P <sub>D</sub><br>I <sub>D</sub> | 52<br>2.88<br>17.5 | °C/W<br>W<br>A | | Thermal Resistance - Junction-to-Ambient (Note 2) - Total Power Dissipation @ T <sub>A</sub> = 25°C - Drain Current - Continuous @ T <sub>A</sub> = 25°C | R <sub>θJA</sub><br>P <sub>D</sub><br>I <sub>D</sub> | 100<br>1.5<br>12.5 | °C/W<br>W<br>A | | Operating and Storage Temperature Range | T <sub>J</sub> , T <sub>stg</sub> | -55 to<br>175 | °C | | Single Pulse Drain-to-Source Avalanche Energy – Starting $T_J = 25^{\circ}\text{C}$ ( $V_{DD} = 50 \text{ Vdc}, V_{GS} = 10 \text{ Vdc},$ $I_L = 15.5 \text{ Apk}, L = 1.0 \text{ mH}, R_G = 25 \Omega$ ) | E <sub>AS</sub> | 120 | mJ | | Maximum Lead Temperature for Soldering Purposes, (1/8" from case for 10 s) | TL | 260 | °C | Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected. - 1. When surface mounted to an FR4 board using 0.5 sq in drain pad size. - When surface mounted to an FR4 board using the minimum recommended pad size. # ON Semiconductor® ## http://onsemi.com | V <sub>(BR)DSS</sub> | R <sub>DS(on)</sub> TYP | I <sub>D</sub> MAX | |----------------------|-------------------------|--------------------| | 24 V | 4.1 mΩ @ 10 V | 110 A | DPAK CASE 369AA (Surface Mount) STYLE 2 # MARKING DIAGRAM & PIN ASSIGNMENT A = Assembly Location\* Y = Year WW = Work Week T110N2 = Device Code G = Pb-Free Package \* The Assembly Location code (A) is front side optional. In cases where the Assembly Location is stamped in the package, the front side assembly code may be blank. #### **ORDERING INFORMATION** See detailed ordering and shipping information on page 5 of this data sheet. # **ELECTRICAL CHARACTERISTICS** ( $T_J = 25^{\circ}C$ unless otherwise noted) | | Symbol | Min | Тур | Max | Unit | | |--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|--------------------------|----------------------|------------|------------| | OFF CHARACTERISTICS | | • | | .1 | | .1 | | Drain-to-Source Breakdown Voltage (Note 3) (V <sub>GS</sub> = 0 V, I <sub>D</sub> = 250 μA) Positive Temperature Coefficient | | V <sub>(BR)DSS</sub> | 24 | 28<br>15 | | V<br>mV/°C | | Zero Gate Voltage Drain Current (V <sub>DS</sub> = 20 V, V <sub>GS</sub> = 0 V) (V <sub>DS</sub> = 20 V, V <sub>GS</sub> = 0 V, T <sub>J</sub> = 125°C) | | Ipss | | | 1.5<br>10 | μΑ | | Gate-Body Leakage Current ( | V <sub>GS</sub> = ±20 V, V <sub>DS</sub> = 0 V) | I <sub>GSS</sub> | | | ±100 | nA | | ON CHARACTERISTICS (Not | e 3) | | | | | | | Gate Threshold Voltage (Note $(V_{DS} = V_{GS}, I_D = 250 \mu A)$ Negative Threshold Temperature | V <sub>GS(th)</sub> | 1.0 | 1.5<br>5.0 | 2.0 | V<br>mV/°C | | | Static Drain-to-Source On-Re $(V_{GS} = 10 \text{ V}, I_D = 110 \text{ A})$ $(V_{GS} = 4.5 \text{ V}, I_D = 55 \text{ A})$ $(V_{GS} = 4.5 \text{ V}, I_D = 20 \text{ A})$ $(V_{GS} = 4.5 \text{ V}, I_D = 20 \text{ A})$ | R <sub>DS(on)</sub> | | 4.1<br>5.5<br>3.9<br>5.5 | 4.6<br>6.2 | mΩ | | | Forward Transconductance (V | 9FS | | 44 | | Mhos | | | DYNAMIC CHARACTERISTIC | cs | | | | | | | Input Capacitance | | C <sub>iss</sub> | | 2710 | 3440 | pF | | Output Capacitance | $(V_{DS} = 20 \text{ V}, V_{GS} = 0 \text{ V}, f = 1.0 \text{ MHz})$ | C <sub>oss</sub> | | 1105 | 1670 | | | Transfer Capacitance | 7 | C <sub>rss</sub> | | 450 | 640 | | | SWITCHING CHARACTERIST | FICS (Note 4) | | | | | | | Turn-On Delay Time | | t <sub>d(on)</sub> | | 11 | 22 | ns | | Rise Time | (V <sub>GS</sub> = 10 V, V <sub>DD</sub> = 10 V, | t <sub>r</sub> | | 39 | 80 | | | Turn-Off Delay Time | $I_D = 40 \text{ A}, R_G = 3.0 \Omega)$ | t <sub>d(off)</sub> | | 27 | 40 | ] | | Fall Time | 7 | t <sub>f</sub> | | 21 | 40 | ] | | Gate Charge | $(V_{GS} = 4.5 \text{ V}, I_D = 40 \text{ A}, V_{DS} = 10 \text{ V}) \text{ (Note 3)}$ | Q <sub>T</sub> | | 23.6 | 28 | nC | | | | Q <sub>GS</sub> | | 5.1 | | 1 | | | | $Q_{GD}$ | | 11 | | ] | | SOURCE-DRAIN DIODE CHA | ARACTERISTICS | | | | | | | Forward On-Voltage | $(I_S = 20 \text{ A}, V_{GS} = 0 \text{ V}) \text{ (Note 3)}$<br>$(I_S = 55 \text{ A}, V_{GS} = 0 \text{ V})$<br>$(I_S = 20 \text{ A}, V_{GS} = 0 \text{ V}, T_J = 125^{\circ}\text{C})$ | V <sub>SD</sub> | | 0.82<br>0.99<br>0.65 | 1.2 | V | | Reverse Recovery Time | $(I_S = 30 \text{ A}, V_{GS} = 0 \text{ V}, \\ dI_S/dt = 100 \text{ A/}\mu\text{s}) \text{ (Note 3)}$ | t <sub>rr</sub> | | 36.5 | | ns | | | | t <sub>a</sub> | | 30 | | 1 | | | | t <sub>b</sub> | | 25 | | | | Reverse Recovery Stored Cha | Q <sub>rr</sub> | | 0.048 | | μС | | Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions. 3. Pulse Test: Pulse Width ≤ 300 µs, Duty Cycle ≤ 2%. 4. Switching characteristics are independent of operating junction temperatures. Figure 1. On-Region Characteristics V<sub>GS</sub>, GATE-TO-SOURCE VOLTAGE (VOLTS) Figure 2. Transfer Characteristics Figure 3. On–Resistance versus Gate–to–Source Voltage Figure 4. On–Resistance versus Drain Current and Gate Voltage Figure 5. On–Resistance Variation with Temperature Figure 6. Drain-to-Source Leakage Current versus Voltage GATE-TO-SOURCE OR DRAIN-TO-SOURCE VOLTAGE (VOLTS) Figure 7. Capacitance Variation Figure 8. Gate-to-Source and Drain-to-Source Voltage versus Total Charge Figure 9. Resistive Switching Time Variation versus Gate Resistance Figure 10. Diode Forward Voltage versus Current Figure 11. Maximum Rated Forward Biased Safe Operating Area Figure 12. Thermal Response ### **ORDERING INFORMATION** | Device | Package | Shipping <sup>†</sup> | |----------------|-------------------|-----------------------| | NTD110N02RT4G | DPAK<br>(Pb-Free) | 2500 / Tape & Reel | | STD110N02RT4G* | DPAK<br>(Pb-Free) | 2500 / Tape & Reel | <sup>†</sup>For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D. \*S Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC–Q101 Qualified and PPAP Capable. #### PACKAGE DIMENSIONS ## **DPAK (SINGLE GUAGE)** CASE 369AA ISSUE B - NOTES: 1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994. 1. DIMENSION: INCHES. - THERMAL PAD CONTOUR OPTIONAL WITHIN DI- - MENSIONS b3, L3 and Z. DIMENSIONS D AND E DO NOT INCLUDE MOLD FLASH, PROTRUSIONS, OR BURRS. MOLD FLASH, PROTRUSIONS, OR GATE BURRS SHALL NOT EXCEED 0.006 INCHES PER SIDE. 5. DIMENSIONS D AND E ARE DETERMINED AT THE - OUTERMOST EXTREMES OF THE PLASTIC BODY. 6. DATUMS A AND B ARE DETERMINED AT DATUM | | INCHES | | MILLIMETERS | | | |-----|-----------|-------|-------------|-------|--| | DIM | MIN | MAX | MIN | MAX | | | Α | 0.086 | 0.094 | 2.18 | 2.38 | | | A1 | 0.000 | 0.005 | 0.00 | 0.13 | | | b | 0.025 | 0.035 | 0.63 | 0.89 | | | b2 | 0.030 | 0.045 | 0.76 | 1.14 | | | b3 | 0.180 | 0.215 | 4.57 | 5.46 | | | С | 0.018 | 0.024 | 0.46 | 0.61 | | | c2 | 0.018 | 0.024 | 0.46 | 0.61 | | | D | 0.235 | 0.245 | 5.97 | 6.22 | | | E | 0.250 | 0.265 | 6.35 | 6.73 | | | е | 0.090 BSC | | 2.29 BSC | | | | Н | 0.370 | 0.410 | 9.40 | 10.41 | | | L | 0.055 | 0.070 | 1.40 | 1.78 | | | L1 | 0.108 REF | | 2.74 REF | | | | L2 | 0.020 BSC | | 0.51 BSC | | | | L3 | 0.035 | 0.050 | 0.89 | 1.27 | | | L4 | I | 0.040 | | 1.01 | | | Z | 0.155 | | 3.93 | | | STYLE 2: PIN 1. GATE 2. DRAIN SOURCE 3. DRAIN #### **SOLDERING FOOTPRINT\*** SCALE 3:1 \*For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D. ON Semiconductor and the 👊 are registered trademarks of Semiconductor Components Industries, LLC (SCILLC) or its subsidiaries in the United States and/or other countries. SCILLC owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of SCILLC's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner. ### **PUBLICATION ORDERING INFORMATION** ### LITERATURE FULFILLMENT: Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com Phone: 81-3-5817-1050 N. American Technical Support: 800-282-9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910 Japan Customer Focus Center ON Semiconductor Website: www.onsemi.com Order Literature: http://www.onsemi.com/orderlit For additional information, please contact your local Sales Representative