

FULL DIFFERENTIAL ANALOG INPUT 24-BIT, 192-kHz STEREO A/D CONVERTER

FEATURES

- 24-Bit Delta-Sigma Stereo A/D Converter
- High Performance:
 - Dynamic Range: 112 dB (Typically)
 - SNR: 111 dB (Typically)
 - THD+N: -102 dB (Typically)
- High Performance Linear Phase antialias Digital Filter:
 - Pass-Band Ripple: ±0.005 dB
 - Stop-Band Attenuation: -100 dB
- Fully Differential Analog Input: ±2.5 V
- Audio Interface: Master or Slave Mode Selectable
- Data Formats: Left Justified, I²S, Standard 24-Bit and DSD
- Function:
 - Peak Detection
 - Low-Cut Filter (HPF): -3 dB at 1 Hz, $f_S = 48 \text{ kHz}$
- Sampling Rate up to 192 kHz
- System Clock: 128 f_S, 256 f_S, 384 f_S, 512 f_S, or 768 f_S
- Dual Power Supplies:
 - 5 V for Analog
 - 3.3 V for Digital
- Power Dissipation: 225 mW

- Small 28-Pin SSOP
- DSD Output: 1 Bit, 64 f_S
- Lead-Free Product

APPLICATIONS

- AV Amp
- MD Player
- Digital VTR
- Digital Mixer
- Digital Recorder

DESCRIPTION

The PCM1804 is a high-performance single chip stereo A/D converter with full differential analog voltage input. The PCM1804 uses a precision delta-sigma modulator and includes a linear phase antialias digital filter and HPF (low-cut filter) that removes dc offset of the input signal. The PCM1804 is suitable for a wide variety of mid-to-high grade consumer and professional applications, where excellent performance and 5-V analog supply and 3.3-V digital power supply operation are required. The PCM1804 can achieve both PCM audio and DSD format due to precision delta-sigma modulator. The PCM1804 is fabricated on an advanced CMOS process and is available in small 28-pin SSOP package.

PRODUCT	PACKAGE	PACKAGE DRAWING NUMBER	OPERATING TEMPERATURE RANGE	PACKAGE MARKING	ORDERING NUMBER	TRANSPORT MEDIA
DOMAGGADD		0000	4000 (+ 7000		PCM1804DB	Tube
PCM1804DB	28-Lead SSOP	28DB	–10°C to 70°C	PCM1804DB	PCM1804DBR	Tape and Reel

PACKAGE/ORDERING INFORMATION

This device contains circuits to protect its inputs and outputs against damage due to high static voltages or electrostatic fields. These circuits have been qualified to protect this device against electrostatic discharges (ESD) of up to 2 kV according to MIL-STD-883C, Method 3015; however, it is advised that precautions be taken to avoid application of any voltage higher than maximum-rated voltages to these high-impedance circuits. During storage or handling, the device leads should be shorted together or the device should be placed in conductive foam. In a circuit, unused inputs should always be connected to an appropriated logic voltage level, preferably either V_{CC} or ground. Specific guidelines for handling devices of this type are contained in the publication *Guidelines for Handling Electrostatic-Discharge-Sensitive (ESDS) Devices and Assemblies* available from Texas Instruments.

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

SLES022A - DECEMBER 2001

pin assignments

functional block diagram

TEXAS INSTRUMENTS www.ti.com

SLES022A - DECEMBER 2001

Terminal Functions

TERMINAL	_		DESCRIPTIONS	
NAME	PIN	I/O	DESCRIPTIONS	
AGND	23	-	Analog ground	
AGNDL	2	-	Analog ground for VREFL	
AGNDR	27	-	Analog ground for VREFR	
BCK/DSDL	16	I/O	Bit clock input/output in PCM mode. L-channel audio data output in DSD mode. §	
BYPAS	12	I	HPF bypass control. High: HPF disable, Low: HPF enable§	
DATA/DSDR	15	0	L-channel and R-channel audio data output in PCM mode. R-channel audio data output in DSD mode. (DSD output, when DSD mode)	
DGND	13	-	Digital ground	
FMT0	6	I	Audio data format 0. See Table 5 [†]	
FMT1	7	I	Audio data format 1. See Table 5 [†]	
LRCK/DSDBCK	17	I/O	Sampling clock input / output in PCM and DSD mode. §	
OSR0	9	I	Oversampling ratio 0. See Table 1 and Table 2 [†]	
OSR1	10	I	Oversampling ratio 1. See Table 1 and Table 2 [†]	
OSR2	11	I	Oversampling ratio 2. See Table 1 and Table 2 [†]	
OVFL	21	0	Overflow signal of L-channel in PCM mode. This is available in PCM mode only.	
OVFR	20	0	Overflow signal of R-channel in PCM mode. This is available in PCM mode only.	
RST	19	I	Reset, power down input, active low [†]	
SCKI	18	I	System clock input; 128 f _S , 256 f _S , 384 f _S , 512 f _S or 768 f _S . [‡]	
S/M	8	I	Master / slave mode selection. See Table 4. [†]	
VCC	22	-	Analog power supply	
VCOML	3	-	L-channel analog common mode voltage (2.5 V)	
V _{COM} R	26	-	R-channel analog common mode voltage (2.5 V)	
V _{DD}	14	-	Digital power supply	
V _{IN} L-	5	I	L-channel analog input, negative pin	
V _{IN} L+	4	I	L-channel analog input, positive pin	
V _{IN} R–	24	Ι	R-channel analog input, negative pin	
V _{IN} R+	25	I	R-channel analog input, positive pin	
VREFL	1	-	L-channel voltage reference output, requires capacitors for decoupling to AGND	
V _{REF} R	28	-	R-channel voltage reference output, requires capacitors for decoupling to AGND	

[†] Schmitt-trigger input with internal pulldown (51 kΩ typically), 5-V tolerant. [‡] Schmitt-trigger input, 5-V tolerant. § Schmitt-trigger input

SLES022A - DECEMBER 2001

absolute maximum ratings over operating free-air temperature (unless otherwise noted)[†]

Supply voltage: V _{CC}
V _{DD}
Ground voltage differences: AGND, AGNDL, AGNDR, DGND
Digital input voltage: FMT0, FMT1, S/M, OSR0, OSR1, OSR2, SCKI, RST
BYPAS, DATA/DSDR, BCK/DSDL, LRCK/DSDBCK,
OVFL, OVFR
Analog input voltage: $V_{REF}L$, $V_{REF}R$, $V_{COM}L$, $V_{COM}R$, $V_{IN}L$ +, $V_{IN}R$ +, $V_{IN}L$ –, $V_{IN}R$ – –0.3 V to (V_{CC} + 0.3 V
Input current (any pins except supplies)
Ambient temperature under bias, T _A
Storage temperature, T _{stg}
Junction temperature, T _J [*]
Lead temperature (soldering)
Package temperature (IR reflow, peak)

[†] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

electrical characteristics, all specifications at $T_A = 25^{\circ}C$, $V_{CC} = 5 V$, $V_{DD} = 3.3 V$, master mode, single-speed mode, $f_S = 48 \text{ kHz}$, system clock = 256 f_S , 24-bit data (unless otherwise noted)

				PC	M1804DE	В		
	PARAMETER	TEST	CONDITIONS	MIN	MIN TYP		UNIT	
	Resolution			24			Bits	
DATA	FORMAT							
	Audio data interface format				ndard, I ² s ft justified			
	Audio data bit length				24-bits			
	Audio data format				ISB first, plement,	DSD		
DIGITA	AL INPUT/OUTPUT	·						
	Logic family			TTL	compatib	ole		
	1 Pade Jacob Parent on Research	See Notes 1 and	2	2		5.5	1/20	
VIH	High-level input voltage	See Note 3		2		V_{DD}	VDC	
VIL	Low-level input voltage	See Notes 1, 2, a	and 3			0.8	VDC	
		$V_{IN} = V_{DD},$	See Note 1		65	100) μA	
Ιн	High-level input current	$V_{IN} = V_{DD},$	See Note 2			±10		
		$V_{IN} = V_{DD},$	See Note 3			±100		
1	Low-level input current	V _{IN} = 0 V,	See Notes 1 and 2			±10	- μΑ	
۱		V _{IN} = 0 V,	See Note 3			±50		
Vон	High-level output voltage	I _{OH} = -1 mA,	See Note 4	2.4			VDC	
VOL	Low-level output voltage	I _{OL} = 1 mA,	See Note 5			0.4	VDC	
CLOC	K FREQUENCY	i						
fs	Sampling frequency			32		192	kHz	
		256 f _S , Single rat			12.288			
		384 fS, Single rat	te, See Note 5		18.432			
		512 f _S , Single rat	te, See Note 5		24.576			
	System clock frequency	768 fS, Single rat	te, See Note 5		36.864		MHz	
	Bystem clock nequency	256 fS, Dual rate	, See Note 6		24.576		101112	
		384 fS, Dual rate	, See Note 6		36.864			
		128 f _S , Quad rate	e, See Note 7		24.576			
		192 fS, Quad rate	e, See Note 7		36.864			
DC AC	CURACY	-						
	Gain mismatch channel-to-channel					±3	%/FSF	
	Gain error (V _{IN} = -0.5 dB)					<u>+</u> 4	%/FSF	
	Bipolar zero error	HPF bypass			±0.2		%/FSF	

NOTES: 1. Pins 6–11, 19: FMT0, FMT1, S/M, OSR0, OSR1, OSR2, RST (Schmitt-trigger input with internal pulldown (51 kΩ typically), 5 V tolerant)

2. Pin 18: SCKI (Schmitt-trigger input, 5 V tolerant)

3. Pins 12, 16–17: BYPAS, BCK/DSDL, LRCK/DSDBCK (in slave mode, Schmitt-trigger input)

4. Pins 15–17, 20, and 21: DATA/DSDR, BCK/DSDL, LRCK/DSDBCK (in master mode), OVFR, OVFL

5. Single rate, $f_S = 48 \text{ kHz}$

6. Dual rate, $f_S = 96 \text{ kHz}$

7. Quad rate, $f_S = 192 \text{ kHz}$

SLES022A - DECEMBER 2001

electrical characteristics, all specifications at $T_A = 25^{\circ}C$, $V_{CC} = 5 V$, $V_{DD} = 3.3 V$, master mode, single-speed mode, $f_S = 48 \text{ kHz}$, system clock = 256 f_S , 24-bit data (unless otherwise noted) (continued)

			TEAT AGNIDITIONS	PC	M1804DB	
	PARAMETER		TEST CONDITIONS	MIN	TYP MAX	UNIT
DYNAM	IC PERFORMANCE (see Note	8)				
		$V_{IN} = -0.5 \text{ dB}$	for 40 kills Overlage alask. 050 fo		-102 -95	
		$V_{IN} = -60 \text{ dB}$	$f_S = 48 \text{ kHz}$, System clock = 256 f_S		-49	
	_	$V_{IN} = -0.5 \text{ dB}$	for 00 kills Overteen slock. 050 fo		-101	
THD+N	Total harmonic distortion plus noise	$V_{IN} = -60 \text{ dB}$	$f_S = 96 \text{ kHz}$, System clock = 256 f_S		-47	dB
		$V_{IN} = -0.5 \text{ dB}$	fa 100 ki la Sustan alaak 100 fa		–101	
		$V_{IN} = -60 \text{ dB}$	$f_S = 192 \text{ kHz}$, System clock = 128 f_S		-47	
		V_{IN} = -0.5 dB	DSD mode		-100	
			$f_S = 48 \text{ kHz}$, System clock = 256 f_S	106	112	
	Dynamia range (A weighted)	V _{IN} = -60 dB	$f_S = 96 \text{ kHz}$, System clock = 256 f_S		112	dB
	Dynamic range (A-weighted)		$f_S = 192 \text{ kHz}$, System clock = 128 f_S		112	αв
		DSD mode			112	
		fg = 48 kHz,	System clock = 256 fS	105	111	
	CND (A weighted)	fg = 96 kHz,	System clock = 256 fS		111	dB
	SNR (A-weighted)	f _S = 192 kHz,	System clock = 128 fS		111	aв
		DSD mode			111	
		f _S = 48 kHz,	System clock = 256 fS	97	109	dB
	Channel separation	f _S = 96 kHz,	System clock = 256 f _S		107	
		f _S = 192 kHz,	System clock = 128 f _S		107	
ANALO	G INPUT					
	Input voltage	Differential inpu	ıt		±2.5	V
	Center voltage				2.5	VDC
	Input impedance	Single end			10	kΩ
DIGITAL	FILTER PERFORMANCE					
	Pass-band edge	Single rate, dua	al rate		0.453 f _S	Hz
	Stop-band edge	Single rate, dua	al rate	0.547 f _S		Hz
	Pass-band ripple	Single rate, dua	al rate		±0.005	dB
	Stop-band attenuation	Single rate, dua	al rate	-100		dB
	Pass-band edge (-0.005 dB)	Quad rate			0.375 f _S	Hz
	Pass-band edge (–3 dB)	Quad rate			0.49 f _S	Hz
	Stop-band edge	Quad rate		0.77 f _S		Hz
	Pass-band ripple	Quad rate			±0.005	dB
	Stop-band attenuation	Quad rate		-135		dB
	Group delay			1	37/f _S	S
	HPF frequency response	–3 dB		f	S/48000	Hz

NOTE 8: f_{IN} = 1 kHz, using Audio Precision's System II, RMS mode with 20-kHz LPF and 400-Hz HPF in calculation for single rate, with 40-kHz LPF for dual and quad rate in calculation.

electrical characteristics, all specifications at $T_A = 25^{\circ}C$, $V_{CC} = 5 V$, $V_{DD} = 3.3 V$, master mode, single-speed mode, $f_S = 48$ kHz, system clock = 256 f_S , 24-bit data (unless otherwise noted) (continued)

			PC	M1804D	в	
	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
POWE	R SUPPLY REQUIREMENT	S				
VCC			4.75	5	5.25	VDC
V _{DD}	Supply voltage range		3	3.3	3.6	
ICC		V _{CC} = 5 V, See Notes 5, 6, and 7		35	45	mA
	Current coursest	V_{DD} = 3.3 V, See Notes 5 and 9		15	20	
IDD	Supply current	V_{DD} = 3.3 V, See Notes 6 and 9		27		
		V _{DD} = 3.3 V, See Notes 7 and 9		18		
		Operation, $V_{CC} = 5 V$, $V_{DD} = 3.3 V$, See Notes 5 and 9		225	290	
-	Devues disaination	Operation, $V_{CC} = 5 V$, $V_{DD} = 3.3 V$, See Notes 6 and 9		265		
PD	Power dissipation	Operation, $V_{CC} = 5 V$, $V_{DD} = 3.3 V$, See Notes 7 and 9		235		mW
		Power down, $V_{CC} = 5 V$, $V_{DD} = 3.3 V$		5		
TEMPE	RATURE RANGE					
	Operation temperature		-10		70	°C
θJA	Thermal resistance	28-pin SSOP		100		°C/W

NOTES: 5. Single rate, $f_S = 48 \text{ kHz}$

6. Dual rate, $f_S = 96 \text{ kHz}$

Quad rate, f_S = 192 kHz
Minimum load on DATA/DSDR (pin 15)

SLES022A - DECEMBER 2001

single rate

[†] All specifications at $T_A = 25^{\circ}$ C, $V_{CC} = 3.3$ V, $V_{DD} = 5$ V, master mode, $f_S = 48$ kHz, system clock = 256 f_S , 24-bit data, unless otherwise noted.

TYPICAL CHARACTERISTICS

single rate (continued)

[†]All specifications at $T_A = 25^{\circ}$ C, $V_{CC} = 3.3$ V, $V_{DD} = 5$ V, master mode, $f_S = 48$ kHz, system clock = 256 f_S , 24-bit data, unless otherwise noted.

TYPICAL CHARACTERISTICS

single rate (continued)

[†]All specifications at $T_A = 25^{\circ}$ C, $V_{CC} = 3.3$ V, $V_{DD} = 5$ V, master mode, $f_S = 48$ kHz, system clock = 256 f_S , 24-bit data, unless otherwise noted.

SLES022A - DECEMBER 2001

TYPICAL CHARACTERISTICS

dual rate

[†] All specifications at $T_A = 25^{\circ}$ C, $V_{CC} = 3.3$ V, $V_{DD} = 5$ V, master mode, 24-bit data, unless otherwise noted.

SLES022A - DECEMBER 2001

DSD mode

[†] All specifications at $T_A = 25^{\circ}C$, $V_{CC} = 3.3$ V, $V_{DD} = 5$ V, master mode, $f_S = 44.1$ kHz, system clock = 16.9344 MHz, unless otherwise noted.

linear phase antialias digital filter frequency response

TYPICAL CHARACTERISTICS

linear phase antialias digital filter frequency response (continued)

ļi)

7 Texas istruments

www.ti.com

SLES022A – DECEMBER 2001

TYPICAL CHARACTERISTICS

14

SLES022A - DECEMBER 2001

TYPICAL CHARACTERISTICS

Amplitude – dB

linear phase antialias digital filter frequency response (continued)

Figure 27

PRINCIPLES OF OPERATION

theory of operation

The PCM1804 consists of a band-gap reference, a delta-sigma modulator with full differential architecture for L-channel and R-channel respectively, a decimation filter with a low-cut filter, and a serial interface circuit. Figure 1 illustrates the total architecture of the PCM1804. An on-chip high-precision reference with 10- μ F external capacitor(s) provides all the reference voltage needed in the PCM1804, and it defines the full-scale voltage range of both channels. Full differential architecture provides a wide dynamic range and excellent power supply rejection performance. The input signal is sampled at ×128, ×64, and ×32 oversampling rate for oversampling ratio. The single rate, dual rate, and quad rate eliminate the external sample-hold amp. Figure 31 illustrates how the PCM1804 for each oversampling ratio decimates the modulator output down to PCM data when the modulator is running at 6.144 MHz. The delta-sigma modulation randomizes the modulator outputs and reduces the idle tone level. The oversampled data stream from the delta-sigma modulator is converted to a 1 f_S, 24-bit digital signal, while removing high-frequency noise components by a decimation filter. The dc components of the signal are removed by the HPF, and the HPF output is converted to a time-multiplexed serial signal through the serial interface, which provides flexible serial formats and master/slave modes. The PCM1804 also has a DSD output mode. The PCM1804 can output directly the signal from the modulators to the DSDL (pin 16) and the DSDR (pin 15).

TEXAS INSTRUMENTS www.ti.com

Figure 31. Spectrum of Modulator Output and Decimation Filter

system clock input

The PCM1804 supports 128 f_S , 192 f_S (only master mode at quad rate), 256 f_S , 384 f_S , 512 f_S , and 768 f_S as a system clock, where f_S is the audio sampling frequency. The system clock must be supplied on SCKI (pin 18). Table 1 shows the relationship of typical sampling frequency and the system clock frequency, and Figure 32 shows system clock timing. In master mode, the system clock rate is selected by OSR2 (pin 11), OSR1 (pin 10), and OSR0 (pin 9) as shown in Table 1. In slave mode, the system clock rate is automatically detected. In DSD mode, OSR2 (pin 11), OSR1 (pin 10), OSR0 (pin 9), and the system clock frequency are fixed as shown in Table 1 and 3.

PARAMETER	MIN	UNIT
System clock pulse width high, tw(SCKH)	11	ns
System clock pulse width low, tw(SCKL)	11	ns

Figure 32. System Clock Input Timing

PRINCIPLES OF OPERATION

power-on and reset functions

The PCM1804 has both an internal power-on reset circuit and an \overline{RST} (pin 19). For internal power-on reset, initialize (reset) is done automatically at the timing the power supply V_{DD} exceeds 2 V (typ) and V_{CC} exceeds 4 V (typ). \overline{RST} accepts external forced reset, and a low level on \overline{RST} initiates the reset sequence. As the internal pull-down resistor terminates \overline{RST} , no connection of \overline{RST} is equal to the low-level input. As the system clock is used as a clock signal of the reset circuit, the system clock has to be supplied as soon as power is supplied; more specifically, at least three system clocks are required prior to $V_{DD} > 2 V$, $V_{CC} > 4 V$ and \overline{RST} = high. During either $V_{DD} < 2 V$ (typ), $V_{CC} < 4 V$ (typ), or \overline{RST} = low, and $1/f_S$ (max) count after $V_{DD} > 2 V$ (typ), $V_{CC} > 4 V$ (typ) and \overline{RST} = high, the PCM1804 stays in the reset state and the digital output is forced to zero. The digital output is valid after the reset state is released and the time of 1116/f_S is passed. Figure 33 and Figure 34 illustrate the internal power on reset and external reset timing. Figure 35 illustrates the digital output for power on reset and control. The PCM1804 needs \overline{RST} = low when SCKI, LRCK, BCK (in slave mode), and control pins are changed.

power-down function

The PCM1804 has a power-down feature that is controlled by the $\overline{\text{RST}}$ (pin 19). Entering the power-down mode is done by keeping the $\overline{\text{RST}}$ low-level input for over 65536/f_S. In the master mode, the SCKI (pin 18) is used as the clock signal of the power-down counter. While in the slave mode, the SCKI (pin 18) and the LRCK (pin 17) are used as the clock signal. The clock(s) has to be supplied until the power-down sequence completes. As soon as $\overline{\text{RST}}$ goes high, the PCM1804 starts the reset-release sequence described in the *power-on and reset functions* section.

oversampling ratio

Oversampling ratio is selected by OSR2 (pin 11), OSR1 (pin 10) and OSR0 (pin 9) as shown in Table 1 and Table 2. The PCM1804 needs RST = low when OSR2, OSR1, and OSR0 pins are changed.

OSR2	OSR1	OSR0	OVERSAMPLING RATIO	SYSTEM CLOCK RATE
Low	Low	Low	Single rate (× 128 f _S)	768 f _S
Low	Low	High	Single rate (× 128 f _S)	512 fS
Low	High	Low	Single rate (× 128 f _S)	384 f _S
Low	High	High	Single rate (× 128 f _S)	256 fS
High	Low	Low	Dual rate (× 64 f _S)	384 f _S
High	Low	High	Dual rate (× 64 fS)	256 fS
High	High	Low	Quad rate (\times 32 f _S)	192 f _S †
High	High	High	Quad rate (× 32 fs)	128 fS
High	Low	Low	DSD mode (× 64 f _S)	384 fS
High	Low	High	DSD mode (× 64 f _S)	256 fS

Table 1.	Oversampling	Ratio in	Master Mode
----------	--------------	----------	-------------

[†]Only master mode at quad rate

PRINCIPLES OF OPERATION

OSR2	OSR1	OSR0	OVERSAMPLING RATIO	SYSTEM CLOCK RATE
Low	Low	Low	Single rate (× 128 f _S)	Automatically detected
Low	Low	High	Dual rate (× 64 f _S)	Automatically detected
Low	High	Low	Quad rate (× 32 f _S)	Automatically detected
Low	High	High	Reserved	-
High	Low	Low	Reserved	-
High	Low	High	Reserved	-
High	High	Low	Reserved	-
High	High	High	Reserved	-

Table 2. Oversampling Ratio in Slave Mode

Table 3. Sampling Frequency and System Clock Frequency

OVERSAMPLING RATIO		SYSTEM CLOCK FREQUENCY (MHz)						
OVERSAMPLING RATIO	IO SAMPLING FREQUENCY		192 f _S †	256 f _S	384 f _S	512 f _S	768 f _S	
	32 kHz	—	—	8.192	12.288	16.384	24.576	
Single rate (see Note 10)	44.1 kHz	-	—	11.2896	16.9344	22.5792	33.8688	
	48 kHz	_	—	12.288	18.432	24.576	36.864	
Dual rate (see Note 11)	88.2 kHz	—	—	22.5792	33.8688	—		
Dual fale (see Note TT)	96 kHz	—	—	24.576	36.864	—		
Quad rate (see Note 12)	176.4 kHz	22.5792	33.8688		—	—	_	
Quad rate (See Note 12)	192 kHz	24.576	36.864					
DSD mode (see Note 11)	44.1 kHz	16.9344 for 384 f _S , 11.2896 for 256 f _S						

[†]Only master mode

NOTÉS: 10. Modulator is running at 128 fs

11. Modulator is running at 64 fs

12. Modulator is running at 32 fs

Figure 33. Internal Power-On Reset Timing

SLES022A - DECEMBER 2001

Figure 35. ADC Digital Output for Power-On Reset and RST Control

audio data interface

The PCM1804 interfaces the audio system through BCK/DSDL (pin 16), LRCK/DSDBCK (pin 17), and DATA/DSDR (pin 15). The PCM1804 needs \overline{RST} = low when in the interface mode and/or the data format are changed.

interface mode

The PCM1804 supports master mode and slave mode as interface modes, which are selected by S/\overline{M} (pin 8) as shown in Table 4. In master mode, the PCM1804 provides the timing of the serial audio data communications between the PCM1804 and the digital audio processor or external circuit. While in slave mode, the PCM1804 receives the timing of data transfer from an external controller. Slave mode is not available for DSD.

Table 4. Interface N

S/M	MODE	
Low	Master mode	
High	Slave mode	

PRINCIPLES OF OPERATION

data format

The PCM1804 supports four audio data formats in both of master and slave mode, and these data formats are selected by the FMT0 (pin 6) and FMT1 (pin 7) as shown in Table 5.

FMT1	FMT0	FORMAT	MASTER	SLAVE
Low	Low	PCM, Left justified, 24 bit.	Yes	Yes
Low	High	PCM, I ² S, 24 bit.	Yes	Yes
High	Low	PCM, Standard, 24 bit	Yes	Yes
High	High	DSD	Yes	—

Table 5. Data Format

interface timing for PCM

Figure 36 through Figure 38 illustrate the interface timing for PCM.

(1) Left-Justified Data Format; L-Channel = High, R-Channel = Low

(2) I²S Data Format; L-Channel = Low, R-Channel = High

(3) Standard Data Format; L-Channel = High, R-Channel = Low

NOTE: LRCK and BCK work as outputs at master mode, inputs at slave mode, respectively.

Figure 36. Audio Data Format for PCM

PRINCIPLES OF OPERATION

interface timing for PCM (continued)

PARAMETERS	MIN	TYP	MAX	UNIT
BCK period, t(BCKP)		1/(64 f _S)		
BCK pulse width high, tw(BCKH)	32			ns
BCK pulse width low, tw(BCKL)	32			ns
Delay time BCK falling edge to LRCK valid, t(CKLR)	-5		15	ns
LRCK period, t _(LRCP)		1/f _S		
Delay time BCK falling edge to DATA valid, t(CKDO)	-5		15	ns
Delay time LRCK edge to DATA valid, t _(LRDO)	-5		15	ns
Rising time of all signals, t _r			10	ns
Falling time of all signals, t _f			10	ns

NOTES: A. Rising and falling time is measured from 10% to 90% of IN/OUT signals swing.

B. Load capacitance of all signals are 10 pF.

C. $t_{(BCKP)}$ is fixed at 1/(64 f_S) in case of master mode.

Figure 37. Audio Data Interface Timing for PCM (Master Mode: LRCK and BCK Work as Outputs)

PRINCIPLES OF OPERATION

interface timing for PCM (continued)

PARAMETERS	MIN	TYP	MAX	UNIT
BCK period, t(BCKP)	1/(64 f _S)	1/(64 f _S)	1/(48 f _S)	
BCK pulse width high, tw(BCKH)	32			ns
BCK pulse width low, tw(BCKL)	32			ns
LRCK setup time to BCK rising edge, t(LRSU)	12			ns
LRCK hold time to BCK rising edge, t(LRHD)	12			ns
LRCK period, t(LRCP)		1/fS		
Delay time BCK falling edge to DATA valid, t(CKDO)	5		25	ns
Delay time LRCK edge to DATA valid, t _(LRDO)	5		25	ns
Rising time of all signals, tr			10	ns
Falling time of all signals, tf			10	ns

NOTES: A. Rising and falling time is measured from 10% to 90% of IN/OUT signals swing. B. Load capacitance of DATA/DSDR signal is 10 pF.

Figure 38. Audio Data Interface Timing for PCM (Slave Mode: LRCK and BCK Work as Inputs)

interface timing for DSD

Figure 39 and Figure 40 illustrate the interface timing for DSD.

PRINCIPLES OF OPERATION

interface timing for DSD (continued)

PARAMETERS	MIN	TYP	MAX	UNIT
DSDBCK period, t(BCKP)	35	54.308		ns
DSDBCK pulse width high, tw(BCKH)	17	77.154		ns
DSDBCK pulse width low, tw(BCKL)	17	77.154		ns
Delay time DSDBCK falling edge to DSDL, DSDR valid, t(CKDO)	-5		15	ns
Rising time of all signals, t _r			10	ns
Falling time of all signals, t _f			10	ns

NOTES: A. Rising and falling time is measured from 10% to 90% of IN/OUT signals swing.

B. Load capacitance of DSDBCK/DSDL/DSDR signal is 10 pF.

Figure 40. Audio Data Interface Timing for DSD (Mast Mode Only)

synchronization with digital audio system for PCM

In slave mode, the PCM1804 operates under LRCK synchronized with the system clock SCKI. The PCM1804 does not need specific phase relationship between LRCK and SCKI, but does require the synchronization of LRCK and SCKI.

If the relationship between LRCK and SCKI changes more than ± 6 BCK during one sample period due to LRCK or SCKI jitter, internal operation of the ADC halts within 1/f_S and digital output is forced into BPZ code until resynchronization between LRCK and SCKI is completed.

In case of changes less than ± 5 BCK, resynchronization does not occur and above digital output control and discontinuity does not occur.

Figure 41 illustrates ADC digital output for loss of synchronization and resynchronization. During undefined data, it may generate some noise in the audio signal. Also, the transitions of normal to undefined data and undefined or zero data to normal make a discontinuity of data on the digital output. This may generate noise in the audio signal. In master mode, synchronization loss never occurs.

HPF (low-cut filter) bypass control for PCM

The built-in function for dc component rejection can be bypassed by BYPAS (pin 12) control. In bypass mode, the dc component of the input analog signal and the internal dc offset are also converted and output in the digital output data.

BYPASS	LPF (HIGH-PASS FILTER) MODE	
Low	Normal (dc cut) mode	
High	Bypass (through) mode	

Table 6. HPF Bypass Control

PRINCIPLES OF OPERATION

overflow flag for PCM

The PCM1804 has two overflow flag pins, OVFR (pin 20) and OVFL (pin 21). The pins go to high as soon as the analog input goes across the full-scale range. The high level is held for 1.016 s at maximum, and returns to low if the analog input does not go across the full-scale range for the period.

NOTES: A. Applies only for slave mode, the loss of synchronization never occurs in master mode.

B. The HPF transient response appears initially.

Figure 41. ADC Digital Output for Lost of Synchronization and Resynchronization

PRINCIPLES OF OPERATION

typical circuit connection diagram

Figure 42 illustrates a typical circuit connection diagram in the PCM data format operation.

NOTES: A. C1, C2, C5, and C6: Bypass capacitor 0.1-μF ceramic and 10-μF tantalum, depends on layout and power supply.
B. C3, C4: Bypass capacitor 0.1-μF tantalum, depends on layout and power supply.

Figure 42. Typical Circuit Connection Diagram at PCM

PRINCIPLES OF OPERATION

typical circuit connection diagram (continued)

Figure 43 illustrates a typical circuit connection diagram in the DSD data format operation.

NOTES: A. C1, C2, C5, and C6: Bypass capacitor 0.1-μF ceramic and 10-μF tantalum, depends on layout and power supply.
B. C3, C4: Bypass capacitor 0.1-μF tantalum, depends on layout and power supply.

Figure 43. Typical Circuit Connection Diagram at DSD

APPLICATION INFORMATION

board design and layout considerations

V_{CC}, V_{DD} pins

The digital and analog power supply lines to the PCM1804 should be bypassed to the corresponding ground pins with 0.1- μ F ceramic and 10- μ F tantalum capacitors placed as close to the pins as possible to maximize the dynamic performance of the ADC. Although the PCM1804 has two power lines to maximize the potential of dynamic performance, using one common power supply is recommended to avoid unexpected power supply trouble like latch-up or power-supply sequence.

V_{IN} pins

Use 100-pF ceramic capacitors between V_{IN}L+, V_{IN}L-, V_{IN}R+, V_{IN}R-, and AGND, and 0.022- μ F ceramic capacitors between V_{IN}L+ and V_{IN}L-, V_{IN}R+, and V_{IN}R- to remove higher-frequency noise at the delta-sigma input section.

V_{REFX}, V_{COMX} inputs

Use 0.1- μ F ceramic and 10- μ F tantalum capacitors between V_{REF}L, V_{REF}R, and corresponding AGNDx, to insure low-source impedance at ADC references. Use 0.1- μ F tantalum capacitors between V_{COM}L, V_{COM}R and corresponding AGNDx to insure low-source impedance of common voltage. These capacitors should be located as close as possible to the V_{REF}L, V_{REF}R, V_{COM}L, and V_{COM}R pins to reduce dynamic errors on references and common voltage. The dc voltage level of these pins is 2.5 V.

DATA/DSDR, BCK/DSDL, and LRCK/DSDBCK pins

The DATA/DSDR, BCK/DSDL, and LRCK/DSDBCK pins in master mode have large load drive capability. Locating the buffer near the PCM1804 and minimizing the load capacitance, minimizes the digital analog crosstalk and maximizes the dynamic performance of the ADC.

system clock

The quality of the system clock may influence dynamic performance, as the PCM1804 operates based on system clock. In that case, it may be required to consider the system clock duty, jitter, and the time difference between system clock transition and BCK/DSDL or LRCK/DSDBCK transition in slave mode.

reset control

If capacitors larger than 10 μ F are used on V_{REF}L and V_{REF}R, the external reset control with a delay time corresponding to the V_{REF}L and V_{REF}R response is required. Also, it works as a power-down control.

application circuit for single-end input

An application circuit for a single-end input circuit is shown in Figure 44. The maximum signal input voltage and differential gain of this circuit is designed as Vinmax = 8.28 Vpp, A = 0.3. Differential gain (Ad) is given by R3/R1(R4/R2) as normal inverted gain amp. Resistor R5 (R6) in the feedback loop gives low-impedance drive operation and noise filtering for analog input of the PCM1804. The circuit technique R5 (R6) is recommended.

SLES022A - DECEMBER 2001

APPLICATION INFORMATION

NOTE: 3300 pF is recommended if the input signal level is more than -6 dB of FS at 100 kHz is applied in DSD mode.

Figure 44. Application Circuit for Single-Ended Input Circuit (PCM)

Figure 45. Equivalent Circuit of Internal Reference (V_{COM}, V_{REF})

MECHANICAL DATA

NOTES: A. All linear dimensions are in millimeters.

B. This drawing is subject to change without notice.

C. Body dimensions do not include mold flash or protrusion not to exceed 0,15 mm.

D. Falls within JEDEC MO-150

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third–party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Mailing Address:

Texas Instruments Post Office Box 655303 Dallas, Texas 75265

Copyright © 2001, Texas Instruments Incorporated