www.ti.com # SN65C3222E, SN75C3222E 3-V TO 5.5-V MULTICHANNEL RS-232 LINE DRIVERS/RECEIVERS WITH ± 15 -kV ESD PROTECTION SLLS725A-JUNE 2006-REVISED JULY 2006 #### **FEATURES** - ESD Protection for RS-232 Bus Pins - ±15-kV Human-Body Model (HBM) - ±8-kV IEC 61000-4-2, Contact Discharge - ±15-kV IEC 61000-4-2, Air-Gap Discharge - Meet or Exceed the Requirements of TIA/EIA-232-F and ITU v.28 Standards - Operate With 3-V to 5.5-V V_{CC} Supply - Operate up to 1000 kbit/s - Two Drivers and Two Receivers - Low Standby Current . . . 1 μA Typ - External Capacitors . . . $4 \times 0.1 \mu F$ - Accepts 5-V Logic Input With 3.3-V Supply #### **APPLICATIONS** - Battery-Powered Systems - PDAs - Notebooks - Laptops - Palmtop PCs - Hand-Held Equipment # DESCRIPTION/ ORDERING INFORMATION The SN65C3222E and SN75C3222E consist of two line drivers, two line receivers, and a dual charge-pump circuit with ± 15 -kV ESD protection pin to pin (serial-port connection pins, including GND). The devices meet the requirements of TIA/EIA-232-F and provide the electrical interface between an asynchronous communication controller and the serial-port connector. The charge pump and four small external capacitors allow operation from a single 3-V to 5.5-V supply. The devices operate at typical data signaling rates up to 1000 kbit/s and are improved drop-in replacements for industry-popular '3222 two-driver, two-receiver functions. NC - No internal connection NC - No internal connection The SN65C3222E and SN75C3222E can be placed in the power-down mode by setting the power-down ($\overline{PWRDOWN}$) input low, which draws only 1 μA from the power supply. When the devices are powered down, the receivers remain active while the drivers are placed in the high-impedance state. Also, during power down, the onboard charge pump is disabled; V+ is lowered to V_{CC} , and V_{CC} is raised toward GND. Receiver outputs also can be placed in the high-impedance state by setting enable (\overline{EN}) high. Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet. # SN65C3222E, SN75C3222E 3-V TO 5.5-V MULTICHANNEL RS-232 LINE DRIVERS/RECEIVERS WITH $\pm 15\text{-kV}$ ESD PROTECTION SLLS725A-JUNE 2006-REVISED JULY 2006 #### ORDERING INFORMATION | T _A | P/ | ACKAGE ⁽¹⁾ | ORDERABLE PART NUMBER | TOP-SIDE MARKING | |----------------|------------|-----------------------|-----------------------|------------------| | | SOIC - DW | Tube of 25 | SN75C3222EDW | 75C3222E | | | 30IC - DW | Reel of 2000 | SN75C3222EDWR | 7303222E | | 0°C to 70°C | SSOP – DB | Tube of 70 | SN75C3222EDB | MY222E | | 0.0 10 70.0 | 220b – DB | Reel of 2000 | SN75C3222EDBR | IVITZZZE | | | TSSOP – PW | Tube of 70 | SN75C3222EPW | MY222E | | | | Reel of 2000 | SN75C3222EPWR | IVITZZZE | | | SOIC - DW | Tube of 25 | SN65C3222EDW | 65C3222E | | | 30IC - DW | Reel of 2000 | SN65C3222EDWR | 0303222E | | –40°C to 85°C | SSOP – DB | Tube of 70 | SN65C3222EDB | MU222E | | -40°C 10 85°C | 220b – DB | Reel of 2000 | SN65C3222EDBR | IVIUZZZE | | | TSSOP – PW | Tube of 70 | SN65C3222EPW | MU222E | | | 1330F - PW | Reel of 2000 | SN65C3222EPWR | IVIUZZZE | ⁽¹⁾ Package drawings, standard packing quantities, thermal data, symbolization, and PCB design guidelines are available at www.ti.com/sc/package. #### **FUNCTION TABLES** #### Each Driver(1) | IN | IPUTS | OUTPUT | |-----|----------------|--------| | DIN | PWRDOWN | DOUT | | X | L | Z | | L | Н | Н | | Н | Н | L | (1) H = high level, L = low level, X = irrelevant, Z = high impedance # Each Receiver⁽¹⁾ | INPU | JTS | OUTPUT | |------|-----|--------| | RIN | EN | ROUT | | L | L | Н | | Н | L | L | | X | Н | Z | | Open | L | Н | ⁽¹⁾ H = high level, L = low level, X = irrelevant, Open = input disconnected or connected driver off Z = high impedance (off), SLLS725A-JUNE 2006-REVISED JULY 2006 #### **LOGIC DIAGRAM (POSITIVE LOGIC)** Pin numbers are for the DB, DW, and PW packages. # **Absolute Maximum Ratings**(1) over operating free-air temperature range (unless otherwise noted) | | | | MIN | MAX | UNIT | |------------------|---|----------------------|-------|-----------------------|------| | V _{CC} | Supply voltage range ⁽²⁾ | -0.3 | 6 | V | | | V+ | Positive-output supply voltage range ⁽²⁾ | | -0.3 | 7 | V | | V- | Negative-output supply voltage range (2) | | 0.3 | -7 | V | | V+ - V- | Supply voltage difference ⁽²⁾ | | | 13 | V | | VI | land to take an area | Driver (EN, PWRDOWN) | -0.3 | 6 | | | | Input voltage range | Receiver | -25 | 25 | V | | | Output valtage range | Driver | -13.2 | 13.2 | V | | Vo | Output voltage range | Receiver | -0.3 | V _{CC} + 0.3 | V | | | | DB package | | 70 | | | 0 | Deal and the second in a dame (3)(4) | DW package | | 58 | 0000 | | θ_{JA} | Package thermal impedance (3)(4) | PW package | | 83 | °C/W | | | RHL package | | | TBD | | | T _J | Operating virtual junction temperature | | | 150 | °C | | T _{stg} | Storage temperature range | | -65 | 150 | °C | ⁽¹⁾ Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability. All voltages are with respect to network GND. Maximum power dissipation is a function of $T_J(max)$, θ_{JA} , and T_A . The maximum allowable power dissipation at any allowable ambient temperature is $P_D = (T_J(max) - T_A)/\theta_{JA}$. Operating at the absolute maximum T_J of 150°C can affect reliability. The package thermal impedance is calculated in accordance with JESD 51-7. # SN65C3222E, SN75C3222E 3-V TO 5.5-V MULTICHANNEL RS-232 LINE DRIVERS/RECEIVERS WITH ±15-kV ESD PROTECTION www.ti.com SLLS725A-JUNE 2006-REVISED JULY 2006 # Recommended Operating Conditions⁽¹⁾ See Figure 5 | | | | | MIN | NOM | MAX | UNIT | |---|---|--------------------|-------------------------|-----|-----|-----|----------| | | $V_{\rm CC} = 3.3 \rm V$ | | | | 3.3 | 3.6 | \ | | | Supply voltage | | $V_{CC} = 5 V$ | 4.5 | 5 | 5.5 | V | | V Drives and accepted high level insult valtage | Driver and control high-level input voltage | DIN, EN, PWRDOWN | V _{CC} = 3.3 V | 2 | | | V | | V _{IH} | Driver and control high-level input voltage | DIN, EN, PVVKDOVIN | $V_{CC} = 5 V$ | 2.4 | | | V | | V_{IL} | Driver and control low-level input voltage | DIN, EN, PWRDOWN | | | | 8.0 | V | | V_{I} | Driver and control input voltage | DIN, EN, PWRDOWN | | 0 | | 5.5 | V | | V_{I} | Receiver input voltage | | | -25 | | 25 | ٧ | | т | T. Operating free circ temperature | | SN75C3222E | 0 | | 70 | ĵ | | T _A | Operating free-air temperature | | SN65C3222E | -40 | | 85 | C | ⁽¹⁾ Test conditions are C1–C4 = 0.1 μ F at V_{CC} = 3.3 V \pm 0.3 V; C1 = 0.047 μ F, C2–C4 = 0.33 μ F at V_{CC} = 5 V \pm 0.5 V. # Electrical Characteristics⁽¹⁾ over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (see Figure 5) | PARAMETER | | TEST CONDITIONS | MIN | TYP ⁽²⁾ | MAX | UNIT | |-----------|-------------------------------------|-------------------------------------|-----|--------------------|-----|------| | I | Input leakage current (EN, PWRDOWN) | | | ±0.01 | ±1 | μΑ | | | Supply current | No load, PWRDOWN at V _{CC} | | 0.3 | 1 | mA | | ICC | Supply current (powered off) | No load, PWRDOWN at GND | | 1 | 10 | μΑ | ⁽¹⁾ Test conditions are C1–C4 = 0.1 μ F at V_{CC} = 3.3 V \pm 0.3 V; C1 = 0.047 μ F, C2–C4 = 0.33 μ F at V_{CC} = 5 V \pm 0.5 V. (2) All typical values are at V_{CC} = 3.3 V or V_{CC} = 5 V, and T_A = 25°C. # SN65C3222E, SN75C3222E 3-V TO 5.5-V MULTICHANNEL RS-232 LINE DRIVERS/RECEIVERS WITH ±15-kV ESD PROTECTION SLLS725A-JUNE 2006-REVISED JULY 2006 #### **DRIVER SECTION** #### Electrical Characteristics(1) over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (see Figure 5) | PARAMETER | | TEST CONDITIONS | | | TYP ⁽²⁾ | MAX | UNIT | |-----------------|---|--|---|------------|--------------------|-----|------| | V_{OH} | High-level output voltage | DOUT at $R_L = 3 \text{ k}\Omega$ to GND, | DIN = GND | 5 | 5.4 | | V | | V_{OL} | Low-level output voltage | DOUT at $R_L = 3 \text{ k}\Omega$ to GND, | $DIN = V_{CC}$ | - 5 | -5.4 | | V | | I _{IH} | High-level input current | $V_I = V_{CC}$ | | | ±0.01 | ±1 | μΑ | | I _{IL} | Low-level input current | V _I at GND | | | ±0.01 | ±1 | μΑ | | I _{OS} | Short-circuit output current ⁽³⁾ | V _{CC} = 3.6 V
V _{CC} = 5.5 V | V _O = 0 V | | ±35 | ±60 | mA | | r _o | Output resistance | V_{CC} , V+, and V- = 0 V, | V _O = ±2 V | 300 | 10M | | Ω | | | Output leakage current | PWRDOWN = GND | $V_{CC} = 3 \text{ V to } 3.6 \text{ V},$
$V_{O} = \pm 12 \text{ V}$ | | | ±25 | ^ | | I _{OZ} | | PWRDOWN = GND | $V_{CC} = 4.5 \text{ V to } 5.5 \text{ V},$
$V_{O} = \pm 10 \text{ V}$ | | | ±25 | μΑ | # Switching Characteristics⁽¹⁾ over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (see Figure 5) | | PARAMETER | | TEST CONDITIONS | | MIN | TYP ⁽²⁾ | MAX | UNIT | |--------------------|-------------------------------------|---|--|----------------------------------|------|--------------------|-----|--------| | | | | | | 250 | | | | | | Maximum data rate (See Figure 1) | $R_L = 3 \text{ k}\Omega$,
One DOUT switching | C _L = 250 pF, | V _{CC} = 3 V to 4.5 V | 1000 | | | kbit/s | | (See Figure 1) | | One Boot switching | C _L = 1000 pF, | V _{CC} = 4.5 V to 5.5 V | 1000 | | | | | t _{sk(p)} | Pulse skew ⁽³⁾ | $C_L = 150 \text{ pF to } 2500 \text{ pF},$ | $R_L = 3 \text{ k}\Omega \text{ to } 7 \text{ k}\Omega,$ | See Figure 2 | | 300 | | ns | | | Slew rate, | $R_L = 7 \text{ k}\Omega,$ | C _L = 150 pF to 1000 pF | | 8 | | 90 | | | SR(tr) | transition region
(see Figure 1) | D 210 | C _L = 1000 pF | | 12 | | 60 | V/μs | | | | ee Figure 1) $R_L = 3 \text{ k}\Omega$ | | | 24 | | 150 | | ⁽¹⁾ Test conditions are C1–C4 = 0.1 μ F at V_{CC} = 3.3 V \pm 0.3 V; C1 = 0.047 μ F, C2–C4 = 0.33 μ F at V_{CC} = 5 V \pm 0.5 V. (2) All typical values are at V_{CC} = 3.3 V or V_{CC} = 5 V, and T_A = 25°C. (3) Pulse skew is defined as $|t_{PLH} - t_{PHL}|$ of each channel of the same device. ⁽¹⁾ Test conditions are C1–C4 = 0.1 μF at V_{CC} = 3.3 V ± 0.3 V; C1 = 0.047 μF, C2–C4 = 0.33 μF at V_{CC} = 5 V ± 0.5 V. (2) All typical values are at V_{CC} = 3.3 V or V_{CC} = 5 V, and T_A = 25°C. (3) Short-circuit durations should be controlled to prevent exceeding the device absolute power dissipation ratings, and not more than one output should be shorted at a time. # SN65C3222E, SN75C3222E 3-V TO 5.5-V MULTICHANNEL RS-232 LINE DRIVERS/RECEIVERS WITH ±15-kV ESD PROTECTION SLLS725A-JUNE 2006-REVISED JULY 2006 #### RECEIVER SECTION #### Electrical Characteristics(1) over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (see Figure 5) | | PARAMETER | TEST CONDITIONS | MIN | TYP ⁽²⁾ | MAX | UNIT | |------------------|---|--|-----------------------|-----------------------|-----|------| | V_{OH} | High-level output voltage | $I_{OH} = -1 \text{ mA}$ | V _{CC} - 0.6 | V _{CC} - 0.1 | | V | | V_{OL} | Low-level output voltage | I _{OL} = 1.6 mA | | | 0.4 | V | | \/ | Desitive going input threshold voltage | $V_{CC} = 3.3 \text{ V}$ | | 1.5 | 2.4 | V | | V _{IT+} | Positive-going input threshold voltage | V _{CC} = 5 V | | 1.8 | 2.4 | V | | \/ | Negative going input threshold voltage | $V_{CC} = 3.3 \text{ V}$ | 0.6 | 1.2 | | V | | V _{IT} | Negative-going input threshold voltage | V _{CC} = 5 V | 0.8 | 1.5 | | V | | V_{hys} | Input hysteresis (V _{IT+} - V _{IT-}) | | | 0.3 | | V | | I_{OZ} | Output leakage current | EN = 1 | | ±0.05 | ±10 | μΑ | | r _i | Input resistance | $V_I = \pm 3 \text{ V to } \pm 25 \text{ V}$ | 3 | 5 | 7 | kΩ | ⁽¹⁾ Test conditions are C1–C4 = 0.1 μ F at V_{CC} = 3.3 V \pm 0.3 V; C1 = 0.047 μ F, C2–C4 = 0.33 μ F at V_{CC} = 5 V \pm 0.5 V. (2) All typical values are at V_{CC} = 3.3 V or V_{CC} = 5 V, and T_A = 25°C. # Switching Characteristics⁽¹⁾ over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) | | PARAMETER | TEST CONDITIONS | TYP ⁽²⁾ | UNIT | |--------------------|---|---|--------------------|------| | t _{PLH} | Propagation delay time, low- to high-level output | C _L = 150 pF, See Figure 3 | 300 | ns | | t _{PHL} | Propagation delay time, high- to low-level output | C _L = 150 pF, See Figure 3 | 300 | ns | | t _{en} | Output enable time | $C_L = 150 \text{ pF}, R_L = 3 \text{ k}\Omega, \text{ See Figure 4}$ | 200 | ns | | t _{dis} | Output disable time | $C_L = 150 \text{ pF}, R_L = 3 \text{ k}\Omega, \text{ See Figure 4}$ | 200 | ns | | t _{sk(p)} | Pulse skew ⁽³⁾ | See Figure 3 | 300 | ns | Test conditions are C1–C4 = 0.1 μ F at V_{CC} = 3.3 V \pm 0.3 V; C1 = 0.047 μ F, C2–C4 = 0.33 μ F at V_{CC} = 5 V \pm 0.5 V. All typical values are at V_{CC} = 3.3 V or V_{CC} = 5 V, and T_A = 25°C. Pulse skew is defined as $|t_{PLH} - t_{PHL}|$ of each channel of the same device. SLLS725A-JUNE 2006-REVISED JULY 2006 #### PARAMETER MEASUREMENT INFORMATION - A. C_L includes probe and jig capacitance. - B. The pulse generator has the following characteristics: PRR = 250 kbit/s, Z_0 = 50 Ω , 50% duty cycle, $t_r \le 10$ ns, $t_f \le 10$ ns. Figure 1. Driver Slew Rate - A. C_L includes probe and jig capacitance. - B. The pulse generator has the following characteristics: PRR = 250 kbit/s, $Z_O = 50 \Omega$, 50% duty cycle, $t_r \le 10$ ns, $t_f \le 10$ ns. Figure 2. Driver Pulse Skew - A. C₁ includes probe and jig capacitance. - B. The pulse generator has the following characteristics: Z_0 = 50 Ω , 50% duty cycle, $t_r \le$ 10 ns, $t_f \le$ 10 ns. Figure 3. Receiver Propagation Delay Times # PARAMETER MEASUREMENT INFORMATION (continued) - A. C_L includes probe and jig capacitance. - B. The pulse generator has the following characteristics: Z_0 = 50 Ω , 50% duty cycle, $t_r \le 10$ ns. $t_f \le 10$ ns. Figure 4. Receiver Enable and Disable Times SLLS725A-JUNE 2006-REVISED JULY 2006 #### **APPLICATION INFORMATION** † C3 can be connected to V_{CC} or GND. NOTES: A. Resistor values shown are nominal. - B. NC No internal connection - C. Nonpolarized ceramic capacitors are acceptable. If polarized tantalum or electrolytic capacitors are used, they should be connected as shown. #### **V_{CC} vs CAPACITOR VALUES** | V _{CC} | C1 | C2, C3, and C4 | |-------------------|-------------------------|------------------------| | 3.3 V \pm 0.3 V | 0.1 μ F | 0.1 μ F | | 5 V \pm 0.5 V | 0.047 μ F | 0.33 μF | | 3 V to 5.5 V | 0.1 μF | 0.47 μ F | Figure 5. Typical Operating Circuit and Capacitor Values # **PACKAGING INFORMATION** | Orderable Device | Status ⁽¹⁾ | Package
Type | Package
Drawing | Pins | Package
Qty | e Eco Plan ⁽²⁾ | Lead/Ball Finish | MSL Peak Temp ⁽³⁾ | |------------------|-----------------------|-----------------|--------------------|------|----------------|---------------------------|------------------|------------------------------| | SN65C3222EDB | ACTIVE | SSOP | DB | 20 | 70 | Green (RoHS & no Sb/Br) | CU NIPDAU | Level-1-260C-UNLIM | | SN65C3222EDBG4 | ACTIVE | SSOP | DB | 20 | 70 | Green (RoHS & no Sb/Br) | CU NIPDAU | Level-1-260C-UNLIM | | SN65C3222EDBR | ACTIVE | SSOP | DB | 20 | 2000 | Green (RoHS & no Sb/Br) | CU NIPDAU | Level-1-260C-UNLIM | | SN65C3222EDBRG4 | ACTIVE | SSOP | DB | 20 | 2000 | Green (RoHS & no Sb/Br) | CU NIPDAU | Level-1-260C-UNLIM | | SN65C3222EDW | ACTIVE | SOIC | DW | 20 | 25 | Green (RoHS & no Sb/Br) | CU NIPDAU | Level-1-260C-UNLIM | | SN65C3222EDWG4 | ACTIVE | SOIC | DW | 20 | 25 | Green (RoHS & no Sb/Br) | CU NIPDAU | Level-1-260C-UNLIM | | SN65C3222EDWR | ACTIVE | SOIC | DW | 20 | 2000 | Green (RoHS & no Sb/Br) | CU NIPDAU | Level-1-260C-UNLIM | | SN65C3222EDWRG4 | ACTIVE | SOIC | DW | 20 | 2000 | Green (RoHS & no Sb/Br) | CU NIPDAU | Level-1-260C-UNLIM | | SN65C3222EPW | ACTIVE | TSSOP | PW | 20 | 70 | Green (RoHS & no Sb/Br) | CU NIPDAU | Level-1-260C-UNLIM | | SN65C3222EPWG4 | ACTIVE | TSSOP | PW | 20 | 70 | Green (RoHS & no Sb/Br) | CU NIPDAU | Level-1-260C-UNLIM | | SN65C3222EPWR | ACTIVE | TSSOP | PW | 20 | 2000 | Green (RoHS & no Sb/Br) | CU NIPDAU | Level-1-260C-UNLIM | | SN65C3222EPWRG4 | ACTIVE | TSSOP | PW | 20 | 2000 | Green (RoHS & no Sb/Br) | CU NIPDAU | Level-1-260C-UNLIM | | SN75C3222EDB | ACTIVE | SSOP | DB | 20 | 70 | Green (RoHS & no Sb/Br) | CU NIPDAU | Level-1-260C-UNLIM | | SN75C3222EDBG4 | ACTIVE | SSOP | DB | 20 | 70 | Green (RoHS & no Sb/Br) | CU NIPDAU | Level-1-260C-UNLIM | | SN75C3222EDBR | ACTIVE | SSOP | DB | 20 | 2000 | Green (RoHS & no Sb/Br) | CU NIPDAU | Level-1-260C-UNLIM | | SN75C3222EDBRG4 | ACTIVE | SSOP | DB | 20 | 2000 | Green (RoHS & no Sb/Br) | CU NIPDAU | Level-1-260C-UNLIM | | SN75C3222EDW | ACTIVE | SOIC | DW | 20 | 25 | Green (RoHS & no Sb/Br) | CU NIPDAU | Level-1-260C-UNLIM | | SN75C3222EDWG4 | ACTIVE | SOIC | DW | 20 | 25 | Green (RoHS & no Sb/Br) | CU NIPDAU | Level-1-260C-UNLIM | | SN75C3222EDWR | ACTIVE | SOIC | DW | 20 | 2000 | Green (RoHS & no Sb/Br) | CU NIPDAU | Level-1-260C-UNLIM | | SN75C3222EDWRG4 | ACTIVE | SOIC | DW | 20 | 2000 | Green (RoHS & no Sb/Br) | CU NIPDAU | Level-1-260C-UNLIM | | SN75C3222EPW | ACTIVE | TSSOP | PW | 20 | 70 | Green (RoHS & no Sb/Br) | CU NIPDAU | Level-1-260C-UNLIM | | SN75C3222EPWG4 | ACTIVE | TSSOP | PW | 20 | 70 | Green (RoHS & no Sb/Br) | CU NIPDAU | Level-1-260C-UNLIM | | SN75C3222EPWR | ACTIVE | TSSOP | PW | 20 | 2000 | Green (RoHS & no Sb/Br) | CU NIPDAU | Level-1-260C-UNLIM | | SN75C3222EPWRG4 | ACTIVE | TSSOP | PW | 20 | 2000 | Green (RoHS & no Sb/Br) | CU NIPDAU | Level-1-260C-UNLIM | $^{^{(1)}}$ The marketing status values are defined as follows: #### PACKAGE OPTION ADDENDUM 6-Dec-2006 ACTIVE: Product device recommended for new designs. LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect. NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design. PREVIEW: Device has been announced but is not in production. Samples may or may not be available. **OBSOLETE:** TI has discontinued the production of the device. (2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details. TBD: The Pb-Free/Green conversion plan has not been defined. **Pb-Free** (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes. **Pb-Free (RoHS Exempt):** This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above. Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material) (3) MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature. Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release. In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis. # DW (R-PDSO-G20) # PLASTIC SMALL-OUTLINE PACKAGE NOTES: - A. All linear dimensions are in inches (millimeters). - B. This drawing is subject to change without notice. - C. Body dimensions do not include mold flash or protrusion not to exceed 0.006 (0,15). - D. Falls within JEDEC MS-013 variation AC. # DB (R-PDSO-G**) # PLASTIC SMALL-OUTLINE #### **28 PINS SHOWN** NOTES: A. All linear dimensions are in millimeters. B. This drawing is subject to change without notice. C. Body dimensions do not include mold flash or protrusion not to exceed 0,15. D. Falls within JEDEC MO-150 # PW (R-PDSO-G**) #### 14 PINS SHOWN # PLASTIC SMALL-OUTLINE PACKAGE NOTES: A. All linear dimensions are in millimeters. B. This drawing is subject to change without notice. C. Body dimensions do not include mold flash or protrusion not to exceed 0,15. D. Falls within JEDEC MO-153 #### **IMPORTANT NOTICE** Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment. TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed. TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards. TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI. Reproduction of information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation. Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements. Following are URLs where you can obtain information on other Texas Instruments products and application solutions: | Products | | Applications | | |--------------------|------------------------|--------------------|---------------------------| | Amplifiers | amplifier.ti.com | Audio | www.ti.com/audio | | Data Converters | dataconverter.ti.com | Automotive | www.ti.com/automotive | | DSP | dsp.ti.com | Broadband | www.ti.com/broadband | | Interface | interface.ti.com | Digital Control | www.ti.com/digitalcontrol | | Logic | logic.ti.com | Military | www.ti.com/military | | Power Mgmt | power.ti.com | Optical Networking | www.ti.com/opticalnetwork | | Microcontrollers | microcontroller.ti.com | Security | www.ti.com/security | | Low Power Wireless | www.ti.com/lpw | Telephony | www.ti.com/telephony | | | | Video & Imaging | www.ti.com/video | | | | Wireless | www.ti.com/wireless | | | | | | Mailing Address: Texas Instruments Post Office Box 655303 Dallas, Texas 75265 Copyright © 2006, Texas Instruments Incorporated