www.ti.com # **DUAL 4-PORT AND DUAL 8-PORT LVDS REPEATERS** #### **FEATURES** - Two Line Receivers and Eight ('109) or Sixteen ('117) Line Drivers Meet or Exceed the Requirements of ANSI EIA/TIA-644 Standard - Typical Data Signaling Rates to 400 Mbps or Clock Frequencies to 400 MHz - Outputs Arranged in Pairs From Each Bank - Enabling Logic Allows Individual Control of Each Driver Output Pair, Plus All Outputs - Low-Voltage Differential Signaling With Typical Output Voltage of 350 mV and a 100-Ω Load - Electrically Compatible With LVDS, PECL, LVPECL, LVTTL, LVCMOS, GTL, BTL, CTT, SSTL, or HSTL Outputs With External Termination Networks - Propagation Delay Times < 4.5 ns - Output Skew Less Than 550 ps Bank Skew Less Than150 ps Part-to-Part Skew Less Than 1.5 ns - Total Power Dissipation Typically <500 mW With All Ports Enabled and at 200 MHz - Driver Outputs or Receiver Input Equals High Impedance When Disabled or With V_{CC} < 1.5 V - Bus-Pin ESD Protection Exceeds 12 kV - Packaged in Thin Shrink Small-Outline Package With 20-Mil Terminal Pitch #### **DESCRIPTION** The SN65LVDS109 and SN65LVDS117 are configured as two identical banks, each bank having one differential line receiver connected to either four ('109) or eight ('117) differential line drivers. The outputs are arranged in pairs having one output from each of the two banks. Individual output enables are provided for each pair of outputs and an additional enable is provided for all outputs. The line receivers and line drivers implement the electrical characteristics of low-voltage differential signaling (LVDS). LVDS, as specified in EIA/TIA-644, is a data signaling technique that offers low power, low noise emission, high noise immunity, and high switching speeds. (Note: The ultimate rate and distance of data transfer is dependent upon the attenuation characteristics of the media, the noise coupling to the environment, and other system characteristics.) The intended application of these devices, and the LVDS signaling technique, is for point-to-point or point-to-multipoint (distributed simplex) baseband data transmission on controlled impedance media of approximately 100 $\Omega.$ The transmission media may be printed-circuit board traces, backplanes, or cables. The large number of drivers integrated into the same silicon substrate, along with the low pulse skew of balanced signaling, provides extremely precise timing alignment of the signals being repeated from the inputs. This is particularly advantageous for implementing system clock and data distribution trees. The SN65LVDS109 and SN65LVDS117 are characterized for operation from -40°C to 85°C. Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet. These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam during storage or handling to prevent electrostatic damage to the MOS gates. # **LOGIC DIAGRAM (POSITIVE LOGIC)** #### **SELECTION GUIDE TO LVDS SPLITTERS** The SN65LVDS109 and SN75LVDS117 are both members of a family of LVDS splitters and repeaters. A brief overview of the family is provided by Table 1. **NUMBER NUMBER DEVICE PACKAGE COMMENTS** OF OF INPUTS OUTPUTS SN65LVDS104 1 LVDS 4 LVDS 16-pin D 4-Port LVDS repeater 16-pin D SN65LVDS105 1 LVTTL 4 LVDS 4-Port TTL-to-LVDS repeater 38-pin DBT 8-Port LVDS repeater SN65LVDS108 1 LVDS 8 LVDS 2 LVDS 8 LVDS 38-pin DBT Dual 4-port LVDS repeater **SN65LVDS109** SN65LVDS116 1 LVDS 16 LVDS 16-Port LVDS repeater 64-pin DGG Dual 8-Port LVDS repeater SN65LVDS117 2 LVDS 16 LVDS 64-pin DGG **Table 1. LVDS SPLITTER AND REPEATER FAMILY** #### **FUNCTION TABLE** | INPUTS | OUTPUTS | | | | |---|---------|----|---|---| | $V_{ID} = V_A - V_B$ | xΥ | xΖ | | | | X | L | Х | Z | Z | | X | Х | L | Z | Z | | $V_{ID} \ge 100 \text{ mV}$ | Н | Н | Н | L | | $-100 \text{ mV} < V_{ID} < 100 \text{ mV}$ | Н | Н | ? | ? | | $V_{ID} \le -100 \text{ mV}$ | Н | Н | L | Н | #### **EQUIVALENT INPUT AND OUTPUT SCHEMATIC DIAGRAMS** #### **ABSOLUTE MAXIMUM RATINGS** over operating free-air temperature range (unless otherwise noted)(1) | | | UNIT | |---------------------------|------------------------------------|------------------------------| | Supply voltage range, V | –0.5 V to 4 V | | | Input voltage range | Enable inputs | -0.5 V to 6 V | | Input voltage range | A, B, Y or Z | -0.5 V to 4 V | | Electrostatic discharge | A, B, Y, Z, and GND ⁽³⁾ | Class 3, A:12 kV, B: 500 V | | Continuous power dissip | pation | See Dissipation Rating Table | | Storage temperature range | | –65°C to 150°C | | Lead temperature 1,6 m | 260°C | | ⁽¹⁾ Stresses beyond those listed under absolute maximum ratings may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under recommended operating conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability. #### **DISSIPATION RATING TABLE** | PACKAGE | T _A ≤ 25°C
POWER RATING | DERATING FACTOR ⁽¹⁾
ABOVE T _A = 25°C | T _A = 85°C
POWER RATING | |---------|---------------------------------------|---|---------------------------------------| | DBT | 1277 mW | 10.2 mW/°C | 644 mW | | DGG | 2094 mW | 1089 mW | | ⁽¹⁾ This is the inverse of the junction-to-ambient thermal resistance when board-mounted (low-k) with no air flow. ### **RECOMMENDED OPERATING CONDITIONS** | | | MIN | NOM | MAX | UNIT | |-----------------------------------|---|-----|-----|-----------------------|------| | V_{CC} | Supply voltage | 3 | 3.3 | 3.6 | V | | V_{IH} | High-level input voltage | 2 | | | V | | V_{IL} | Low-level input voltage | | | 0.8 | V | | V _I or V _{IC} | Voltage at any bus terminal (separately or common-mode) | 0 | | V _{CC} - 0.8 | V | | T _A | Operating free-air temperature | -40 | | 85 | °C | ²⁾ All voltage values, except differential I/O bus voltages, are with respect to network ground terminal. ⁽³⁾ Tested in accordance with MIL-STD-883C Method 3015.7. # **ELECTRICAL CHARACTERISTICS** over recommended operating conditions (unless otherwise noted) | | PAF | RAMETER | TEST CONDITIONS | MIN | TYP ⁽¹⁾ | MAX | UNIT | | |---------------------------------------|----------------------------------|---|---|-----------------------------|--------------------|-----------|------|--| | V _{ITH+} | Positive-going d | lifferential input voltage threshold | Con Figure 4 and Table 2 | | | 100 | mV | | | V _{ITH-} | Negative-going | differential input voltage threshold | See Figure 1 and Table 2 | -100 | | | IIIV | | | V _{OD} | Differential outp | Differential output voltage magnitude | | | | 454 | | | | $\Delta V_{OD} $ | Change in differ between logic s | rential output voltage magnitude tates | R_L = 100 Ω, V_{ID} = ±100 mV,
See Figure 1 and Figure 2 | -50 | | 50 | mV | | | V _{OC(SS)} | Steady-state co | mmon-mode output voltage | | 1.125 | | 1.37
5 | V | | | $\Delta V_{OC(SS)}$ | Change in stead voltage between | dy-state common-mode output
n logic states | See Figure 3 | -50 | | 50 | mV | | | V _{OC(PP)} | Peak-to-peak co | ommon-mode output voltage | | | 50 | 150 | | | | · · · · · · · · · · · · · · · · · · · | Supply current | | SN65LVDS109 | Enabled, $R_L = 100 \Omega$ | | 46 | 64 | | | | | | Disabled | | 6 | 8 | A | | | I _{CC} | | | Enabled, $R_L = 100 \Omega$ | | 85
6 | 122 | mA | | | | | SNOSLVDSTT/ | Disabled | | | 8 | | | | | Innest assument (A | an Diagrata) | V _I = 0 V | -2 | | -20 | | | | l _l | Input current (A | or B inputs) | V _I = 2.4 V | -1.2 | | | μΑ | | | I _{I(OFF)} | Power-off input | current (A or B inputs) | $V_{CC} = 1.5 \text{ V}, \qquad V_{I} = 2.4 \text{ V}$ | | | 20 | μA | | | I _{IH} | High-level input | current (enables) | V _{IH} = 2 V | | | 20 | μΑ | | | I _{IL} | Low-level input | current (enables) | V _{IL} = 0.8 V | | | 10 | μA | | | | Object singuity and | | V_{OY} or $V_{OZ} = 0$ V | | | ±24 | ^ | | | I _{OS} | Short-circuit out | put current | V _{OD} = 0 V | | | ±12 | mA | | | l _{OZ} | High-impedance output current | | $V_O = 0 \text{ V or } V_{CC}$ | | | ±1 | μA | | | I _{O(OFF)} | Power-off outpu | t current | $V_{CC} = 1.5 \text{ V}, \qquad V_{O} = 3.6 \text{ V}$ | | | ±1 | μΑ | | | C _{IN} | Input capacitano | ce (A or B inputs) | $V_I = 0.4 \sin (4E6\pi t) + 0.5 V$ | | 5 | | pF | | | Co | Output capacita | nce (Y or Z outputs) | $V_1 = 0.4 \sin (4E6\pi t) + 0.5 \text{ V}$, Disabled 9. | | | | | | ⁽¹⁾ All typical values are at 25° C and with a 3.3-V supply. ### **SWITCHING CHARACTERISTICS** over recommended operating conditions (unless otherwise noted) | | PARAMETER | TEST CONDITIONS | MIN | TYP ⁽¹⁾ | MAX | UNIT | |---------------------|--|----------------------------------|-----|--------------------|-----|------| | t _{PLH} | Propagation delay time, low-to-high-level output | | 1.6 | 2.8 | 4.5 | 20 | | t _{PHL} | Propagation delay time, high-to-low-level output | | 1.6 | 2.8 | 4.5 | ns | | t _r | Differential output signal rise time | | 0.3 | 0.8 | 1.2 | 20 | | t _f | Differential output signal fall time | $R_L = 100 \Omega, C_L = 10 pF,$ | 0.3 | 0.8 | 1.2 | ns | | t _{sk(p)} | Pulse skew (t _{PHL} - t _{PLH}) ⁽²⁾ | See Figure 4 | | 140 | 500 | 20 | | t _{sk(o)} | Output skew ⁽³⁾ | | | 100 | 550 | ps | | t _{sk(b)} | Bank skew ⁽⁴⁾ | | | 40 | 150 | ps | | t _{sk(pp)} | Part-to-part skew ⁽⁵⁾ | | | | 1.5 | ns | | t _{PZH} | Propagation delay time, high-impedance-to-high-level output | | | 5.7 | 15 | | | t _{PZL} | Propagation delay time, high-impedance-to-low-level output | See Figure 5 | | 7.7 | 15 | 20 | | t _{PHZ} | Propagation delay time, high-level-to-high-impedance output | See Figure 5 | | 3.2 | 15 | ns | | t_{PLZ} | Propagation delay time, low-level-to-high-impedance output | | | 3.2 | 15 | | - (1) All typical values are at 25°C and with a 3.3-V supply. (2) t_{sk(p)} is the magnitude of the time difference between the t_{PLH} and t_{PHL} of any output of a single device. (3) t_{sk(o)} is the magnitude of the time difference between the t_{PLH} or t_{PHL} of any outputs with both inputs tied together. - $t_{sk(0)}$ is the magnitude of the time difference between the t_{PLH} and t_{PLH} of the two outputs of any bank of a single device. $t_{sk(pp)}$ is the magnitude of the time difference in propagation delay times between any specified terminals of two devices when both devices operate with the same supply voltages, at the same temperature, and have identical packages and test circuits. ### PARAMETER MEASUREMENT INFORMATION Figure 1. Voltage and Current Definitions Table 2. Receiver Minimum and Maximum Input Threshold Test Voltages | APPLIED \ | OLTAGES | RESULTING COMMON-
MODE INPUT VOLTAGE | | |-----------|-----------------|---|-----------------| | VIA | V _{IB} | V _{ID} | V _{IC} | | 1.25 V | 1.15 V | 100 mV | 1.2 V | | 1.15 V | 1.25 V | -100 mV | 1.2 V | | 2.4 V | 2.3 V | 100 mV | 2.35 V | | 2.3 V | 2.4 V | -100 mV | 2.35 V | | 0.1 V | 0 V | 100 mV | 0.05 V | | 0 V | 0.1 V | -100 mV | 0.05 V | | 1.5 V | 0.9 V | 600 mV | 1.2 V | | 0.9 V | 1.5 V | −600 mV | 1.2 V | | 2.4 V | 1.8 V | 600 mV | 2.1 V | | 1.8 V | 2.4 V | −600 mV | 2.1 V | | 0.6 V | 0 V | 600 mV | 0.3 V | | 0 V | 0.6 V | −600 mV | 0.3 V | Figure 2. V_{OD} Test Circuit A. All input pulses are supplied by a generator having the following characteristics: t_r or $t_f \le 1$ ns, pulse repetition rate (PRR) = 0.5 Mpps, pulsewidth = 500 ± 10 ns. C_L includes instrumentation and fixture capacitance within 0,06 mm of the D.U.T. The measurement of $V_{OC(PP)}$ is made on test equipment with a -3 dB bandwidth of at least 300 MHz. Figure 3. Test Circuit and Definitions for the Driver Common-Mode Output Voltage A. All input pulses are supplied by a generator having the following characteristics: t_r or $t_f \le 1$ ns, pulse repetition rate (PRR) = 50 Mpps, pulsewidth = 10 \pm 0.2 ns . C_L includes instrumentation and fixture capacitance within 0,06 mm of the D.U.T. Figure 4. Test Circuit, Timing, and Voltage Definitions for the Differential Output Signal A. All input pulses are supplied by a generator having the following characteristics: t_r or $t_f \le 1$ ns, pulse repetition rate (PRR) = 0.5 Mpps, pulsewidth = 500 ± 10 ns . C_L includes instrumentation and fixture capacitance within 0,06 mm of the D.U.T. Figure 5. Enable and Disable Time Circuit and Definitions ### **TYPICAL CHARACTERISTICS** Figure 7. # LOW-TO-HIGH PROPAGATION DELAY TIME vs # HIGH-TO-LOW PROPAGATION DELAY TIME Figure 9. # **TYPICAL CHARACTERISTICS (continued)** ### P-P EYE-PATTERN JITTER vs PRBS SIGNALING RATE 900 T_A = 25°C 800 $V_{CC} = 3.6 \text{ V}$ 700 Peak-to-Peak Jitter - ps 600 500 $V_{CC} = 3 \dot{V}$ 400 300 200 100 00 200 400 600 800 **SN65LVDS109** NOTES: Input: 2¹⁵ PRBS with peak-to-peak jitter < 100 ps at 100 Mbps, all outputs enabled and loaded with differential 100-Ω loads, worst-case output, supply decoupled with 0.1-μF and 0.001-μF ceramic 0603-style capacitors placed 1 cm from the device. Figure 10. Signaling Rate - Mbps NOTES: Input: 50% duty cycle square wave with jitter period < 10 ps at 100 MHz, all outputs enabled and loaded with differential 100-Ω loads, worst-case output, supply decoupled with 0.1-μF and 0.001-μF ceramic 0603-style capacitors 1 cm from the device. Figure 11. # **TYPICAL CHARACTERISTICS (continued)** ### P-P EYE-PATTERN JITTER vs PRBS SIGNALING RATE 900 T_A = 25°C 800 700 Peak-to-Peak Jitter - ps $V_{CC} = 3.6 V$ 600 500 V_{CC} = 3 V 400 300 200 100 0 0 r 100 200 300 400 **SN65LVDS117** NOTES: Input: 2^{15} PRBS with peak-to-peak jitter < 115 ps at 100 Mbps, all outputs enabled and loaded with differential $100-\Omega$ loads, worst-case output, supply decoupled with $0.1-\mu F$ and $0.001-\mu F$ ceramic 0805-style capacitors 1 cm from the device. Figure 12. Signaling Rate - Mbps NOTES: Input: 50% duty cycle square wave with jitter period < 10 ps at 100 MHz, all outputs enabled and loaded with differential 100-Ω loads, worst-case output, supply decoupled with 0.1-μF and 0.001-μF ceramic 0805-style capacitors 1 cm from the device. Figure 13. # **TYPICAL CHARACTERISTICS (continued)** Figure 14. Typical Differential Eye Pattern at 400 Mbps #### **APPLICATION INFORMATION** #### **FAIL SAFE** A common problem with differential signaling applications is how the system responds when no differential voltage is present on the signal pair. The LVDS receiver is like most differential line receivers, in that its output logic state can be indeterminate when the differential input voltage is between –100 mV and 100 mV and within its recommended input common-mode voltage range. Hovever, TI LVDS receivers handles the open-input circuit situation differently. Open-circuit means that there is little or no input current to the receiver from the data line itself. This could be when the driver is in a high-impedance state or the cable is disconnected. When this occurs, the LVDS receiver pulls each line of the signal pair to near V_{CC} through 300-k Ω resistors as shown in Figure 15. The fail-safe feature uses an AND gate with input voltage thresholds at about 2.3 V to detect this condition and force the output to a high-level regardless of the differential input voltage. Figure 15. Open-Circuit Fail Safe of the LVDS Receiver It is only under these conditions that the output of the receiver will be valid with less than a 100 mV differential input voltage magnitude. The presence of the termination resistor, Rt, does not affect the fail-safe function as long as it is connected as shown in Figure 15. Other termination circuits may allow a dc current to ground that could defeat the pullup currents from the receiver and the fail-safe feature. #### **CLOCK DISTRIBUTION** The SN65LVDS109 and SN65LVDS117 devices solve several problems common to the distribution of timing critical clock and data signals. These problems include: - Excessive skew between the signals - Noise pickup over long signaling paths - High power consumption - Control of which signal paths are enabled or disabled - Elimination of radiation from unterminated lines Buffering and splitting the two related signals on the same silicon die minimizes corruption of the timing relation between the two signals. Buffering and splitting the two signals in separate devices will introduce considerably higher levels of uncontrolled timing skew between the two signals. Higher speed operation and more timing tolerance for other components of the system is enabled by the tighter system timing budgets provided by the single die implementations of the SN65LVDS109 and SN65LVDS117. The use of LVDS signaling technology for both the inputs and the outputs provides superior common-mode and noise tolerance compared to single-ended I/O technologies. This is particularly important because the signals that are being distributed must be transmitted over longer distances, and at higher rates, than can be accommodated with single-ended I/Os. In addition, LVDS consumes considerably less power than other high-performance differential signaling schemes. The enable inputs provided for each output pair may be used to turn on or off any of the paths. This function is required to prevent radiation of signals from the unterminated signal lines on open connectors, such as when boards or devices are being swapped in the end equipment. The individual bank enables are also required if redundant paths are being utilized for reliability reasons. The diagram below shows how a pair of clock (C) and data (D) input signals is being identically repeated out two of the available output pairs. A third output pair is shown in the disabled state. Figure 16. LVDS Repeating Splitter Application Example Showing Individual Path Control #### INPUT LEVEL TRANSLATION An LVDS receiver can be used to receive various other types of logic signals. Figure 17 through Figure 25 show the termination circuits for SSTL, HSTL, GTL, BTL, LVPECL, PECL, CMOS, and TTL. Figure 17. Stub-Series Terminated (SSTL) or High-Speed Transceiver Logic (HSTL) Figure 18. Center-Tap Termination (CTT) Figure 19. Gunning Transceiver Logic (GTL) Figure 20. Backplane Transceiver Logic (BTL) Figure 21. Low-Voltage Positive Emitter-Coupled Logic (LVPECL) Figure 22. Positive Emitter-Coupled Logic (PECL) Figure 23. 3.3-V CMOS Figure 24. 5-V CMOS Figure 25. TTL ii.com 21-Mar-2013 #### PACKAGING INFORMATION | Orderable Device | Status | Package Type | U | | Package Qty | Eco Plan | Lead/Ball Finish | MSL Peak Temp | Op Temp (°C) | Top-Side Markings | Samples | |-------------------|----------|--------------|---------|----|-------------|----------------------------|------------------|---------------------|--------------|-------------------|---------| | | (1) | | Drawing | | | (2) | | (3) | | (4) | | | SN65LVDS109DBT | ACTIVE | TSSOP | DBT | 38 | 50 | Green (RoHS
& no Sb/Br) | CU NIPDAU | Level-2-260C-1 YEAR | -40 to 85 | LVDS109 | Samples | | SN65LVDS109DBTG4 | ACTIVE | TSSOP | DBT | 38 | 50 | Green (RoHS
& no Sb/Br) | CU NIPDAU | Level-2-260C-1 YEAR | -40 to 85 | LVDS109 | Samples | | SN65LVDS109DBTR | OBSOLETE | TSSOP | DBT | 38 | | TBD | Call TI | Call TI | -40 to 85 | LVDS109 | | | SN65LVDS109DBTRG4 | OBSOLETE | TSSOP | DBT | 38 | | TBD | Call TI | Call TI | -40 to 85 | | | | SN65LVDS117DGG | ACTIVE | TSSOP | DGG | 64 | 25 | Green (RoHS
& no Sb/Br) | CU NIPDAU | Level-2-260C-1 YEAR | -40 to 85 | LVDS117 | Samples | | SN65LVDS117DGGG4 | ACTIVE | TSSOP | DGG | 64 | 25 | Green (RoHS
& no Sb/Br) | CU NIPDAU | Level-2-260C-1 YEAR | -40 to 85 | LVDS117 | Samples | | SN65LVDS117DGGR | ACTIVE | TSSOP | DGG | 64 | 2000 | Green (RoHS
& no Sb/Br) | CU NIPDAU | Level-2-260C-1 YEAR | -40 to 85 | LVDS117 | Samples | | SN65LVDS117DGGRG4 | ACTIVE | TSSOP | DGG | 64 | 2000 | Green (RoHS
& no Sb/Br) | CU NIPDAU | Level-2-260C-1 YEAR | -40 to 85 | LVDS117 | Samples | ⁽¹⁾ The marketing status values are defined as follows: ACTIVE: Product device recommended for new designs. LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect. NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design. PREVIEW: Device has been announced but is not in production. Samples may or may not be available. **OBSOLETE:** TI has discontinued the production of the device. (2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details. TBD: The Pb-Free/Green conversion plan has not been defined. **Pb-Free** (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes. **Pb-Free** (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above. Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material) (3) MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature. ⁽⁴⁾ Only one of markings shown within the brackets will appear on the physical device. # **PACKAGE OPTION ADDENDUM** 21-Mar-2013 **Important Information and Disclaimer:** The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release. In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis. # PACKAGE MATERIALS INFORMATION www.ti.com 17-Aug-2012 # TAPE AND REEL INFORMATION #### **REEL DIMENSIONS** | A0 | Dimension designed to accommodate the component width | |----|---| | В0 | Dimension designed to accommodate the component length | | K0 | Dimension designed to accommodate the component thickness | | W | Overall width of the carrier tape | | P1 | Pitch between successive cavity centers | ### TAPE AND REEL INFORMATION #### *All dimensions are nominal | Device | Package
Type | Package
Drawing | | | Reel
Diameter
(mm) | Reel
Width
W1 (mm) | A0
(mm) | B0
(mm) | K0
(mm) | P1
(mm) | W
(mm) | Pin1
Quadrant | |-----------------|-----------------|--------------------|----|------|--------------------------|--------------------------|------------|------------|------------|------------|-----------|------------------| | SN65LVDS117DGGR | TSSOP | DGG | 64 | 2000 | 330.0 | 24.4 | 8.4 | 17.3 | 1.7 | 12.0 | 24.0 | Q1 | www.ti.com 17-Aug-2012 #### *All dimensions are nominal | Device | Package Type | Package Drawing | Pins | SPQ | Length (mm) | Width (mm) | Height (mm) | |-----------------|--------------|-----------------|------|------|-------------|------------|-------------| | SN65LVDS117DGGR | TSSOP | DGG | 64 | 2000 | 367.0 | 367.0 | 45.0 | DBT (R-PDSO-G38) # PLASTIC SMALL OUTLINE NOTES: A. All linear dimensions are in millimeters. Dimensioning and tolerancing per ASME Y14.5M-1994. - B. This drawing is subject to change without notice. - C. Body dimensions do not include mold flash or protrusion. - D. Falls within JEDEC MO-153. # DBT (R-PDSO-G38) # PLASTIC SMALL OUTLINE NOTES: - A. All linear dimensions are in millimeters. - B. This drawing is subject to change without notice. - C. Publication IPC-7351 is recommended for alternate designs - D. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC-7525. - E. Customers should contact their board fabrication site for solder mask tolerances between and around signal pads. # DGG (R-PDSO-G**) # PLASTIC SMALL-OUTLINE PACKAGE #### **48 PINS SHOWN** NOTES: A. All linear dimensions are in millimeters. B. This drawing is subject to change without notice. C. Body dimensions do not include mold protrusion not to exceed 0,15. D. Falls within JEDEC MO-153 #### IMPORTANT NOTICE Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products (also referred to herein as "components") are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment. TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI's terms and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily performed. TI assumes no liability for applications assistance or the design of Buyers' products. Buyers are responsible for their products and applications using TI components. To minimize the risks associated with Buyers' products and applications, Buyers should provide adequate design and operating safeguards. TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI. Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions. Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements. Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use of any TI components in safety-critical applications. In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI's goal is to help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and requirements. Nonetheless, such components are subject to these terms. No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties have executed a special agreement specifically governing such use. Only those TI components which TI has specifically designated as military grade or "enhanced plastic" are designed and intended for use in military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components which have *not* been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and regulatory requirements in connection with such use. TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of non-designated products, TI will not be responsible for any failure to meet ISO/TS16949. Products Applications Audio www.ti.com/audio Automotive and Transportation www.ti.com/automotive Communications and Telecom **Amplifiers** amplifier.ti.com www.ti.com/communications **Data Converters** dataconverter.ti.com Computers and Peripherals www.ti.com/computers **DLP® Products** www.dlp.com Consumer Electronics www.ti.com/consumer-apps DSP **Energy and Lighting** dsp.ti.com www.ti.com/energy Clocks and Timers www.ti.com/clocks Industrial www.ti.com/industrial Interface interface.ti.com Medical www.ti.com/medical logic.ti.com Logic Security www.ti.com/security Power Mgmt power.ti.com Space, Avionics and Defense www.ti.com/space-avionics-defense Microcontrollers <u>microcontroller.ti.com</u> Video and Imaging <u>www.ti.com/video</u> RFID www.ti-rfid.com OMAP Applications Processors www.ti.com/omap TI E2E Community e2e.ti.com Wireless Connectivity <u>www.ti.com/wirelessconnectivity</u>