

STA333IS

Sound Terminal[®] 2-channel high-efficiency digital audio system

Datasheet - production data

Features

- Wide-range supply voltage (4.5 V 20 V)
- 2 channels of ternary PWM (stereo mode)
- 2 channels of 24-bit FFX[™]
- 100 dB SNR and dynamic range
- Selectable 32- to 192-kHz input sampling rates
- Digital gain -80 dB to +48 dB in 0.5 dB steps
- Software volume update
- Individual channel and master gain/attenuation
- Individual channel and master software and hardware mute
- Independent channel volume bypass
- Automatic zero-detect mute
- Automatic invalid input detect mute
- Short-circuit detection at startup (Out-Vcc, Out-Gnd, Out 1b-Out 2a)
- 2-channel I²S input data interface
- 2 Hz DC cut filter (input)
- Input channel mapping
- Automatic volume control for limiting maximum power
- 96 kHz internal processing sampling rate, 24-bit precision
- Advanced modes for AM interference frequency switching and noise suppression
- Embedded thermal-overload and short-circuit protection
- Video application: 576 * f_S input mode support

Applications

- LCDs
- DVDs
- Cradles
- Digital speakers
- Wireless-speaker cradles

Description

The STA333IS is an integrated circuit comprising digital audio processing, digital amplifier control and an FFX[™] power output stage to create a high-power, single-chip FFX solution for all-digital amplification with high quality and high efficiency.

The STA333IS power section consists of four independent half-bridge stages. Two channels can be provided by two full bridges, delivering up to 10 W + 10 W of power.

Also featured in the STA333IS are new advanced modes for reducing AM radio interference. The serial audio data input interface accepts all possible formats, including the popular I²S format. Two channels of FFX[™] processing are provided.

The STA333IS is part of the Sound Terminal[®] family that provides full digital audio streaming to the speaker, offering cost effectiveness, low-power dissipation and sound enrichment.

Table	1.	Device	summary	,
Table		Device	Summary	J

Order code	Package	Packaging
STA333IS	CSP 5x6 array	Tape and reel

April 2013

DocID022855 Rev 3

This is information on a product in full production.

1/43

Contents

1	Bloc	k diagra	am
2	Pin c	descript	tion
	2.1	Pinout	
	2.2	Pin list	9
3	Elec	trical sp	pecifications
	3.1	Absolu	Ite maximum ratings
	3.2	Therm	al data
	3.3	Recom	nmended operating conditions
	3.4	Electri	cal specifications - digital section
	3.5	Electri	cal specifications - power section
	3.6	Power	-off sequence
	3.7	Testing	,
	3.8	Serial	audio interface description 15
		3.8.1	Serial audio interface protocols
4	l ² C b	ous spe	cification
	4.1	Comm	unication protocol
		4.1.1	Data transition or change
		4.1.2	Start condition
		4.1.3	Stop condition
		4.1.4	Data input
	4.2	Device	addressing
	4.3	Write o	pperation
		4.3.1	Byte write
		4.3.2	Multi-byte write
	4.4	Read	operation
		4.4.1	Current address byte read
		4.4.2	Current address multi-byte read17
		4.4.3	Random address byte read17
		4.4.4	Random address multi-byte read

5	Regis	er description	
	5.1	Configuration registers (addr 0x00 to 0x05)	20
		.1.1 Configuration register A (addr 0x00)	
		.1.2 Configuration register B (addr 0x01)	
		.1.3 Configuration register C (addr 0x02)	
		.1.4 Configuration register D (addr 0x03)	
		.1.5 Configuration register E (addr 0x04)	
		.1.6 Configuration register F (addr 0x05)	
	5.2	olume control registers (addr 0x06 to 0x09)	
		.2.1 Mute/line output configuration register (addr (0x06) 30
		.2.2 Master volume register (addr 0x07)	
		.2.3 Channel volume (addr 0x08, 0x09)	
	5.3	utomodes™ register (0x0C)	
	5.4	channel configuration registers (addr 0x0E, 0x0F)) 33
	5.5	ariable max power correction registers (addr 0x2	7, 0x28) 33
	5.6	ariable distortion compensation registers (addr 0	x29, 0x2A) 33
	5.7	ault-detect recovery constant registers (addr 0x2	B, 0x2C) 34
	5.8	Device status register (addr 0x2D)	
	5.9	Reserved registers (addr 0x2E, 0x2F, 0x30, 0x31)	
	5.10	Postscale registers (addr 0x32, 0x33)	
	5.11	Output limit register (addr 0x34)	
		.11.1 Thermal and overcurrent warning output limit	register
	5.12	Short-circuit protection registers SHOKx (addr 0x3	35, 0x37, 0x38) 37
6	Appli	tion information	
	6.1	pplication scheme for power supplies	38
7	Packa	e mechanical data	
8	Revis	n history	

List of tables

Table 1.	Device summary	
Table 2.	Pin description	9
Table 3.	Absolute maximum ratings	10
Table 4.	Thermal data	
Table 5.	Recommended operating conditions	11
Table 6.	Electrical characteristics for digital section	11
Table 7.	Electrical specifications for power section	12
Table 8.	Register summary.	19
Table 9.	Master clock select	20
Table 10.	MCS bits	20
Table 11.	Interpolation ratio select	21
Table 12.	IR bit settings as a function of input sampling rate	21
Table 13.	Thermal warning recovery	21
Table 14.	Thermal warning adjustment	22
Table 15.	Fault-detect recovery	22
Table 16.	Serial audio input interface format	23
Table 17.	Serial data first bit	23
Table 18.	Support serial audio input formats for MSB-first (SAIFB = 0)	23
Table 19.	Supported serial audio input formats for LSB-first (SAIFB = 1)	24
Table 20.	Channel input mapping.	25
Table 21.	FFX power output mode	25
Table 22.	FFX compensating pulse size	25
Table 23.	Overcurrent warning detect adjustment bypass	26
Table 24.	Zero-detect mute enable.	
Table 25.	Max power correction variable	26
Table 26.	Max power correction	27
Table 27.	Noise-shaper bandwidth selection	27
Table 28.	AM mode enable	27
Table 29.	PWM speed mode	27
Table 30.	Distortion compensation variable enable	27
Table 31.	Zero-crossing volume enable	28
Table 32.	Zero-crossing volume enable	28
Table 33.	Invalid input detect mute enable	28
Table 34.	Binary output mode clock loss detection	28
Table 35.	LRCK double trigger protection	29
Table 36.	Auto EAPD on clock loss	29
Table 37.	Power-down	29
Table 38.	External amplifier power-down	29
Table 39.	Master mute	30
Table 40.	Channel mute	30
Table 41.	Master volume offset as a function of MV	31
Table 42.	Channel volume as a function of CxV	
Table 43.	AM interference frequency switching	
Table 44.	Automodes [™] AM switching frequency selection	
Table 45.	Status bits description.	
Table 46.	Output limit values for thermal and overcurrent warnings.	
Table 47.	Recommended soldering reflow values for mounting on PCB	
Table 48.	CSP 5x6 array package dimensions.	41

Table 49. Docume	ent revision history										• •					• •	• •			•				•		• • •	. 4	2
------------------	----------------------	--	--	--	--	--	--	--	--	--	-----	--	--	--	--	-----	-----	--	--	---	--	--	--	---	--	-------	-----	---

List of figures

Figure 1.	Block diagram	7
Figure 2.	Pin connections (package top view)	8
Figure 3.	Power-off sequence	4
Figure 4.	Test circuit	4
Figure 5.	Current deadtime test circuit	4
Figure 6.	I ² S 1	5
Figure 7.	Left-justified	5
Figure 8.	Write-mode sequence	7
Figure 9.	Read-mode sequence	8
Figure 10.	Short-circuit protection timing diagram	7
Figure 11.	Application diagram	8
Figure 12.	Recommended soldering reflow profile for mounting on PCB	9
Figure 13.	CSP 5x6 array outline drawing 4	0

1 Block diagram

Figure 1. Block diagram

2 Pin description

2.1 Pinout

	Figure 2. Pl	n connectio	ons (packag	le top view)	
	1	2	3	4	5
A	GND1	OUT1	NC	VDDREG	SDI
В	GND1	VCC1	NC	LRCKI	VDD_DIG
С	OUT1B	VCC1	GNDREG	віскі	GND_DIG
D	OUT2A	VCC2	VCCREG	SDA	ХТІ
E	GND2	VCC2	NC	SCL	VDD_PLL
F	GND2	OUT2B	NC	VSS	GND_PLL

Figure 2. Pin connections (package top view)

2.2 Pin list

Pin number	Name	Description	Pad information
I/O pins			
B4	LRCKI	I ² S Left/Right clock	
C4	BICKI	I ² S serial clock	
A5	SDI	I ² S serial data channels 1 & 2	
D5	XTI	Master clock input	
E4	SCL	I ² C serial clock	
D4	SDA	I ² C serial data	
Power of	utput pins		
A2	OUT1A	Positive output 1	
C1	OUT1B	Negative output 1	
D1	OUT2A	Positive output 2	
F2	OUT2B	Negative output 2	
Power su	upplies (pre	liminary)	
B2/C2	VCC1	Positive supply (upper MOSFET) to left H-bridge P output	
E2/D2	VCC2	Positive supply (upper MOSFET) to right H-bridge P output	
A1/B1	GND1	Negative supply (lower MOSFET) to left H-bridge P output	
E1/F1	GND2	Negative supply (lower MOSFET) to right H-bridge P output	
D3	VCCREG	Reference voltage to Vcc	These pins are output pins
C3	GNDREG	Reference voltage to ground	that must be externally filtered. Do not connect
A4	VDDREG	Reference voltage to 3.3 V	these pins to external supply
F4	VSS	Reference voltage to Vcc - 3.3 V	voltage.
B5	VDD_DIG	Digital supply	
C5	GND_DIG	Digital ground	
E5	VDD_PLL	PLL supply	
F5	GND_PLL	PLL ground	
A3, B3, E3, F3	NC	Not connected	

Table 2. Pin description

3 Electrical specifications

3.1 Absolute maximum ratings

Symbol	Parameter	Min	Тур	Мах	Unit							
V _{CC}	Analog supply voltage (pins VCCx)	-0.3	-	22	V							
V _{DD}	Digital supply voltage (pins VDD_DIG)	-0.3	-	4.0	V							
ΙL	Logic input interface	-0.3	-	4.0	V							
T _{op}	Operating junction temperature	0	-	150	°C							
T _{stg}	Storage temperature	-40	-	150	°C							

Table 3. Absolute maximum ratings

Warning:	Stresses beyond those listed in <i>Table 3: Absolute maximum</i> <i>ratings</i> may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in <i>Table 5: Recommended operating conditions</i> are not implied. Exposure to absolute maximum rated conditions for extended periods may affect device reliability. In the real application, a power supply with nominal value rated within the limits of the recommended operating conditions may rise beyond the maximum operating conditions for a short time when no or very low current is sunk (amplifier in mute state). In this case the reliability of the device is guaranteed, provided that the absolute maximum ratings are not exceeded.
	EACEGUEU.

3.2 Thermal data

Table 4. Thermal data

Symbol	Parameter	Min	Тур	Мах	Unit
R _{Th(j-a)}	Thermal resistance junction-to-ambient ⁽¹⁾	-	45	-	°C/W
T _{sd}	Thermal shutdown junction temperature	140	150	160	°C
T _w	Thermal warning temperature	-	130	-	°C
T _{hsd}	Thermal shutdown hysteresis	18	20	22	°C

 Measurements performed on ST 2-layer reference board (1 oz. PCB, 3.8 cm² exposed copper dissipation area)

3.3 Recommended operating conditions

Symbol	Parameter	Min	Тур	Max	Unit
V _{CC}	Analog supply voltage (VCCx)	4.5	-	20	V
V _{DD}	Digital supply voltage (VDD_DIG)	3.0	3.3	3.6	V
IL.	Logic input interface	3.0	3.3	3.6	V
T _{amb}	Ambient temperature	0	-	70	°C

Table 5. Recommended operating conditions

3.4 Electrical specifications - digital section

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
I _{il}	Input current, no pull-up or	V _i = 0 V	-	-	±10	μA
l _{ih}	pull-down resistor	V _i = V _{DD} = 3.6 V	-	-	±10	μA
V _{il}	Low-level input voltage	-	-	-	0.2 * V _{DD}	V
V _{ih}	High-level input voltage	-	0.8 * V _{DD}	-	-	V
V _{ol}	Low-level output voltage	I _{ol} = 2 mA	-	-	0.3V	V
V _{oh}	High-level output voltage	I _{oh} = 2 mA	V _{DD –} 0.3V	-	-	V
I _{pu}	Pull-up current	-	25	66	125	μA
R _{pu}	Equivalent pull-up resistance	-	-	50	-	kΩ

Table 6. Electrical characteristics for digital section

3.5 Electrical specifications - power section

The specifications in *Table* 7 below are given for the conditions V_{CC} = 13 V, V_{DD} = 3.3 V, f_{SW} = 384 kHz, T_{amb} = 25 °C and R_L = 8 Ω , unless otherwise specified.

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
De		THD = 1%	-	8	-	14/
Po Output power BTL Th		THD = 10%	-	10	-	W
R _{dsON}	Power P-channel/N-channel MOSFET (total bridge)	ld = 1 A	-	110	-	mΩ
I _{dss}	Power P-channel/N-channel leakage	V _{CC} = 20 V	-	-	10	μA
gP	Power P-channel R _{dsON} matching	ld = 1 A	95	-	-	%
gN	Power N-channel R _{dsON} matching	ld = 1 A	95	-	-	%
I _{LDT}	Low-current dead time (static)	Resistive load, refer to Figure 4	-	5	10	ns
I _{HDT}	High-current dead time (dynamic)	Refer to <i>Figure 5</i>	-	10	20	ns
t _r	Rise time	Resistive load, refer to Figure 4	-	8	10	ns
t _f	Fall time	Resistive load, refer to Figure 4	-	8	10	ns
V _{CC}	Supply voltage	-		-	20	V
	Supply current from V _{CC} in power- down	At power-ON (EAPD bit = 0)	30	60	200	μA
IVCC	Supply current from V _{CC} in operation	PCM input signal = -60 dBfs Internal clock = 49.152 MHz	-	30	50	mA
I _{VDD DIG}	Supply current for FFX processing (reference only)	Switching frequency = 384 kHz No LC filters		30	50	mA
100_010	Supply current in standby	(PWDN bit = 0)		11	25	mA
I _{LIM}	Overcurrent limit	Non-linear output ⁽¹⁾		3.5	4.3	А
I _{SCP}	Short-circuit protection	High-impedance output ⁽²⁾	2.7	3.8	5.0	А
V _{UVP}	Undervoltage protection threshold	-	-	3.5	4.3	V
t _{min}	Output minimum pulse width	No load	20	30	60	ns
THD+N	Total harmonic distortion and noise	FFX stereo mode, Po = 1 W, f = 1 kHz	-	0.05	-	%
DR	Dynamic range	-	-	100	-	dB
	Signal to noise ratio in ternary mode	A-weighted	-	100	-	10
SNR	Signal to noise ratio in binary mode	A-weighted	-	90	-	dB
PSRR	Power supply rejection ratio	FFX stereo mode, < 5 kHz, V _{RIPPLE} = 1 V RMS audio input = dither only	-	80	-	dB

Table 7. Electrical specifications for power section

Symbol	Parameter Conditions		Min	Тур	Max	Unit			
X _{TALK}	Crosstalk	FFX stereo mode, < 5 kHz, One channel driven at 1 W the other channel measured	-	80	-	dB			
η	Peak efficiency in FFX mode	Po = 2 x 10 W into 8 Ω	-	90	-	%			

Table 7. Electrical specifications for po	ower section (continued)
---	--------------------------

The I_{LIM} data is for 1 channel of BTL configuration, thus, 2 * I_{LIM} drives the 2-channel BTL configuration. The current limit is active when OCRB = 0 (see *Table 23: Overcurrent warning detect adjustment bypass on page 26.* When OCRB = 1, then I_{SC} applies.

The I_{SCP} current limit data is for 1 channel of BTL configuration, thus, 2 * I_{SCP} drives the 2-channel BTL configuration. The short-circuit current is applicable when OCRB = 1 (see Table 23: Overcurrent warning detect adjustment bypass on page 26.

3.6 Power-off sequence

The power-off sequence shown in *Figure 3* below ensures a pop-free turn-off.

Figure 3. Power-off sequence

3.7 Testing

Figure 4. Test circuit

Figure 5. Current deadtime test circuit

DocID022855 Rev 3

3.8 Serial audio interface description

3.8.1 Serial audio interface protocols

The STA333IS serial audio input was designed to interface with standard digital audio components and to accept serial data formats. The STA333IS always acts as a slave when receiving audio input from standard digital audio components. Serial data for two channels is provided using 3 input pins: left/right clock LRCKI (pin B4), serial clock BICKI (pin C4), and serial data SDI (pin A5).

The available formats are shown in *Figure 6* and *Figure 7*, and set through *Configuration* register B (addr 0x01) on page 22.

Figure 6. I²S

Figure 7. Left-justified

4 I²C bus specification

The STA333IS supports the I²C protocol via the input ports SCL and SDA. This protocol defines any device that sends data to the bus as a transmitter and any device that reads the data as a receiver. The device that controls the data transfer is known as the master and the other as the slave. The master always starts the transfer and provides the serial clock for synchronization. The STA333IS is always a slave device in all of its communications. It supports up to 400 kb/s (fast-mode bit rate).

4.1 Communication protocol

4.1.1 Data transition or change

Data changes on the SDA line must only occur when the SCL clock is low. An SDA transition while the clock is high is used to identify a START or STOP condition.

4.1.2 Start condition

START is identified by a high-to-low transition of the data bus SDA signal while the clock signal SCL is stable in the high state. A START condition must precede any command for data transfer.

4.1.3 Stop condition

STOP is identified by a low-to-high transition of the data bus SDA signal while the clock signal SCL is stable in the high state. A STOP condition terminates communication between the STA333IS and the bus master.

4.1.4 Data input

During data input the STA333IS samples the SDA signal on the rising edge of clock SCL. For correct device operation the SDA signal must be stable during the rising edge of the clock and the data can change only when the SCL line is low.

4.2 Device addressing

To start communication between the master and the STA333IS, the master must initiate a start condition. Following this, the master sends to the SDA line 8 bits (MSB first) corresponding to the device select address and read or write mode.

The 7 most significant bits are the device address identifiers, corresponding to the I^2C bus definition. In the STA333IS the I^2C interface has device address 0x38.

The 8th bit (LSB) identifies the read or write operation RW, this bit is set to 1 for read mode and 0 for write mode. After a START condition the STA333IS identifies the device address on the SDA bus and if a match is found, acknowledges the identification during the 9th bit time. The byte following the device identification byte is the internal space address.

4.3 Write operation

Following the START condition the master sends a device select code with the RW bit set to 0. The STA333IS acknowledges this and then waits for the byte of internal address. After receiving the internal byte address, the STA333IS again responds with an acknowledgement.

4.3.1 Byte write

In the byte write mode the master sends one data byte which is acknowledged by the STA333IS. The master then terminates the transfer by generating a STOP condition.

4.3.2 Multi-byte write

The multi-byte write modes can start from any internal address. The master generating a STOP condition terminates the transfer.

Figure 8. Write-mode sequence

4.4 Read operation

4.4.1 Current address byte read

Following the START condition the master sends a device select code with the RW bit set to 1. The STA333IS acknowledges this and then responds by sending one byte of data. The master then terminates the transfer by generating a STOP condition.

4.4.2 Current address multi-byte read

The multi-byte read modes can start from any internal address. Sequential data bytes are read from sequential addresses within the STA333IS. The master acknowledges each data byte read and then generates a STOP condition, terminating the transfer.

4.4.3 Random address byte read

Following the START condition the master sends a device select code with the RW bit set to 0. The STA333IS acknowledges this and then the master writes the internal address byte. After receiving the internal byte address, the STA333IS again responds with an acknowledgement. The master then initiates another START condition and sends the device select code with the RW bit set to 1. The STA333IS acknowledges this and then responds by sending one byte of data. The master then terminates the transfer by generating a STOP condition.

4.4.4 Random address multi-byte read

The multi-byte read modes can start from any internal address. Sequential data bytes are read from sequential addresses within the STA333IS. The master acknowledges each data byte read and then generates a STOP condition to terminate the transfer.

Figure 9. Read-mode sequence

5 Register description

	Table 8. Register summary								
Addr	Name	D7	D6	D5	D4	D3	D2	D1	D0
0x00	CONFA	FDRB	TWAB	TWRB	IR1	IR0	MCS2	MCS1	MCS0
0x01	CONFB	C2IM	C1IM	Reserved	SAIFB	SAI3	SAI2	SAI1	SAI0
0x02	CONFC	OCRB	Reserved	CSZ3	CSZ2	CSZ1	CSZ0	OM1	OM0
0x03	CONFD	Reserved	ZDE			Rese	rved		
0x04	CONFE	SVE	ZCE	DCCV	PWMS	AME	NSBW	MPC	MPCV
0x05	CONFF	EAPD	PWDN	ECLE	LDTE	BCLE	IDE	Rese	rved
0x06	MUTE			Reserved			C2M	C1M	MMUTE
0x07	MVOL	MV7	MV6	MV5	MV4	MV3	MV2	MV1	MV0
0x08	C1VOL	C1V7	C1V6	C1V5	C1V4	C1V3	C1V2	C1V1	C1V0
0x09	C2VOL	C2V7	C2V6	C2V5	C2V4	C2V3	C2V2	C2V1	C2V0
0x0C	AUTO		Rese	erved	•	AMAM2	AMAM1	AMAMO	AMAME
0x0E	C1CFG			Reserved			C1VBP	Rese	rved
0x0F	C2CFG			Reserved			C2VBP	Reserved	
0x27	MPCC1	MPCC15	MPCC14	MPCC13	MPCC12	MPCC11	MPCC10	MPCC9	MPCC8
0x28	MPCC2	MPCC7	MPCC6	MPCC5	MPCC4	MPCC3	MPCC2	MPCC1	MPCC0
0x29	DCC1	DCC15	DCC14	DCC13	DCC12	DCC11	DCC10	DCC9	DCC8
0x2A	DCC2	DCC7	DCC6	DCC5	DCC4	DCC3	DCC2	DCC1	DCC0
0x2B	FDRC1	FDRC15	FDRC14	FDRC13	FDRC12	FDRC11	FDRC10	FDRC9	FDRC8
0x2C	FDRC2	FDRC7	FDRC6	FDRC5	FDRC4	FDRC3	FDRC2	FDRC1	FDRC0
0x2D	STATUS	PLLUL	FAULT	UVFAULT	OVFAULT	OCFAULT	OCWARN	TFAULT	TWARN
0x2E	BIST1	Rese	erved	RO1BACT	R5BACT				R1BACT
0x2F	BIST2	Rese	erved	R01BEND	R5BEND				R1BEND
0x30	BIST3		Reserved		R5BBAD				R1BBAD
0x31	TSTCTL				Reserv	ed			
0x32	C1PS	C1PS7	C1PS6	C1PS5	C1PS4	C1PS3	C1PS2	C1PS1	C1PS0
0x33	C2PS	C2PS7	C2PS6	C2PS5	C2PS4	C2PS3	C2PS2	C2PS1	C2PS0
0x34	OLIM	OLIM7	OLIM6	OLIM5	OLIM4	OLIM3	OLIM2	OLIM1	OLIM0
0x35	SHEN			Reserv	ved			ENABLE_SH	Reserved
0x36	Reserved								
0x37	SHORT	SHGND1A	SHGND1B	SHGND2A	SHGND2B	SHVCC1A	SHVCC1B	SHVCC2A	SHVCC2B
0x38	SHOUT	Reserved	SHOUT						

Table 8. Register summary

5.1 Configuration registers (addr 0x00 to 0x05)

5.1.1 Configuration register A (addr 0x00)

D7	D6	D5	D4	D3	D2	D1	D0
FDRB	TWAB	TWRB	IR1	IR0	MCS2	MCS1	MCS0
0	1	1	0	0	0	1	1

Master clock select

Bit	R/W	RST	Name	Description
0	R/W	1	MCS0	
1	R/W	1	MCS1	Master clock select: Selects the ratio between the input I ² S sampling frequency and the input clock.
2	R/W	0	MCS2	

The STA333IS supports sampling rates of 32 kHz, 44.1 kHz, 48 kHz, 88.2 kHz, 96 kHz, 176.4 kHz, and 192 kHz. Therefore the internal clock is:

- 32.768 MHz for 32 kHz
- 45.1584 MHz for 44.1 kHz, 88.2 kHz, and 176.4 kHz
- 49.152 MHz for 48 kHz, 96 kHz, and 192 kHz

The external clock frequency provided to the XTI pin must be a multiple of the input sampling frequency (f_S).

The relationship between the input clock and the input sampling rate is determined by both the MCSx and the IR (input rate) register bits. The MCSx bits determine the PLL factor generating the internal clock and the IR bit determines the oversampling ratio used internally.

Input sampling rate	ю	MCS[2:0]					
f _S (kHz)		101	100	011	010	001	000
32, 44.1, 48	00	576 * f _S	128 * f _S	256 * f _S	384 * f _S	512 * f _S	768 * f _S
88.2, 96	01	NA	64 * f _S	128 * f _S	192 * f _S	256 * f _S	384 * f _S
176.4, 192	1X	NA	32 * f _S	64 * f _S	96 * f _S	128 * f _S	192 * f _S

Table 1	0. MC	S bits
---------	-------	--------

Interpolation ratio select

Bit	R/W	RST	Name	Description
4:3	R/W	00	IR [1:0]	Interpolation ratio select: Selects internal interpolation ratio based on input I ² S sampling frequency.

Table 11. Interpolation ratio select

The STA333IS has variable interpolation (oversampling) settings such that internal processing and FFX output rates remain consistent. The first processing block interpolates by either 2 times or 1 time (pass-through) or provides a 2-time downsampling. The oversampling ratio of this interpolation is determined by the IR bits.

Table 12. IN bit settings as a function of input sampling rate					
Input sampling rate f _S (kHz)	IR	1 st stage interpolation ratio			
32	00	2-time oversampling			
44.1	00	2-time oversampling			
48	00	2-time oversampling			
88.2	01	Pass-through			
96	01	Pass-through			
176.2	10	2-time downsampling			
192	10	2-time downsampling			

Table 12. IR bit settings as a function of input sampling rate

Thermal warning recovery bypass

Bit	R/W	RST	Name	Description
5	R/W	1		Thermal warning recovery bypass: 0: thermal warning recovery enabled 1: thermal warning recovery disabled

If the thermal warning adjustment is enabled (TWAB = 0), then the thermal warning recovery determines if the -3 dB output limit is removed when thermal warning is negative.

If TWRB = 0 and TWAB = 0, then when a thermal warning disappears, the -3 dB output limit is removed and the gain is added back to the system. If TWRB = 1 and TWAB = 0, then when a thermal warning disappears, the -3 dB output limit remains until TWRB is changed to zero or the device is reset.

Thermal warning adjustment bypass

Bit	R/W	RST	Name	Description
6	R/W	1		Thermal warning adjustment bypass: 0: thermal warning adjustment enabled 1: thermal warning adjustment disabled

Table 14. Thermal warning adjustment

The on-chip STA333IS power output block provides feedback to the digital controller using inputs to the power control block. The TWARN input is used to indicate a thermal warning condition. When TWARN is asserted (set to 0) for a period of time greater than 400 ms, the power control block will force a -3 dB output limit (determined by TWOCL in coefficient RAM) to the modulation limit in an attempt to eliminate the thermal warning condition. Once the thermal warning output limit adjustment is applied, it remains in this state until reset unless FDRB = 0.

Fault-detect recovery bypass

Bit	R/W	RST	Name	Description
7	R/W	0	FDRB	Fault-detect recovery bypass: 0: fault-detect recovery enabled 1: fault-detect recovery disabled

The on-chip STA333IS power output block provides feedback to the digital controller using inputs to the power control block. The FAULT input is used to indicate a fault condition (either overcurrent or thermal). When FAULT is asserted (set to 0), the power control block attempts a recovery from the fault by asserting the 3-state output (setting it to 0 which directs the power output block to begin recovery), holding it at 0 for period of time in the range of 0.1 ms to 1 second as defined by the fault-detect recovery constant register (FDRC registers 0x2B, 0x2C), then toggling it back to 1. This sequence is repeated as long as the fault indication exists. This feature is enabled by default but can be bypassed by setting the FDRB control bit to 1.

5.1.2 Configuration register B (addr 0x01)

D7	D6	D5	D4	D3	D2	D1	D0
C2IM	C1IM	Reserved	SAIFB	SAI3	SAI2	SAI1	SAI0
1	0	0	0	0	0	0	0

Serial audio input interface format

Bit	R/W	RST	Name	Description
0	R/W	0	SAI0	
1	R/W	0	SAI1	Determines the interface format of the input serial
2	R/W	0	SAI2	digital audio interface.
3	R/W	0	SAI3	

Table 16. Serial audio input interface format

Serial data interface

The STA333IS audio serial input interfaces with standard digital audio components and accepts a number of serial data formats. The STA333IS always acts as a slave when receiving audio input from standard digital audio components. Serial data for two channels is provided using three inputs: left/right clock LRCKI, serial clock BICKI, and serial data SDI.

Bits SAIx and bit SAIFB are used to specify the serial data format. The default serial data format is I²S, MSB first. Available formats are shown in the tables that follow.

Serial data first bit

Table 17. Serial data first bit

SAIFB	Format
0	MSB-first
1	LSB-first

BICKI	SAI [3:0]	SAIFB	Interface format
20 * f	0000	0	I ² S 15-bit data
32 * f _S	0001	0	Left/right justified 16-bit data
	0000	0	I ² S 16- to 23-bit data
	0001	0	Left-justified 16- to 24-bit data
48* f _S	0010	0	Right-justified 24-bit data
40 IS	0110	0	Right-justified 20-bit data
	1010	0	Right-justified 18-bit data
	1110	0	Right-justified 16-bit data
	0000	0	I ² S 16- to 24-bit data
	0001	0	Left-justified 16- to 24-bit data
61* f	0010	0	Right-justified 24-bit data
64* f _S	0110	0	Right-justified 20-bit data
	1010	0	Right-justified 18-bit data
	1110	0	Right-justified 16-bit data

BICKI	SAI[3:0]	SAIFB	Interface format
32* f _S	1100	1	I ² S 15-bit data
32 IS	1110	1	Left/right justified 16-bit data
	0100	1	I ² S 20-bit data
	1000	1	I ² S 18-bit data
	1100	1	LSB-first I ² S 16-bit data
48* f _S	0001	1	Left-justified 24-bit data
40 I _S	0101	1	Left-justified 20-bit data
	1001	1	Left-justified 18-bit data
	1101	1	Left-justified 16-bit data
	0010	1	Right-justified 24-bit data
	0110	1	Right-justified 20-bit data
48* f _S	1010	1	Right-justified 18-bit data
	1110	1	Right-justified 16-bit data
	0000	1	I ² S 24-bit data
	0100	1	I ² S 20-bit data
	1000	1	I ² S 18-bit data
	1100	1	LSB-first I ² S 16-bit data
	0001	1	Left-justified 24-bit data
C 4 * 5	0101	1	Left-justified 20-bit data
64* f _S	1001	1	Left-justified 18-bit data
	1101	1	Left-justified 16-bit data
	0010	1	Right-justified 24-bit data
	0110	1	Right-justified 20-bit data
	1010	1	Right-justified 18-bit data
	1110	1	Right-justified 16-bit data

Table 19 Supported sorial audio input formats for LSB-first (
Table 19. Supported serial audio input formats for LSB-first ($\mathbf{D} = \mathbf{D} - \mathbf{D}$

Channel input mapping

Bit	R/W	RST	Name	Description
6	R/W	0	C1IM	0: processing channel 1 receives left I ² S input 1: processing channel 1 receives right I ² S input
7	R/W	0	C2IM	0: processing channel 2 receives left I ² S input 1: processing channel 2 receives right I ² S input

	Table 20.	Chann	el input mapping
Г			

Each channel received via I²S can be mapped to any internal processing channel via the channel input mapping registers. This allows for flexibility in processing. The default settings of these registers map each I²S input channel to its corresponding processing channel.

5.1.3 Configuration register C (addr 0x02)

D7	D6	D5	D4	D3	D2	D1	D0
OCRB	Reserved	CSZ3	CSZ2	CSZ1	CSZ0	OM1	OM0
1	0	0	1	0	1	1	1

FFX power output mode

Table 21.	FFX	power	output	mode
-----------	-----	-------	--------	------

Bit	R/W	RST	Name	Description
0	R/W	1	OM0	The FFX power output mode selects the configuration
1	R/W	1	OM1	of the FFX output: 00: drop compensation 01: discrete output stage: tapered compensation 10: full-power mode 11: variable drop compensation (CSZx bits)

FFX compensation pulse size register

Table 22.	FFX	compensating	pulse size
-----------	-----	--------------	------------

Bit	R/W	RST	Name	Description
2	R/W	1	CSZ0	When $OM[1:0] = 11$, this register determines the size of
3	R/W	0	CSZ1	the FFX compensating pulse from 0 to 15 clock periods: 0000: 0 ns (0 ticks) compensating pulse size
4	R/W	1	CSZ2	0001: 20 ns (1 tick) clock period compensating pulse size
5	R/W	0	CSZ3	1111: 300 ns (15 ticks) clock period compensating pulse size

Overcurrent warning detect adjustment bypass

Bit	R/W	RST Name Description		Description
7	R/W	1	OCRB	0: overcurrent warning adjustment enabled 1: overcurrent warning adjustment disabled

Table 23. Overcurrent warning detect adjustment bypass

The status bit OCWARN is used to warn of an overcurrent condition. When OCWARN is asserted (set to 0), the power control block forces an adjustment to the modulation limit (default -3 dB) in an attempt to eliminate the overcurrent warning condition. Once the overcurrent warning volume adjustment is applied, it remains applied until the device is reset. The overcurrent limit can be changed via register OLIM (*Output limit register (addr 0x34) on page 35*).

5.1.4 Configuration register D (addr 0x03)

D7	D6	D5	D4	D3	D2	D1	D0	
Reserved	ZDE		Reserved					
0	1	0	0	0	0	0	0	

Zero-detect mute enable

 Table 24. Zero-detect mute enable

Bit	R/W	RST	Name	Description			
6	R/W	1	ZDE	1: enable the automatic zero-detect mute			

Setting the ZDE bit enables the zero-detect automatic mute. The zero-detect circuit looks at the data for each processing channel at the output of the crossover (bass management) filter. If any channel receives 2048 consecutive zero-value samples (regardless of f_S) then that individual channel is muted if this function is enabled.

5.1.5 Configuration register E (addr 0x04)

D7	D6	D5	D4	D3	D2	D1	D0
SVE	ZCE	DCCV	PWMS	AME	NSBW	MPC	MPCV
1	1	0	0	0	0	1	0

Max power correction variable

Table 25. Max power correction variable	Table 25.	Max p	ower	correction	variable
---	-----------	-------	------	------------	----------

Bit	R/W	RST	Name	Description
0	R/W	0	MPCV	0: use standard MPC coefficient 1: use MPCC bits for MPC coefficient

Max power correction

Bit	R/W	RST	Name	Description
1	R/W	1	MPC	1: enable power bridge correction for THD reduction near maximum power output.

Table 26. Max power c	orrection
-----------------------	-----------

Setting the MPC bit turns on special processing that corrects the STA333IS power device at high power. This mode lowers the THD+N of a full FFX system at maximum power output and slightly below. If enabled, MPC is operational in all output modes except tapered (OM[1:0] = 01) and binary. When OCFG = 00, MPC does not affect channels 3 and 4, the line-out channels.

Noise-shaper bandwidth selection

Table 27. Noise-shaper bandwidth selection

Bit	R/W	RST	Name	Description
2	R/W	0		1: 3 rd order NS 0: 4 th order NS

AM mode enable

Table 28. AM mode enable

Bit	R/W	RST	Name	Description
3	R/W	0		0: normal FFX operation 1: AM reduction mode FFX operation

The STA333IS features an FFX processing mode that minimizes the amount of noise generated in the frequency range of AM radio. This mode is intended for use when FFX is operating in a device with an active AM tuner. The SNR of the FFX processing is reduced to approximately 83 dB in this mode, which is still greater than the SNR of AM radio.

PWM speed mode

Table 29. PWM speed mode

Bit	R/W	RST	Name	Description
4	R/W	0	PWWS	0: normal speed (384 kHz) all channels 1: odd speed (341.3 kHz) all channels

Distortion compensation variable enable

Table 30. Distortion compensation variable enable

Bit	R/W	RST	Name	Description
5	R/W	0		0: uses preset DC coefficient 1: uses DCC coefficient

Zero-crossing volume enable

Bit	R/W	RST	Name	Description					
6	R/W	1	ZCE	 volume adjustments will only occur at digital zero-crossings volume adjustments will occur immediately 					

The ZCE bit enables zero-crossing volume adjustments. When the volume is adjusted on digital zero-crossings, no clicks will be audible.

Soft volume update enable

Table 32. Zero-crossing volume enable

Bit	R/W	RST	Name	Description
7	R/W	1	SVE	 volume adjustments ramp according to SVR settings volume adjustments will occur immediately

5.1.6 Configuration register F (addr 0x05)

D7	D6	D5	D4	D3	D2	D1	D0
EAPD	PWDN	ECLE	LDTE	BCLE	IDE	Reserved	
0	1	0	1	1	1	0	0

Invalid input detect mute enable

Table 33. Invalid input detect mute enable

Bit	R/W	RST	Name	Description
2	R/W	1	IDE	1: enables the automatic invalid input detect mute

Setting the IDE bit enables this function, which looks at the input I²S data and will automatically mute if the signals are perceived as invalid.

Binary output mode clock loss detection

Table 34. Binary output mode clock loss detection

Bit	R/W	RST	Name	Description
3	R/W	1	BCLE	Binary output mode clock loss detection enable

The BCLE bit detects loss of input MCLK in binary mode and outputs 50% of the duty cycle.

LRCK double trigger protection

Bit	R/W	R/W RST Name		Description					
4	R/W	1	LDTE	LRCLK double trigger protection enable					

Table 35. LRCK double trigger protection

The LDTE bit actively prevents double triggering of LRCLK.

Auto EAPD on clock loss

Table 36. Auto EAPD on clock loss

Bit	R/W	RST	Name	Description
5	R/W	0	ECLE	Auto EAPD on clock loss

When active, the ECLE bit will issue a device power-down signal (EAPD) on clock loss detection.

IC power-down

Table 37. Power-down

Bit	R/W	RST Name		R/W RST Name Description		Description
6	R/W	1	PWDN	0: power-down, low-power condition 1: normal operation		

The PWDN register is used to put the IC in a low-power state. When PWDN is 0, the output begins a soft-mute. After the mute condition is reached, EAPD is asserted to power down the power stage, then the master clock to all internal hardware except the I²C block is gated. This puts the IC in a very low power consumption state.

External amplifier power down

Table 38. External amplifier power-down

Bit	R/W	RST	Name	Description
7	R/W	1	EAPD	0: external power stage power-down active 1: normal operation

The EAPD register directly disables/enables the internal power circuitry.

When EAPD = 0, the internal power section is placed in a low-power state (disabled).

5.2 Volume control registers (addr 0x06 to 0x09)

5.2.1 Mute/line output configuration register (addr 0x06)

D7	D6	D5	D4	D3	D2	D1	D0
Reserved					C2M	C1M	MMUTE
0	0	0	0	0	0	0	0

Master mute

Table 39. Master mute

Bit	R/W	RST Name		R/W RST Name Description		Description
0	R/W	0	MMUTE	0: normal operation 1: all channels are in mute condition		

Channel mute

Bit R/W RST Name		Name	Description								
1	R/W	0	C1M	Channel 1 mute: 0: not muted, it is possible to set the channel volume 1: hardware muted							
2	R/W	0	C2M	Channel 2 mute: 0: not muted, it is possible to set the channel volume 1: hardware muted							

Table 40. Channel mute

5.2.2 Master volume register (addr 0x07)

D7	D6	D5	D4	D3	D2	D1	D0
MV7	MV6	MV5	MV4	MV3	MV2	MV1	MV0
1	1	1	1	1	1	1	1

5.2.3 Channel volume (addr 0x08, 0x09)

D7	D6	D5	D4	D3	D2	D1	D0
C1V7	C1V6	C1V5	C1V4	C1V3	C1V2	C1V1	C1V0
0	1	1	0	0	0	0	0
D7	D6	D5	D4	D3	D2	D1	D0
C2V7	C2V6	C2V5	C2V4	C2V3	C2V2	C2V1	C2V0
0	1	1	0	0	0	0	0

Volume setting

The volume structure of the STA333IS consists of individual volume registers for each channel and a master volume register that provides an offset to each channel's volume setting. The individual channel volumes are adjustable in 0.5-dB steps from +48 dB to -80 dB. As an example, if C3V = 0x00 or +48 dB and MV = 0x18 or -12 dB, then the total gain for channel 3 = +36 dB.

The master mute, when set to 1, will mute all channels at once, whereas the individual channel mutes (CxM) mute only that channel. Both the master mute and the channel mutes provide a "soft mute" with the volume ramping down to mute in 4096 samples from the maximum volume setting at the internal processing rate (about 96 kHz). A hard mute can be obtained by commanding a value of all 1's (255) to any channel volume register or the master volume register. When volume offsets are provided via the master volume register, any channel whose total volume is less than -80 dB is muted.

All changes in volume take place at zero-crossings when ZCE = 1 (configuration register F) on a per-channel basis as this creates the smoothest possible volume transitions. When ZCE = 0, volume updates will occur immediately.

MV[7:0]	Volume offset from channel value
0000000 (0x00)	0 dB
00000001 (0x01)	-0.5 dB
00000010 (0x02)	-1 dB
01001100 (0x4C)	-38 dB
11111110 (0xFE)	-127.5 dB
11111111 (0xFF)	Hard master mute

Table 42. Channel Volume as a function of CXV								
CxV[7:0]	Volume							
0000000 (0x00)	+48 dB							
00000001 (0x01)	+47.5 dB							
00000010 (0x02)	+47 dB							
01011111 (0x5F)	+0.5 dB							
01100000 (0x60)	0 dB							
01100001 (0x61)	-0.5 dB							
11010111 (0xD7)	-59.5 dB							
11011000 (0xD8)	-60 dB							
11011001 (0xD9)	-61 dB							
11011010 (0xDA)	-62 dB							
11101100 (0xEC)	-80 dB							
11101101 (0xED)	Hard channel mute							
11111111 (0xFF)	Hard channel mute							

Table 42. Channel volume as a function of CxV

5.3 Automodes[™] register (0x0C)

D7	D6	D5	D4	D3	D2	D1	D0
	Reserved				AMAM1	AMAM0	AMAME
0	0	0	0	0	0	0	0

AM interference frequency switching

Bit	R/W	RST	Name	Description
0	R/W	0		0: switching frequency determined by PWMS setting1: switching frequency determined by AMAM setting

AMAM bits

Table 44. Automodes[™] AM switching frequency selection

AMAM[2:0]	48 kHz / 96 kHz input f _S	44.1 kHz / 88.2 kHz input f _S
000	0.535 MHz - 0.720 MHz	0.535 MHz - 0.670 MHz
001	0.721 MHz - 0.900 MHz	0.671 MHz - 0.800 MHz
010	0.901 MHz - 1.100 MHz	0.801 MHz - 1.000 MHz
011	1.101 MHz - 1.300 MHz	1.001 MHz - 1.180 MHz
100	1.301 MHz - 1.480 MHz	1.181 MHz - 1.340 MHz
101	1.481 MHz - 1.600 MHz	1.341 MHz - 1.500 MHz
110	1.601 MHz - 1.700 MHz	1.501 MHz - 1.700 MHz

5.4 Channel configuration registers (addr 0x0E, 0x0F)

D7	D6	D5	D4	D3	D2	D1	D0
		Reserved	C1VBP	Rese	erved		
0	0	0	0	0	0	0	0
D7	D6	D5	D4	D3	D2	D1	D0
		Reserved	C2VBP	Rese	erved		
0	0	0	0	0	0	0	0

Volume bypass

Each channel contains an individual channel volume bypass. If a particular channel has volume bypassed via the CxVBP = 1 register, then only the channel volume setting for that particular channel affects the volume setting, the master volume setting will not affect that channel.

5.5 Variable max power correction registers (addr 0x27, 0x28)

The MPCC bits determine the 16 MSBs of the MPC compensation coefficient. This coefficient is used in place of the default coefficient when MPCV = 1.

D7	D6	D5	D4	D3	D2	D1	D0
MPCC15	MPCC14	MPCC13	MPCC12	MPCC11	MPCC10	MPCC9	MPCC8
0	0	0	1	1	0	1	0
D7	D6	D5	D4	D3	D2	D1	D0
MPCC7	MPCC6	MPCC5	MPCC4	MPCC3	MPCC2	MPCC1	MPCC0
1	1	0	0	0	0	0	0

5.6 Variable distortion compensation registers (addr 0x29, 0x2A)

D7	D6	D5	D4	D3	D2	D1	D0
DCC15	DCC14	DCC13	DCC12	DCC11	DCC10	DCC9	DCC8
1	1	1	1	0	0	1	1
D7	D6	D5	D4	D3	D2	D1	D0
DCC7	DCC6	DCC5	DCC4	DCC3	DCC2	DCC1	DCC0
0	0	1	1	0	0	1	1

The DCC bits determine the 16 MSBs of the distortion compensation coefficient. This coefficient is used in place of the default coefficient when DCCV = 1.

5.7 Fault-detect recovery constant registers (addr 0x2B, 0x2C)

	D7	D6	D5	D4	D3	D2	D1	D0
	FDRC15	FDRC14	FDRC13	FDRC12	FDRC11	FDRC10	FDRC9	FDRC8
	0	0	0	0	0	0	0	0
_	D7	D6	D5	D4	D3	D2	D1	D0
	FDRC7	FDRC6	FDRC5	FDRC4	FDRC3	FDRC2	FDRC1	FDRC0
	0	0	0	0	1	1	0	0

The FDRC bits specify the 16-bit fault-detect recovery time delay. When status register bit FAULT is asserted, the tristate output is immediately asserted low and held low for the time period specified by this constant. A value of 0x0001 in this register is approximately 0.083 ms. The default value of 0x000C gives approximately 0.1 ms.

Note: 0x0000 is a reserved value for this register pair. This value must not be used.

5.8 Device status register (addr 0x2D)

D7	D6	D5	D4	D3	D2	D1	D0
PLLUL	FAULT	UVFAULT	OVFAULT	OCFAULT	OCWARN	TFAULT	TWARN

This read-only register provides the fault, warning and PLL status from the power control block.

Bit	R/W	RST	Name	Description
0	RO	-	TWARN	Thermal warning: 0: junction temperature is close to the fault condition 1: normal operation
1	RO	-	TFAULT	Thermal fault: 0: junction temperature limit detection 1: normal operation
2	RO	-	OCWARN	Overcurrent warning: 0: warning 1: normal operation
3	RO	-	OCFAULT	Overcurrent fault: 0: fault detected 1: normal operation
4	-	-	-	Reserved
5	RO	-	UVFAULT	Undervoltage warning: 0: VCCx below lower voltage threshold 1: normal operation
6	RO	-	FAULT	Power bridge fault: 0: fault detected 1: normal operation
7	RO	-	PLLUL	PLL lock: 0: locked 1: not locked

Table 45. Status bits description

DocID022855 Rev 3

5.9 Reserved registers (addr 0x2E, 0x2F, 0x30, 0x31)

These registers are not to be used.

5.10 Postscale registers (addr 0x32, 0x33)

D7	D6	D5	D4	D3	D2	D1	D0
C1PS7	C1PS6	C1PS5	C1PS4	C1PS3	C1PS2	C1PS1	C1PS0
0	1	1	1	1	1	1	1
				•	•		
D7	D6	D5	D4	D3	D2	D1	D0
C2PS7	C2PS6	C2PS5	C2PS4	C2PS3	C2PS2	C2PS1	C2PS0
0	1	1	1	1	1	1	1

Postscale

The STA333IS provides one additional multiplication after the last interpolation stage and the distortion compensation on each channel, which can be used to limit the maximum modulation index and therefore the peak current through the power device. The register values represent an 8-bit signed fractional number. This number is extended to a 24-bit number, by adding zeros to the right, and then directly multiplied by the data on that channel. An independent postscale is provided for each channel but all channels can use channel 1 postscale factor by setting the postscale link bit. By default, all postscale factors are set to 0x7F (pass-through).

5.11 Output limit register (addr 0x34)

5.11.1 Thermal and overcurrent warning output limit register

D7	D6	D5	D4	D3	D2	D1	D0
OLIM7	OLIM6	OLIM5	OLIM4	OLIM3	OLIM2	OLIM1	OLIM0
0	1	0	1	1	0	1	0

The STA333IS provides a simple mechanism for reacting to a thermal or overcurrent warning in the power device. When the TWARN or OCWARN status bit is asserted, the output is limited to the OLIM setting. The limit can be adjusted by modifying the thermal warning/overcurrent output limit value. As for the normal postscale, the register value represents an 8-bit signed fractional number. This number is extended to a 24-bit number, by adding zeros to the right, and then directly multiplied by the data on both channels. The scaling value range is from 0x80 = -1 to 0x7F = 0.992. To avoid phase changes in the output signal only the positive range is used (0x00 to 0x7F). The default setting of 0x5A provides a -3-dB limit.

If the cause of the limiting is a thermal warning, the output limiting is removed when the thermal warning situation disappears. If the cause of the limiting is an overcurrent warning, output limiting remains in effect until the device is reset.

OLIM[7:0]	Attenuation (dB)			
0x7F	0.06			
0x7E	0.13			
0x5A	3.0			
0x40	6.0			
0x28	10			
0x01	42			
0x00	Inf			

Table 46. Output limit values for thermal and overcurrent warnings

5.12 Short-circuit protection registers SHOKx (addr 0x35, 0x37, 0x38)

D7	D6	D5	D4	D3	D2	D1	D0
reserved	reserved	reserved	reserved	reserved	reserved	ENABLE_SH	reserved
0	0	0	0	0	0	0 (default)	1
D7	D6	D5	D4	D3	D2	D1	D0
SHGND1A	SHGND1B	SHGND2A	SHGND2B	SHVCC1A	SHVCC1B	SHVCC2A	SHVCC2B
1	1	1	1	1	1	1	1
				-j	- <u>1</u>	÷	- <u>†</u>
D7	D6	D5	D4	D3	D2	D1	D0
reserved	reserved	reserved	reserved	reserved	reserved	reserved	SHOUT
0	0	0	0	0	1	0	1

The following power bridge pin short-circuit protections are implemented in the STA333IS:

- OUTxx vs GNDx
- OUTxx vs VCCx
- OUT1B vs OUT2A

The protection is enabled when reg. 0x35 bit 1 (ENABLE_SH) is set to '1'. The protection will check the short-circuit when the EAPD bit is toggled from '0' to '1' (i.e. the power bridge is switched on), and only if the test passes (no short) does the power bridge leave the tristate condition.

Register 0x37 and 0x38 (read-only registers) give more information about the detected short type. SHGNDxx equal to '0' means that OUTxx is shorted to ground, while the same value on SHVCCxx means that OUTxx is shorted to Vcc, and finally SHOUT='0' means that OUT1B is shorted to OUT2A. To be noted that once the check is performed and the tristate released, the short protection is no longer active until the next EAPD 0->1 toggling, which means that shorts that occurred during normal operation cannot be detected. To be noted that registers 0x37 and 0x38 are meaningful only after the EAPD bit is set to '1' at least once.

The short-circuit protections implemented are effective only in BTL configuration, and they must not be activated if a single-ended application scheme is needed.

Figure 10. Short-circuit protection timing diagram

6 Application information

6.1 Application scheme for power supplies

Figure 11 below shows a typical application scheme for the STA333IS.

Special care has to be taken with regard to the power supplies when laying out the PCB. In particular the $3.3-\Omega$ resistors on the digital supplies (VDD_DIG) have to be placed as close as possible to the device. This prevents unwanted oscillation on the digital parts of the device due to the inductive effects of the PCB tracks. The same rule also applies to all the decoupling capacitors; they should be placed as close as possible to the device in order to limit the effect of spikes on the supplies.

Figure 11. Application diagram

7 Package mechanical data

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK[®] packages, depending on their level of environmental compliance. ECOPACK[®] specifications, grade definitions and product status are available at: *www.st.com*. ECOPACK[®] is an ST trademark.

The STA333IS comes in a CSP 5x6 array package.

Soldering information

Figure 12. Recommended soldering reflow profile for mounting on PCB

Profile	Тур.	Max.	
Temp. gradient in preheat (T = 70 - 180 °C)	0.9 °C/s	3 °C/s	
Temp. gradient (T = 200 - 225 °C)	2 °C/s	3 °C/s	
Peak temp. in reflow	240 - 245 °C	260 °C	
Time above 220 °C	60 s	90 s	
Temp. gradient in cooling	-2 to -3 °C	-6 °C	
Time from 50 to 220 °C	160 to 2	220 s	

Figure 13 below shows the package outline and *Table 48* gives the dimensions.

Note 1: The terminal A1 on the backside of the product is identified by a distinguishing feature (for instance by a circular "clear area", typically 0.5 mm diameter).

Symbol	mm					
Symbol	Min	Тур	Мах			
А	0.585	0.65	0.715			
A1	0.210	0.25	0.29			
A2	0.38	0.4	0.42			
b	0.265	0.315	0.365			
D	2.52	2.57	2.62			
D1		2				
E	3.19	3.24	3.29			
E1		2.5				
е	0.45	0.5	0.55			
se	0.2	0.25	0.3			
fD	0.277	0.285	0.293			
fE	0.362	0.370	0.378			
ссс			0.08			

Table 48. CSP 5x6 array package dimensions

8 Revision history

Date Revision		Changes			
16-Jan-2013	1	Initial release.			
11-Mar-2013	2	Document status promoted to "production data" Updated <i>Description on page 1</i> Updated <i>Table 1: Device summary on page 1</i> Updated V _{CC} (max) in <i>Table 3: Absolute maximum ratings</i> Updated R _{Th(j-case)} in <i>Table 4: Thermal data</i> Updated V _{ol} and V _{oh} in <i>Table 6: Electrical characteristics for digital section</i> Updated <i>Table 7: Electrical specifications for power section</i> Updated <i>Figure 6: I</i> ² <i>S</i> Updated <i>Figure 7: Left-justified</i> Updated <i>Section 4.2: Device addressing</i> Updated <i>Table 19: Supported serial audio input formats for LSB-first (SAIFB = 1)</i> Updated <i>Figure 11</i>			
02-Apr-2013	3	Textual update in <i>Table 4: Thermal data</i> Added <i>Figure 12: Recommended soldering reflow profile for mounting on PCB</i> Added <i>Table 47: Recommended soldering reflow values for mounting on PCB</i>			

Table 49. Document revision history

Please Read Carefully:

Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice.

All ST products are sold pursuant to ST's terms and conditions of sale.

Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein.

UNLESS OTHERWISE SET FORTH IN ST'S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

ST PRODUCTS ARE NOT AUTHORIZED FOR USE IN WEAPONS. NOR ARE ST PRODUCTS DESIGNED OR AUTHORIZED FOR USE IN: (A) SAFETY CRITICAL APPLICATIONS SUCH AS LIFE SUPPORTING, ACTIVE IMPLANTED DEVICES OR SYSTEMS WITH PRODUCT FUNCTIONAL SAFETY REQUIREMENTS; (B) AERONAUTIC APPLICATIONS; (C) AUTOMOTIVE APPLICATIONS OR ENVIRONMENTS, AND/OR (D) AEROSPACE APPLICATIONS OR ENVIRONMENTS. WHERE ST PRODUCTS ARE NOT DESIGNED FOR SUCH USE, THE PURCHASER SHALL USE PRODUCTS AT PURCHASER'S SOLE RISK, EVEN IF ST HAS BEEN INFORMED IN WRITING OF SUCH USAGE, UNLESS A PRODUCT IS EXPRESSLY DESIGNATED BY ST AS BEING INTENDED FOR "AUTOMOTIVE, AUTOMOTIVE SAFETY OR MEDICAL" INDUSTRY DOMAINS ACCORDING TO ST PRODUCT DESIGN SPECIFICATIONS. PRODUCTS FORMALLY ESCC, QML OR JAN QUALIFIED ARE DEEMED SUITABLE FOR USE IN AEROSPACE BY THE CORRESPONDING GOVERNMENTAL AGENCY.

Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST.

ST and the ST logo are trademarks or registered trademarks of ST in various countries.

Information in this document supersedes and replaces all information previously supplied.

The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.

© 2013 STMicroelectronics - All rights reserved

STMicroelectronics group of companies

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan -Malaysia - Malta - Morocco - Philippines - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America

www.st.com

DocID022855 Rev 3