



SLLS666-SEPTEMBER 2005

# HIGH OUTPUT FULL-DUPLEX RS-485 DRIVERS AND RECEIVERS

### FEATURES

- 1/8 Unit-Load Option Available (Up to 256 Nodes on the Bus)
- Bus-Pin ESD Protection Exceeds 15 kV HBM
- Optional Driver Output Transition Times for Signaling Rates <sup>(1)</sup> of 1 Mbps, 5 Mbps and 25 Mbps
- Low-Current Standby Mode < 1 μA</li>
- Glitch-Free Power-Up and Power-Down Bus
  I/Os
- Bus Idle, Open, and Short Circuit Failsafe
- Meets or exceeds the requirements of ANSI TIA/EIA-485-A and RS-422 Compatible
- 3.3-V Devices available, SN65HVD30-39

## **APPLICATIONS**

- Utility Meters
- Chassis-to-Chassis Interconnects
- DTE/DCE Interfaces
- Industrial, Process, and Building Automation
- Point-of-Sale (POS) Terminals and Networks

## DESCRIPTION

The SN65HVD5X devices are 3-state differential line drivers and differential-input line receivers that operate with a 5-V power supply. Each driver and receiver has separate input and output pins for full-duplex bus communication designs. They are designed for balanced transmission lines and interoperation with ANSI TIA/EIA-485A, TIA/EIA-422-B, ITU-T v.11 and ISO 8482:1993 standard-compliant devices.

 The signaling rate of a line is the number of voltage transitions that are made per second expressed in the units bps (bits per second). The SN65HVD50, SN65HVD51, SN65HVD52, SN65HVD56 and SN65HVD57 are fully enabled with no external enabling pins. The SN65HVD56 and SN65HVD57 implement receiver equalization technology for improved performance in long distance applications.

The SN65HVD53, SN65HVD54, SN65HVD55, SN65HVD58, and SN65HVD59 have active-high driver enables and active-low receiver enables. A very low, less than 1 uA, standby current can be achieved by disabling both the driver and receiver. The SN65HVD58 and SN65HVD59 implement receiver equalization technology for improved performance in long distance applications.

All devices are characterized for operation from -40° C to +85°.



The SN65HVD56 and SN65HVD58 implement receiver equalization technology for improved jitter performance on differential bus applications with data rates up to 20 Mbps at cable lengths up to 160 meters.

The SN65HVD57 and SN65HVD59 implement receiver equalization technology for improved jitter performance on differential bus applications with data rates in the range of 1 to 5 Mbps at cable lengths up to 1000 meters.



Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

SLLS666-SEPTEMBER 2005



These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam during storage or handling to prevent electrostatic damage to the MOS gates.

#### SN65HVD50, SN65HVD51, SN65HVD52, SN65HVD56, SN65HVD57



SN65HVD53, SN65HVD54, SN65HVD55, SN65HVD58, SN65HVD59



в

#### **AVAILABLE OPTIONS**

| SIGNALING<br>RATE | UNIT LOADS | RECEIVER<br>EQUALIZATION | ENABLES | BASE<br>PART NUMBER | SOIC MARKING |
|-------------------|------------|--------------------------|---------|---------------------|--------------|
| 25 Mbps           | 1/2        | No                       | No      | SN65HVD50           | PREVIEW      |
| 5 Mbps            | 1/8        | No                       | No      | SN65HVD51           | PREVIEW      |
| 1 Mbps            | 1/8        | No                       | No      | SN65HVD52           | PREVIEW      |
| 25 Mbps           | 1/2        | No                       | Yes     | SN65HVD53           | 65HVD53      |
| 5 Mbps            | 1/8        | No                       | Yes     | SN65HVD54           | 65HVD54      |
| 1 Mbps            | 1/8        | No                       | Yes     | SN65HVD55           | 65HVD55      |
| 25 Mbps           | 1/2        | Yes                      | No      | SN65HVD56           | PREVIEW      |
| 5 Mbps            | 1/8        | Yes                      | No      | SN65HVD57           | PREVIEW      |
| 25 Mbps           | 1/2        | Yes                      | Yes     | SN65HVD58           | PREVIEW      |
| 5 Mbps            | 1/8        | Yes                      | Yes     | SN65HVD59           | PREVIEW      |

## **ABSOLUTE MAXIMUM RATINGS**

over operating free-air temperature range (unless otherwise noted)<sup>(1)(2)</sup>

|                 |                                                                                                 | UNIT               |
|-----------------|-------------------------------------------------------------------------------------------------|--------------------|
| V <sub>CC</sub> | Supply voltage range                                                                            | –0.3 V to 6 V      |
|                 | Voltage range at any bus terminal (A, B, Y, Z)                                                  | –9 V to 14 V       |
|                 | Voltage input, transient pulse through 100 $\Omega$ . See Figure 12 (A, B, Y, Z) <sup>(3)</sup> | –50 to 50 V        |
| VI              | Voltage input range (D, DE, RE)                                                                 | -0.5 V to 7 V      |
|                 | Continuous total power dissipation                                                              | Internally limited |
| I <sub>O</sub>  | Output current (receiver output only, R)                                                        | 11 mA              |

(1) Stresses beyond those listed under absolute maximum ratings may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under recommended operating conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

(2) All voltage values, except differential I/O bus voltages, are with respect to network ground terminal.

(3) This tests survivability only and the output state of the receiver is not specified.

### **RECOMMENDED OPERATING CONDITIONS**

over operating free-air temperature range (unless otherwise noted)

| PARA                                 | METER                      |                                                         |                  | MIN | NOM | MAX      | UNIT |
|--------------------------------------|----------------------------|---------------------------------------------------------|------------------|-----|-----|----------|------|
| V <sub>CC</sub>                      | Supply voltage             | Supply voltage                                          |                  |     |     | 5.5      |      |
| V <sub>I</sub> or<br>V <sub>IC</sub> | Voltage at any bus terr    | Voltage at any bus terminal (separately or common mode) |                  |     |     | 12       | V    |
| 1/t <sub>UI</sub>                    |                            | SN65HVD50, SN65HVD53, SN65H                             | IVD56, SN65HVD58 |     |     | 25       |      |
|                                      | Signaling rate             | SN65HVD51, SN65HVD54, SN65H                             | IVD57, SN65HVD59 |     |     | 5        | Mbps |
|                                      |                            | SN65HVD52, SN65HVD55                                    |                  |     |     | 1        |      |
| RL                                   | Differential load resista  | esistance                                               |                  | 54  | 60  |          | Ω    |
| VIH                                  | High-level input voltage   | 9                                                       | D, DE, RE        | 2   |     | $V_{CC}$ |      |
| VIL                                  | Low-level input voltage    | •                                                       | D, DE, RE        | 0   |     | 0.8      | V    |
| V <sub>ID</sub>                      | Differential input voltage | le                                                      |                  | -12 |     | 12       |      |
|                                      |                            | -1                                                      | Driver           | -60 |     |          | 0    |
| I <sub>OH</sub>                      | High-level output curre    | nt                                                      | Receiver         | -8  |     |          | mA   |
|                                      | Low-level output current   |                                                         | Driver           |     |     | 60       |      |
| I <sub>OL</sub>                      |                            |                                                         | Receiver         |     |     | 8        | mA   |
| T <sub>J</sub> <sup>(2)</sup>        | Junction temperature       |                                                         |                  | -40 |     | 150      | °C   |

(1) The algebraic convention, in which the least positive (most negative) limit is designated as minimum is used in this data sheet.

(2) See thermal characteristics table for information regarding this specification.

## ELECTROSTATIC DISCHARGE PROTECTION

| PARAMETER                           | TEST CONDITIONS       | MIN | TYP <sup>(1)</sup> | MAX | UNIT |
|-------------------------------------|-----------------------|-----|--------------------|-----|------|
| Human body model                    | Bus terminals and GND |     | ±16                |     |      |
| Human body model <sup>(2)</sup>     | All pins              |     | <u>+</u> 4         |     | kV   |
| Charged-device-model <sup>(3)</sup> | All pins              |     | ±1                 |     |      |

(1) All typical values at 25°C and with a 5-V supply.

(2) Tested in accordance with JEDEC Standard 22, Test Method A114-A.

(3) Tested in accordance with JEDEC Standard 22, Test Method C101.

TEXAS INSTRUMENTS www.ti.com

SLLS666-SEPTEMBER 2005

### **DRIVER ELECTRICAL CHARACTERISTICS**

over recommended operating conditions unless otherwise noted

|                                 | PARAMETER                                          |                               | TEST CON                                                                    | IDITIONS                   | MIN  | TYP <sup>(1)</sup> | MAX                       | UNIT |
|---------------------------------|----------------------------------------------------|-------------------------------|-----------------------------------------------------------------------------|----------------------------|------|--------------------|---------------------------|------|
| V <sub>I(K)</sub>               | Input clamp voltage                                |                               | I <sub>I</sub> = -18 mA                                                     |                            | -1.5 |                    |                           |      |
|                                 |                                                    |                               | I <sub>O</sub> = 0                                                          |                            | 4    |                    | V <sub>CC</sub>           |      |
| N7 1                            | Ota a du atata diffanantia                         |                               | $R_L = 54 \Omega$ , See Fig                                                 | ure 1 (RS-485)             | 1.7  | 2.6                |                           |      |
| V <sub>OD(SS)</sub>             | Steady-state differentia                           | ii output voitage             | $R_L = 100 \Omega$ , See Fi                                                 | gure 1 (RS-422)            | 2.4  | 3.2                |                           |      |
|                                 |                                                    |                               | $V_{\text{test}} = -7$ V to 12 V                                            | , See Figure 2             | 1.6  |                    |                           |      |
| $\Delta  V_{OD(SS)} $           | Change in magnitude o<br>differential output volta |                               | $R_L = 54 \Omega$ , See Fig<br>Figure 2                                     | ure 1 and                  | -0.2 |                    | 0.2                       |      |
| V <sub>OD(RING)</sub>           | Differential Output Volt<br>and undershoot         | age overshoot                 | $R_L = 54 \Omega, C_L = 50$<br>Figure 5<br>See Figure 3 for de              |                            |      |                    | 0.05  V <sub>OD(SS)</sub> | V    |
|                                 | Peak-to-peak                                       | HVD50, HVD53,<br>HVD56, HVD58 |                                                                             |                            |      | 0.5                |                           |      |
| V <sub>OC(PP)</sub>             | common-mode<br>output voltage                      | HVD51, HVD54,<br>HVD57, HVD59 | See Figure 4                                                                |                            |      | 0.4                |                           |      |
|                                 |                                                    | HVD52, HVD55                  |                                                                             |                            |      | 0.4                |                           |      |
| V <sub>OC(SS)</sub>             | Steady-state common-<br>output voltage             | mode                          |                                                                             |                            | 2.2  |                    | 3.3                       |      |
| $\Delta V_{OC(SS)}$             | Change in steady-state output voltage              | common-mode                   | - See Figure 4                                                              |                            | -0.1 |                    | 0.1                       |      |
|                                 |                                                    |                               | $V_{CC} = 0 V, V_Z \text{ or } V_V$<br>Other input at 0 V                   | <sub>Y</sub> = 12 V,       |      |                    | 90                        |      |
|                                 |                                                    |                               | $V_{CC} = 0 V, V_Z \text{ or } V_V$<br>Other input at 0 V                   | $_{\rm Y} = -7 \ {\rm V},$ | -10  |                    |                           |      |
| $I_{Z(Z)} \text{ or } I_{Y(Z)}$ | High-impedance state<br>output current             | HVD53, HVD54,                 | $V_{CC} = 5 V \text{ or } 0 V,$<br>DE = 0 V<br>$V_Z \text{ or } V_Y = 12 V$ | Other input                |      |                    | 90                        | μA   |
|                                 |                                                    | HVD55, HVD58,<br>HVD59        | $V_{CC} = 5 V \text{ or } 0 V,$<br>DE = 0 V<br>$V_Z \text{ or } V_Y = -7 V$ | at 0 V                     | -10  |                    |                           |      |
| 1                               | Oh ant Oinsuit autration                           |                               | $V_Z$ or $V_Y$ = -7 V                                                       | Other input                | -250 |                    | 250                       |      |
| $I_{Z(S)}$ or $I_{Y(S)}$        | Short Circuit output Cu                            | rrent                         | $V_Z$ or $V_Y$ = 12 V                                                       | at 0 V                     | -250 |                    | 250                       | mA   |
| l <sub>l</sub>                  | Input current                                      | D, DE                         |                                                                             |                            | 0    |                    | 100                       | μA   |
| C <sub>(OD)</sub>               | Differential output capa                           | icitance                      | V <sub>OD</sub> = 0.4 sin (4E6)<br>DE at 0 V                                | πt) + 0.5 V,               |      | 16                 |                           | pF   |

(1) All typical values are at  $25^{\circ}$ C and with a 5-V supply.

### **DRIVER SWITCHING CHARACTERISTICS**

over recommended operating conditions unless otherwise noted

|                                    | PARAM                                               | ETER                                                                                                                                                                                                                 | TEST CONDITIONS                                      | MIN | TYP <sup>(1)</sup> | MAX | UNIT |  |
|------------------------------------|-----------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------|-----|--------------------|-----|------|--|
|                                    |                                                     | HVD50, HVD53, HVD56, HVD58                                                                                                                                                                                           |                                                      | 4   | 8                  | 12  |      |  |
| t <sub>PLH</sub>                   | Propagation delay time,<br>low-to-high-level output | HVD51, HVD54, HVD57, HVD59                                                                                                                                                                                           |                                                      | 20  | 29                 | 46  | ns   |  |
|                                    |                                                     | HVD52, HVD55                                                                                                                                                                                                         |                                                      | 90  | 143                | 230 |      |  |
|                                    |                                                     | HVD50, HVD53, HVD56, HVD58                                                                                                                                                                                           |                                                      | 4   | 8                  | 12  |      |  |
| t <sub>PHL</sub>                   | Propagation delay time,<br>high-to-low-level output | HVD51, HVD54, HVD57, HVD59                                                                                                                                                                                           |                                                      | 20  | 30                 | 46  | ns   |  |
|                                    |                                                     | HVD52, HVD55                                                                                                                                                                                                         |                                                      | 90  | 143                | 230 |      |  |
|                                    |                                                     | HVD50, HVD53, HVD56, HVD58                                                                                                                                                                                           |                                                      | 3   | 6                  | 12  |      |  |
| t <sub>r</sub>                     | Differential output signal<br>rise time             | HVD51, HVD54, HVD57, HVD59                                                                                                                                                                                           |                                                      | 25  | 34                 | 60  | ns   |  |
|                                    |                                                     | HVD52, HVD55                                                                                                                                                                                                         | $R_{L} = 54 \Omega, C_{L} = 50 \text{ pF},$          | 130 | 197                | 300 |      |  |
|                                    |                                                     | HVD50, HVD53, HVD56, HVD58                                                                                                                                                                                           | See Figure 5                                         | 3   | 6                  | 11  | ns   |  |
| t <sub>f</sub>                     | Differential output signal fall time                | HVD51, HVD54, HVD57, HVD59                                                                                                                                                                                           |                                                      | 25  | 33                 | 60  |      |  |
|                                    |                                                     | HVD52, HVD55                                                                                                                                                                                                         |                                                      | 130 | 192                | 300 |      |  |
|                                    |                                                     | HVD50, HVD53, HVD56, HVD58                                                                                                                                                                                           |                                                      |     |                    | 2   | 2    |  |
| t <sub>sk(p)</sub>                 | Pulse skew ( t <sub>PHL</sub> - t <sub>PLH</sub>  ) | HVD51, HVD54, HVD57, HVD59                                                                                                                                                                                           |                                                      |     |                    | 2   | ns   |  |
|                                    |                                                     | HVD52, HVD55                                                                                                                                                                                                         |                                                      |     |                    | 8   |      |  |
|                                    | Part-to-part skew                                   | HVD50, HVD53, HVD56, HVD58                                                                                                                                                                                           |                                                      |     | 1                  |     |      |  |
| t <sub>sk(pp)</sub> <sup>(2)</sup> |                                                     | HVD51, HVD54, HVD57, HVD59                                                                                                                                                                                           |                                                      |     | 4                  |     |      |  |
|                                    |                                                     | HVD52, HVD55                                                                                                                                                                                                         |                                                      |     | 22                 |     |      |  |
|                                    | Propagation delay time,                             | HVD53, HVD58                                                                                                                                                                                                         |                                                      |     |                    | 30  |      |  |
| t <sub>PZH1</sub>                  | high-impedance-to-high-                             | HVD54, HVD59                                                                                                                                                                                                         | R <sub>L</sub> = 110 Ω, <u>RE</u> at 0 V,            |     |                    | 180 | ns   |  |
|                                    | level output                                        | HVD55                                                                                                                                                                                                                | See Figure 6                                         |     |                    | 380 |      |  |
|                                    | Propagation delay time,                             | HVD53, HVD58                                                                                                                                                                                                         | D = 3 V and $S1 = Y$ ,                               |     |                    | 16  |      |  |
| t <sub>PHZ</sub>                   | high-level-to-high-                                 | HVD54, HVD59                                                                                                                                                                                                         | - D = 0 V and S1 = Z                                 |     |                    | 40  | ) ns |  |
|                                    | impedance output                                    | HVD55                                                                                                                                                                                                                |                                                      |     |                    | 110 |      |  |
|                                    | Propagation delay time,                             | HVD53, HVD58                                                                                                                                                                                                         |                                                      |     |                    | 23  |      |  |
| t <sub>PZL1</sub>                  | high-impedance-to-low-level                         | HVD54, HVD59                                                                                                                                                                                                         | $P = 110.0$ $\overline{PE}$ at 0.1/                  |     |                    | 200 | ns   |  |
|                                    | output                                              | HVD55                                                                                                                                                                                                                | - R <sub>L</sub> = 110 Ω, RE at 0 V,<br>See Figure 7 |     |                    | 420 |      |  |
|                                    | Propagation delay time,                             | HVD53, HVD58                                                                                                                                                                                                         | D = 3 V and $S1 = Z$ ,                               |     |                    | 19  |      |  |
| t <sub>PLZ</sub>                   | low-level-to-high-impedance                         | HVD54, HVD59                                                                                                                                                                                                         | - D = 0 V and S1 = Y                                 |     |                    | 70  | ns   |  |
|                                    | output                                              | HVD55                                                                                                                                                                                                                |                                                      |     |                    | 160 |      |  |
| t <sub>PZH2</sub>                  | Propagation delay time, stan                        |                                                                                                                                                                                                                      |                                                      |     | 3300               | ns  |      |  |
| t <sub>PZL2</sub>                  | Propagation delay time, stand                       | $ \begin{array}{l} R_{L} = 110 \; \Omega, \; \overline{RE} \; \mathrm{at} \; 3 \; V, \\ See \; \overline{Figure} \; 7 \\ D = 3 \; V \; \mathrm{and} \; S1 = Z, \\ D = 0 \; V \; \mathrm{and} \; S1 = Y \end{array} $ |                                                      |     | 3300               | ns  |      |  |

All typical values are at 25°C and with a 5-V supply.
 t<sub>sk(pp)</sub> is the magnitude of the difference in propagation delay times between any specified terminals of two devices when both devices operate with the same supply voltages, at the same temperature, and have identical packages and test circuits.

### **RECEIVER ELECTRICAL CHARACTERISTICS**

over recommended operating conditions unless otherwise noted

|                       | PARAMETER                                | R                                             | TEST CONDITIO                                                                                                                   | TEST CONDITIONS                   |       | TYP <sup>(1)</sup> | MAX   | UNIT |
|-----------------------|------------------------------------------|-----------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------|-----------------------------------|-------|--------------------|-------|------|
| V <sub>IT+</sub>      | Positive-going diffe threshold voltage   | rential input                                 | $I_0 = -8 \text{ mA}$                                                                                                           |                                   |       |                    | -0.02 |      |
| V <sub>IT-</sub>      | Negative-going diff<br>threshold voltage | erential input                                | I <sub>O</sub> = 8 mA                                                                                                           |                                   | -0.20 |                    |       | V    |
| V <sub>hys</sub>      | Hysteresis voltage                       | (V <sub>IT+</sub> - V <sub>IT-</sub> )        |                                                                                                                                 |                                   |       | 50                 |       | mV   |
| V <sub>IK</sub>       | Enable-input clamp                       | voltage                                       | $I_{I} = -18 \text{ mA}$                                                                                                        |                                   | -1.5  |                    |       | V    |
|                       | 0 4 4 4                                  |                                               | V <sub>ID</sub> = 200 mV, I <sub>O</sub> = -8 mA, Se                                                                            | e Figure 8                        | 4.0   |                    |       | .,   |
| Vo                    | Output voltage                           |                                               | $V_{ID} = -200 \text{ mV}, I_O = 8 \text{ mA}, \text{See Figure 8}$                                                             |                                   |       |                    | 0.3   | V    |
| I <sub>O(Z)</sub>     | High-impedance-st<br>current             | ate output                                    | $V_0 = 0 \text{ or } V_{CC} \overline{RE} \text{ at } V_{CC}$                                                                   |                                   | -1    |                    | 1     | μΑ   |
|                       |                                          |                                               | $V_A$ or $V_B = 12 V$                                                                                                           | $V_{\rm A}$ or $V_{\rm B}$ = 12 V |       | 0.19               | 0.3   |      |
|                       |                                          | HVD50,<br>HVD53,                              | $V_A$ or $V_B = 12$ V, $V_{CC} = 0$ V                                                                                           | Other input                       |       | 0.24               | 0.4   |      |
|                       |                                          | HVD56,                                        | $V_A \text{ or } V_B = -7 \text{ V}$                                                                                            | at 0 V                            | -0.35 | -0.19              |       | mA   |
|                       |                                          | HVD58                                         | $V_A \text{ or } V_B = -7 \text{ V}, V_{CC} = 0 \text{ V}$                                                                      |                                   | -0.25 | -0.14              |       |      |
| $I_A \text{ or } I_B$ | Bus input current                        | HVD51,                                        | $V_A \text{ or } V_B = 12 \text{ V}$                                                                                            |                                   |       | 0.05               | 0.10  |      |
|                       |                                          | HVD52,                                        | $V_A \text{ or } V_B = 12 \text{ V}, \text{ V}_{CC} = 0 \text{ V}$                                                              | Otheringut                        |       | 0.06               | 0.10  |      |
|                       |                                          | HVD54,<br>HVD55,                              | $V_A \text{ or } V_B = -7 \text{ V}$                                                                                            | Other input<br>at 0 V             | -0.10 | -0.05              |       | mA   |
|                       |                                          | HVD57,<br>HVD59                               | $V_A \text{ or } V_B = -7 \text{ V}, V_{CC} = 0 \text{ V}$                                                                      |                                   | -0.10 | -0.03              |       |      |
|                       |                                          | HVD59                                         | V <sub>IH</sub> = 2 V                                                                                                           |                                   | -60   |                    |       | μA   |
| I <sub>IH</sub>       | Input current, RE                        |                                               | $V_{IL} = 0.8 V$                                                                                                                |                                   | -60   |                    |       | μΑ   |
| CID                   | Differential input ca                    | nacitance                                     | $V_{IL} = 0.8 V$<br>$V_{ID} = 0.4 \sin (4E6\pi t) + 0.5 V, DE at 0 V$                                                           |                                   | 00    | 16                 |       | pF   |
|                       | HVD50,<br>HVD51,<br>HVD52<br>HVD56,      |                                               | _ D at 0 V or V <sub>CC</sub> and No Load                                                                                       |                                   |       |                    | 8.0   |      |
|                       |                                          | HVD57                                         |                                                                                                                                 |                                   |       |                    |       | m۵   |
|                       |                                          | HVD53                                         |                                                                                                                                 | -                                 |       |                    | 2.3   | mA   |
|                       |                                          | HVD54,<br>HVD55                               | RE at 0 V, D at 0 V or V <sub>CC</sub> , D<br>No load (Receiver enabled an                                                      |                                   |       | 2.9                |       |      |
|                       |                                          | HVD58,<br>HVD59                               | driver disabled)                                                                                                                |                                   |       |                    | 4.5   |      |
| I <sub>CC</sub>       | Supply current                           | HVD53,<br>HVD54,<br>HVD55,<br>HVD58,<br>HVD59 | $\overline{\text{RE}}$ at V <sub>CC</sub> , D at V <sub>CC</sub> , DE at 0<br>No load (Receiver disabled ar<br>driver disabled) | V,<br>nd                          |       | 0.08               | 1     | μΑ   |
|                       |                                          | HVD53                                         |                                                                                                                                 |                                   |       |                    | 2.7   |      |
|                       |                                          | HVD54,<br>HVD55                               | RE at 0 V, D at 0 V or V <sub>CC</sub> , D<br>No load (Receiver enabled an                                                      |                                   |       |                    | 8.0   |      |
|                       |                                          | HVD58                                         | driver enabled)                                                                                                                 |                                   |       |                    | 4.3   |      |
|                       |                                          | HVD59                                         |                                                                                                                                 |                                   |       |                    | 9.7   |      |
|                       |                                          | HVD53                                         |                                                                                                                                 |                                   |       |                    | 2.3   | mA   |
|                       |                                          | HVD54,<br>HVD55                               | RE at V <sub>CC</sub> , D at 0 V or V <sub>CC</sub> , D<br>No load (Receiver disabled ar                                        | PE at V <sub>CC</sub>             |       |                    | 7.7   |      |
|                       |                                          | HVD58                                         | No load (Receiver disabled and driver enabled)                                                                                  |                                   |       |                    | 3.2   |      |
|                       |                                          | HVD59                                         | -                                                                                                                               | -                                 |       |                    | 8.5   |      |

TEXAS INSTRUMENTS www.ti.com

(1) All typical values are at 25°C and with a 5-V supply.

### **RECEIVER SWITCHING CHARACTERISTICS**

over recommended operating conditions unless otherwise noted

|                                    | PARAM                                                | ETER                                        | TEST CONDITIONS                                                | MIN TYP <sup>(1)</sup> | MAX  | UNIT |
|------------------------------------|------------------------------------------------------|---------------------------------------------|----------------------------------------------------------------|------------------------|------|------|
|                                    | Propagation delay time,                              | HVD50, HVD53, HVD56, HVD58                  |                                                                | 24                     | 40   |      |
| t <sub>PLH</sub>                   | low-to-high-level output                             | HVD51, HVD52, HVD54, HVD55,<br>HVD57, HVD59 |                                                                | 43                     | 55   |      |
|                                    | Propagation delay time,                              | HVD50, HVD53, HVD56, HVD58                  |                                                                | 26                     | 35   |      |
| t <sub>PHL</sub>                   | high-to-low-level output                             | HVD51, HVD52, HVD54, HVD55,<br>HVD57, HVD59 |                                                                | 47                     | 60   |      |
| t <sub>sk(p)</sub>                 | Pulse skew ( t <sub>PHL</sub> - t <sub>PLH</sub>  )  | HVD50, HVD53, HVD56, HVD57,<br>HVD58, HVD59 | $V_{ID} = -1.5 V \text{ to } 1.5 V,$<br>$C_L = 15 \text{ pF},$ |                        | 5    |      |
| on(p)                              |                                                      | HVD51, HVD54, HVD52, HVD55                  | See Figure 9                                                   |                        | 7    | ns   |
|                                    |                                                      | HVD50, HVD53, HVD56, HVD58                  |                                                                | 5                      |      |      |
| t <sub>sk(pp)</sub> <sup>(2)</sup> | Part-to-part skew                                    | HVD51, HVD54, HVD57, HVD59                  |                                                                | 6                      |      |      |
|                                    |                                                      | HVD52, HVD55                                |                                                                | 6                      |      |      |
| t <sub>r</sub>                     | Output signal rise time                              |                                             |                                                                | 2.3                    | 4    |      |
| t <sub>f</sub>                     | Output signal fall time                              |                                             |                                                                | 2.4                    | 4    |      |
| t <sub>PHZ</sub>                   | Output disable time from high                        | level                                       | DE at 3 V, C <sub>I</sub> = 15 pF                              |                        | 17   |      |
| t <sub>PZH1</sub>                  | Output enable time to high leve                      | vel                                         | See Figure 10                                                  |                        | 10   |      |
| t <sub>PZH2</sub>                  | Propagation delay time, standby-to-high-level output |                                             | DE at 0 V, C <sub>L</sub> = 15 pF<br>See Figure 10             |                        | 3300 |      |
| t <sub>PLZ</sub>                   | Output disable time from low level                   |                                             | DE at 3 V, $C_L = 15 \text{ pF}$                               |                        | 13   |      |
| t <sub>PZL1</sub>                  | Output enable time to low leve                       | el                                          | See Figure 11                                                  | 10                     |      |      |
| t <sub>PZL2</sub>                  | Propagation delay time, stand                        | by-to-low-level output                      | DE at 0 V, C <sub>L</sub> = 15 pF<br>See Figure 11             |                        | 3300 |      |

(1)

All typical values are at 25°C and with a 5-V supply  $.t_{sk(pp)}$  is the magnitude of the difference in propagation delay times between any specified terminals of two devices when both devices operate with the same supply voltages, at the same temperature, and have identical packages and test circuits. (2)



#### **RECEIVER EQUALIZATION CHARACTERISTICS**

over recommended operating conditions unless otherwise noted<sup>(1)</sup>

| I                  | PARAMETER    |                                                                        | TEST COND | ITIONS  |              | MIN     | TYP <sup>(2)</sup> | MAX       | UNIT   |       |  |         |  |  |         |  |        |              |  |
|--------------------|--------------|------------------------------------------------------------------------|-----------|---------|--------------|---------|--------------------|-----------|--------|-------|--|---------|--|--|---------|--|--------|--------------|--|
|                    |              |                                                                        |           | 0 m     | HVD56, HVD58 |         | PREVIEW            |           | ns     |       |  |         |  |  |         |  |        |              |  |
|                    |              |                                                                        |           | 100 m   | HVD53        |         | PREVIEW            |           |        |       |  |         |  |  |         |  |        |              |  |
|                    |              |                                                                        |           | 100 m   | HVD56, HVD58 |         | PREVIEW            |           |        |       |  |         |  |  |         |  |        |              |  |
|                    |              |                                                                        | 25 Mbps   | 150 m   | HVD53        |         | PREVIEW            |           |        |       |  |         |  |  |         |  |        |              |  |
|                    |              |                                                                        |           | 150 11  | HVD56, HVD58 |         | PREVIEW            |           |        |       |  |         |  |  |         |  |        |              |  |
|                    |              |                                                                        |           | 200 m   | HVD53        |         | PREVIEW            |           |        |       |  |         |  |  |         |  |        |              |  |
|                    |              |                                                                        |           | 200 m   | HVD56, HVD58 |         | PREVIEW            |           |        |       |  |         |  |  |         |  |        |              |  |
|                    |              |                                                                        |           | 200 m   | HVD53        |         | PREVIEW            |           |        |       |  |         |  |  |         |  |        |              |  |
|                    | Peak-to-peak |                                                                        |           | 200 m   | HVD56, HVD58 |         | PREVIEW            |           |        |       |  |         |  |  |         |  |        |              |  |
|                    |              | Pseudo-random NRZ<br>code with a bit pattern<br>length o 216-1, Belden | 10 Mbps   | 10 Mbps | 250 m        | HVD53   |                    | PREVIEW   |        |       |  |         |  |  |         |  |        |              |  |
| t <sub>j(pp)</sub> | eye-pattern  |                                                                        |           |         | ro wips      |         |                    |           |        |       |  |         |  |  | TO Mups |  | 250 11 | HVD56, HVD58 |  |
|                    | jitter       | 3105A cable                                                            |           | 300 m   | HVD53        |         | PREVIEW            |           |        |       |  |         |  |  |         |  |        |              |  |
|                    |              |                                                                        |           | 300 m   | HVD56, HVD58 |         | PREVIEW            |           |        |       |  |         |  |  |         |  |        |              |  |
|                    |              |                                                                        | 5 Mbpp    | 500 m   | HVD54        |         | PREVIEW            |           |        |       |  |         |  |  |         |  |        |              |  |
|                    |              |                                                                        | 5 Mbps    | 500 m   | HVD57, HVD59 |         | PREVIEW            |           |        |       |  |         |  |  |         |  |        |              |  |
|                    |              |                                                                        |           |         | HVD53        |         | PREVIEW            |           |        |       |  |         |  |  |         |  |        |              |  |
|                    |              |                                                                        | 2 Mhaa    | 500     | HVD54        |         | PREVIEW            |           |        |       |  |         |  |  |         |  |        |              |  |
|                    |              | 3 Mbps                                                                 | 3 Mops    | 500 m   | HVD56, HVD58 |         | PREVIEW            |           |        |       |  |         |  |  |         |  |        |              |  |
|                    |              |                                                                        |           |         | HVD57, HVD59 |         | PREVIEW            |           |        |       |  |         |  |  |         |  |        |              |  |
|                    |              |                                                                        |           |         | 4. 1.46      | 4. 1.41 | 4. 1.41            | 4 Million | 1000 m | HVD54 |  | PREVIEW |  |  |         |  |        |              |  |
|                    |              |                                                                        | 1 Mbps    | 1000 m  | HVD57, HVD59 |         | PREVIEW            |           | 1      |       |  |         |  |  |         |  |        |              |  |

(1) The HVD53 and HVD54 do not have receiver equalization but are specified for comparison. (2) All typical values are at  $V_{CC} = 5 V$ , and temperature = 25°C.

### THERMAL CHARACTERISTICS

over operating free-air temperature range unless otherwise noted<sup>(1)</sup>

|                      | PARAMETER                              | TEST CONDITIONS                                                                                    |                                   | MIN TY | P MAX | UNIT  |  |
|----------------------|----------------------------------------|----------------------------------------------------------------------------------------------------|-----------------------------------|--------|-------|-------|--|
|                      | Junction-to-ambient                    | Low-K board <sup>(3)</sup> , No airflow                                                            | HVD50, HVD51, HVD52, HVD56, HVD57 | 230    | .8    |       |  |
| 0                    | thermal resistance <sup>(2)</sup>      |                                                                                                    | HVD53, HVD54, HVD55, HVD58, HVD59 | 162    | .6    |       |  |
| $\theta_{JA}$        | Junction-to-ambient                    | High-K board <sup>(4)</sup> , No airflow                                                           | HVD50, HVD51, HVD52, HVD56, HVD57 | 135    | .1    |       |  |
|                      | thermal resistance <sup>(2)</sup>      | rmal resistance <sup>(2)</sup>                                                                     | HVD53, HVD54, HVD55, HVD58, HVD59 | 92     | .1    | °C/W  |  |
| 0                    | Junction-to-board                      | High-K board                                                                                       | HVD50, HVD51, HVD52, HVD56, HVD57 | 44     | .4    | -C/vv |  |
| $\theta_{JB}$        | thermal resistance                     |                                                                                                    | HVD53, HVD54, HVD55, HVD58, HVD59 | 61     | .1    |       |  |
| 0                    | Junction-to-case<br>thermal resistance | No board                                                                                           | HVD50, HVD51, HVD52, HVD56, HVD57 | 43     | .5    |       |  |
| $\theta_{\text{JC}}$ |                                        | NO DOATO                                                                                           | HVD53, HVD54, HVD55, HVD58, HVD59 | 58     | .6    |       |  |
|                      |                                        | evice power<br>signaling rate $R_L = 60\Omega, C_L = 50 \text{ pF}, DE at V = BE at V = BE at 0 V$ | HVD50, HVD56 (25Mbps)             |        | 420   |       |  |
|                      |                                        |                                                                                                    | HVD51, HVD57 (10Mbps)             |        | 404   |       |  |
|                      | Deriver                                |                                                                                                    | HVD52 (1Mbps)                     |        | 383   |       |  |
| $P_D$                | dissipation                            |                                                                                                    | HVD53, HVD58 (25Mbps)             |        | 420   | mW    |  |
|                      |                                        |                                                                                                    | HVD54, HVD59 (10Mbps)             |        | 404   |       |  |
|                      |                                        | square wave at indicated signaling rate                                                            | HVD55 (1Mbps)                     |        | 383   |       |  |
|                      |                                        | Low-K board, No airflow                                                                            | HVD50, HVD56                      | -40    | 55    |       |  |
|                      |                                        |                                                                                                    | HVD51, HVD52, HVD57               | -40    | 84    |       |  |
| T <sub>A</sub>       | Ambient air temperature                |                                                                                                    | HVD53, HVD54, HVD55, HVD58, HVD59 | -40    | 85    | °C    |  |
|                      |                                        | High-K board, No airflow                                                                           | HVD50, HVD51, HVD52, HVD56, HVD57 | -40    | 85    |       |  |
|                      |                                        |                                                                                                    | HVD53, HVD54, HVD55, HVD58, HVD59 | -40    | 85    |       |  |
| T <sub>JSD</sub>     | Thermal shutdown jur                   | nction temperature                                                                                 |                                   | 16     | 5     |       |  |

(1) See Application Information section for an explanation of these parameters.

(2) The intent of  $\theta_{JA}$  specification is solely for a thermal performance comparison of one package to another in a standardized environment. This methodology is not meant to and will not predict the performance of a package in an application-specific environment.

(3) In accordance with the Low-K thermal metric definitions of EIA/JESD51-3.
 (4) In accordance with the High-K thermal metric definitions of EIA/JESD51-7.

## PARAMETER MEASUREMENT INFORMATION



Figure 1. Driver V<sub>OD</sub> Test Circuit: Voltage and Current Definitions



Figure 2. Driver V<sub>OD</sub> With Common-Mode Loading Test Circuit

SLLS666-SEPTEMBER 2005

### PARAMETER MEASUREMENT INFORMATION (continued)

VOD(RING) is measured at four points on the output waveform, corresponding to overshoot and undershoot from the VOD(H) and VOD(L) steady state values.

TEXAS STRUMENTS www.ti.com



Figure 3. V<sub>OD(RING)</sub> Waveform and Definitions



Input: PRR = 500 kHz, 50% Duty Cycle,t r<6ns, tf<6ns, Z<sub>O</sub> = 50  $\Omega$ 

### Figure 4. Test Circuit and Definitions for the Driver Common-Mode Output Voltage



Generator: PRR = 500 kHz, 50% Duty Cycle,  $t_r < 6 \text{ ns}$ ,  $t_f < 6 \text{ ns}$ ,  $Z_o = 50$ 

### Figure 5. Driver Switching Test Circuit and Voltage Waveforms

SLLS666-SEPTEMBER 2005

### PARAMETER MEASUREMENT INFORMATION (continued)



Generator: PRR = 500kHz, 50% Duty Cycle,  $t_r < 6 \text{ ns}$ ,  $t_f < 6 \text{ ns}$ ,  $Z_0 = 50$ C<sub>1</sub> Includes Fixture and Instrumentation Capacitance

#### Figure 6. Driver High-Level Output Enable and Disable Time Test Circuit and Voltage Waveforms



Generator: PRR = 500 kHz, 50% Duty Cycle, t  $_r$  <6 ns, t $_f$  <6 ns, Z $_o$  = 50  $\Omega$ 

#### Figure 7. Driver Low-Level Output Enable and Disable Time Test Circuit and Voltage Waveforms



Figure 8. Receiver Voltage and Current Definitions

SLLS666-SEPTEMBER 2005



TEXAS ISTRUMENTS www.ti.com





Generator:  $P_{RR}$  = 500 kHz, 50%, Duty Cycle,  $t_r$  < 6 ns,  $t_f$  < 6 ns,  $Z_0$  = 50

### Figure 10. Receiver High-Level Enable and Disable Time Test Circuit and Voltage Waveforms



Generator:  $P_{RR}$  = 500 kHz, 50%, Duty Cycle,  $t_r$  < 6 ns,  $t_f$  < 6 ns,  $Z_0$  = 50

#### Figure 11. Receiver Low-Level Enable and Disable Time Test Circuit and Voltage Waveforms

SLLS666-SEPTEMBER 2005

### PARAMETER MEASUREMENT INFORMATION (continued)



Figure 12. Test Circuit, Transient Overvoltage Test

### **DEVICE INFORMATION**

### LOW-POWER SHUTDOWN MODE

When both the driver and receiver are disabled (DE low and RE high) the device is in shutdown mode. If the enable inputs are in this state for less than 60 ns, the device does not enter shutdown mode. This guards against inadvertently entering shutdown mode during driver/receiver enabling. Only when the enable inputs are held in this state for 300 ns or more, the device is assured to be in shutdown mode. In this low-power shutdown mode, most internal circuitry is powered down, and the supply current is typically less than 1 nA. When either the driver or the receiver is re-enabled, the internal circuitry becomes active.



Figure 13. Low-Power Shutdown Logic Diagram

If only the driver is re-enabled (DE transitions to high) the driver outputs are driven according to the D input after the enable times given by  $t_{PZH2}$  and  $t_{PZL2}$  in the driver switching characteristics. If the D input is open when the driver is enabled, the driver outputs defaults to A high and B low, in accordance with the driver failsafe feature.

If only the receiver is re-enabled ( $\overline{RE}$  transitions to low) the receiver output is driven according to the state of the bus inputs (A and B) after the enable times given by  $t_{PZH2}$  and  $t_{PZL2}$  in the receiver switching characteristics. If there is no valid state on the bus the receiver responds as described in the failsafe operation section.

If both the receiver and driver are re-enabled simultaneously, the receiver output is driven according to the state of the bus inputs (A and B) and the driver output is driven according to the D input. Note that the state of the active driver affects the inputs to the receiver. Therefore, the receiver outputs are valid as soon as the driver outputs are valid.

**DEVICE INFORMATION (continued)** 

SLLS666-SEPTEMBER 2005

**FUNCTION TABLES** 



### SN65HVD53, SN65HVD54, SN65HVD55, SN65HVD58, SN65HVD59 DRIVER

| 11   | IPUTS     | OUT | PUTS |
|------|-----------|-----|------|
| D    | DE        | Y   | Z    |
| Н    | Н         | Н   | L    |
| L    | Н         | L   | Н    |
| Х    | L or open | Z   | Z    |
| Open | Н         | L   | Н    |

#### SN65HVD53, SN65HVD54, SN65HVD55, SN65HVD58, SN65HVD59 RECEIVER

| DIFFERENTIAL INPUTS $V_{ID} = V_A - V_B$                  | ENABLE<br>RE | OUTPUT<br>R |
|-----------------------------------------------------------|--------------|-------------|
| $V_{ID} \leq -0.2 V$                                      | L            | L           |
| $-0.2 \text{ V} < \text{V}_{\text{ID}} < -0.02 \text{ V}$ | L            | ?           |
| $-0.02 \text{ V} \leq \text{V}_{\text{ID}}$               | L            | Н           |
| Х                                                         | H or open    | Z           |
| Open Circuit                                              | L            | Н           |
| Idle circuit                                              | L            | Н           |
| Short Circuit, $V_A = V_B$                                | L            | Н           |

#### SN65HVD50, SN65HVD51, SN65HVD52, SN65HVD56, SN65HVD57 DRIVER

|            | OUTPUTS |   |  |  |  |
|------------|---------|---|--|--|--|
| INPUT<br>D | Y       | Z |  |  |  |
| Н          | Н       | L |  |  |  |
| L          | L       | Н |  |  |  |
| Open       | L       | Н |  |  |  |

#### SN65HVD50, SN65HVD51, SN65HVD52, SN65HVD56, SN65HVD57 RECEIVER

| DIFFERENTIAL INPUTS<br>$V_{ID} = V_A - V_B$               | OUTPUT<br>R |
|-----------------------------------------------------------|-------------|
| $V_{ID} \leq -0.2 V$                                      | L           |
| $-0.2 \text{ V} < \text{V}_{\text{ID}} < -0.02 \text{ V}$ | ?           |
| $-0.02 \text{ V} \leq \text{V}_{\text{ID}}$               | Н           |
| Open Circuit                                              | Н           |
| Idle circuit                                              | Н           |
| Short Circuit, V <sub>A</sub> = V <sub>B</sub>            | Н           |

SLLS666-SEPTEMBER 2005





|                                                                            | R1/R2 | R3     |
|----------------------------------------------------------------------------|-------|--------|
| SN65HVD50, SN65HVD53, SN65HVD56, SN65HVD58                                 | 9 kΩ  | 45 kΩ  |
| SN65HVD51, SN65HVD52, SN65HVD54, SN65HVD55 SN65HVD57, SN65HVD58, SN65HVD59 | 36 kΩ | 180 kΩ |



#### **TYPICAL CHARACTERISTICS**



Figure 16.

# **TYPICAL CHARACTERISTICS (continued)**

ij

INS

Texas

0.12

0.1

0.08

0.06

0.04

0.02

0

0

1

-0.02

IoL - Low-level Output Current - A

VCC = 5 V

DE = V<sub>CC</sub> D = 0 V

TRUMENTS www.ti.com



Driver Low-Level Output Current vs Low-Level Output Voltage



Figure 18.







V<sub>OL</sub> - Low-Level Output Voltage - V

2

3

4

5

Figure 20.

17

SLLS666-SEPTEMBER 2005

### **TYPICAL CHARACTERISTICS (continued)**



Figure 21.

Figure 22.





### **APPLICATION INFORMATION**

### THERMAL CHARACTERISTICS OF IC PACKAGES

 $\theta_{JA}$  (Junction-to-Ambient Thermal Resistance) is defined as the difference in junction temperature to ambient temperature divided by the operating power.

 $\theta_{JA}$  is not a constant and is a strong function of:

- the PCB design (50% variation)
- altitude (20% variation)
- device power (5% variation)

 $\theta_{JA}$  can be used to compare the thermal performance of packages if the specific test conditions are defined and used. Standardized testing includes specification of PCB construction, test chamber volume, sensor locations, and the thermal characteristics of holding fixtures.  $\theta_{JA}$  is often misused when it is used to calculate junction temperatures for other installations.

TI uses two test PCBs as defined by JEDEC specifications. The low-k board gives *average* in-use condition thermal performance, and it consists of a single copper trace layer 25 mm long and 2-oz thick. The high-k board gives best *case* in-use condition, and it consists of two 1-oz buried power planes with a single copper trace layer 25 mm long and 2-oz thick. A 4% to 50% difference in  $\theta_{IA}$  can be measured between these two test cards

 $\theta_{JC}$  (Junction-to-Case Thermal Resistance) is defined as difference in junction temperature to case divided by the operating power. It is measured by putting the mounted package up against a copper block cold plate to force heat to flow from die, through the mold compound into the copper block.

 $\theta_{JC}$  is a useful thermal characteristic when a heatsink applied to package. It is *not* a useful characteristic to predict junction temperature because it provides pessimistic numbers if the case temperature is measured in a nonstandard system and junction temperatures are backed out. It can be used with  $\theta_{JB}$  in 1-dimensional thermal simulation of a package system.

 $\theta_{JB}$  (Junction-to-Board Thermal Resistance) is defined as the difference in the junction temperature and the PCB temperature at the center of the package (closest to the die) when the PCB is clamped in a cold-plate structure.  $\theta_{JB}$  is only defined for the high-k test card.

 $\theta_{JB}$  provides an overall thermal resistance between the die and the PCB. It includes a bit of the PCB thermal resistance (especially for BGA's with thermal balls) and can be used for simple 1-dimensional network analysis of package system, see Figure 23.



Figure 23. Thermal Resistance

### PACKAGING INFORMATION

| Orderable Device | Status <sup>(1)</sup> | Package<br>Type | Package<br>Drawing | Pins | Package<br>Qty | Eco Plan <sup>(2)</sup> | Lead/Ball Finish | MSL Peak Temp <sup>(3)</sup> |
|------------------|-----------------------|-----------------|--------------------|------|----------------|-------------------------|------------------|------------------------------|
| SN65HVD53D       | PREVIEW               | SOIC            | D                  | 14   | 50             | TBD                     | Call TI          | Call TI                      |
| SN65HVD53DR      | PREVIEW               | SOIC            | D                  | 14   | 2500           | TBD                     | Call TI          | Call TI                      |
| SN65HVD54D       | PREVIEW               | SOIC            | D                  | 14   | 50             | TBD                     | Call TI          | Call TI                      |
| SN65HVD54DR      | PREVIEW               | SOIC            | D                  | 14   | 2500           | TBD                     | Call TI          | Call TI                      |
| SN65HVD55D       | PREVIEW               | SOIC            | D                  | 14   | 50             | TBD                     | Call TI          | Call TI                      |
| SN65HVD55DR      | PREVIEW               | SOIC            | D                  | 14   | 2500           | TBD                     | Call TI          | Call TI                      |

<sup>(1)</sup> The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

**OBSOLETE:** TI has discontinued the production of the device.

(2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS) or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details. TBD: The Pb-Free/Green conversion plan has not been defined.

**Pb-Free (RoHS):** TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.

Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)

<sup>(3)</sup> MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

**Important Information and Disclaimer:**The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

## PACKAGING INFORMATION

| Orderable Device | Status <sup>(1)</sup> | Package<br>Type | Package<br>Drawing | Pins | Package<br>Qty | e Eco Plan <sup>(2)</sup> | Lead/Ball Finish | MSL Peak Temp <sup>(3)</sup> |
|------------------|-----------------------|-----------------|--------------------|------|----------------|---------------------------|------------------|------------------------------|
| SN65HVD53D       | ACTIVE                | SOIC            | D                  | 14   | 50             | Green (RoHS & no Sb/Br)   | CU NIPDAU        | Level-1-260C-UNLIM           |
| SN65HVD53DG4     | ACTIVE                | SOIC            | D                  | 14   | 50             | Green (RoHS & no Sb/Br)   | CU NIPDAU        | Level-1-260C-UNLIM           |
| SN65HVD53DR      | ACTIVE                | SOIC            | D                  | 14   | 2500           | Green (RoHS & no Sb/Br)   | CU NIPDAU        | Level-1-260C-UNLIM           |
| SN65HVD53DRG4    | ACTIVE                | SOIC            | D                  | 14   | 2500           | Green (RoHS & no Sb/Br)   | CU NIPDAU        | Level-1-260C-UNLIM           |
| SN65HVD54D       | ACTIVE                | SOIC            | D                  | 14   | 50             | Green (RoHS & no Sb/Br)   | CU NIPDAU        | Level-1-260C-UNLIM           |
| SN65HVD54DG4     | ACTIVE                | SOIC            | D                  | 14   | 50             | Green (RoHS & no Sb/Br)   | CU NIPDAU        | Level-1-260C-UNLIM           |
| SN65HVD54DR      | ACTIVE                | SOIC            | D                  | 14   | 2500           | Green (RoHS & no Sb/Br)   | CU NIPDAU        | Level-1-260C-UNLIM           |
| SN65HVD54DRG4    | ACTIVE                | SOIC            | D                  | 14   | 2500           | Green (RoHS & no Sb/Br)   | CU NIPDAU        | Level-1-260C-UNLIM           |
| SN65HVD55D       | ACTIVE                | SOIC            | D                  | 14   | 50             | Green (RoHS & no Sb/Br)   | CU NIPDAU        | Level-1-260C-UNLIM           |
| SN65HVD55DG4     | ACTIVE                | SOIC            | D                  | 14   | 50             | Green (RoHS & no Sb/Br)   | CU NIPDAU        | Level-1-260C-UNLIM           |
| SN65HVD55DR      | ACTIVE                | SOIC            | D                  | 14   | 2500           | Green (RoHS & no Sb/Br)   | CU NIPDAU        | Level-1-260C-UNLIM           |
| SN65HVD55DRG4    | ACTIVE                | SOIC            | D                  | 14   | 2500           | Green (RoHS & no Sb/Br)   | CU NIPDAU        | Level-1-260C-UNLIM           |

<sup>(1)</sup> The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

**PREVIEW:** Device has been announced but is not in production. Samples may or may not be available.

**OBSOLETE:** TI has discontinued the production of the device.

(2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS) or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details. TBD: The Pb-Free/Green conversion plan has not been defined.

**Pb-Free (RoHS):** TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.

Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)

<sup>(3)</sup> MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

**Important Information and Disclaimer:**The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

D (R-PDSO-G14)

PLASTIC SMALL-OUTLINE PACKAGE



NOTES: A. All linear dimensions are in inches (millimeters).

B. This drawing is subject to change without notice.

C. Body dimensions do not include mold flash or protrusion not to exceed 0.006 (0,15).

D. Falls within JEDEC MS-012 variation AB.



#### **IMPORTANT NOTICE**

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

| Products         |                        | Applications       |                           |
|------------------|------------------------|--------------------|---------------------------|
| Amplifiers       | amplifier.ti.com       | Audio              | www.ti.com/audio          |
| Data Converters  | dataconverter.ti.com   | Automotive         | www.ti.com/automotive     |
| DSP              | dsp.ti.com             | Broadband          | www.ti.com/broadband      |
| Interface        | interface.ti.com       | Digital Control    | www.ti.com/digitalcontrol |
| Logic            | logic.ti.com           | Military           | www.ti.com/military       |
| Power Mgmt       | power.ti.com           | Optical Networking | www.ti.com/opticalnetwork |
| Microcontrollers | microcontroller.ti.com | Security           | www.ti.com/security       |
|                  |                        | Telephony          | www.ti.com/telephony      |
|                  |                        | Video & Imaging    | www.ti.com/video          |
|                  |                        | Wireless           | www.ti.com/wireless       |

Mailing Address:

Texas Instruments

Post Office Box 655303 Dallas, Texas 75265

Copyright © 2005, Texas Instruments Incorporated