Not Recommended for New Designs This product was manufactured for Maxim by an outside wafer foundry using a process that is no longer available. It is not recommended for new designs. The data sheet remains available for existing users. A Maxim replacement or an industry second-source may be available. Please see the QuickView data sheet for this part or contact technical support for assistance. For further information, contact Maxim's Applications Tech Support. # ### Precision Low Voltage Micropower Operational Amplifier #### **General Description** The OP90 is a precision bipolar micropower operational amplifier with flexible power supply capability. Both the input voltage range and output voltage swing of the OP90 include the negative rail, allowing "ground-sensing" operation when the part is driven from a single positive voltage supply. The OP90 will accept a single power supply voltage of any value in the range $\pm 1.6 V$ to $\pm 36 V$. Alternatively, the amplifier can be operated from dual power supplies in the range of $\pm 0.8 V$ to $\pm 18 V$. Unlike most other micropower operational amplifiers, the OP90 requires no external current setting resistor, and consumes less than $20\mu\text{A}$ of quiescent current, allowing operation from a lithium battery of greater than 10,000 hours. Even with this minimal current consumption, the amplifier can sink or source 5mA of current into the load. Every OP90 (A/E grade) is internally trimmed to guarantee an input offset voltage of less than 150 μ V. This eliminates the need for external nulling in most applications, although null pins are provided if required. The guaranteed minimum open loop gain of 700,000 together with power supply rejection ratio of 5.6 μ V/V and common-mode rejection ratio of 100dB allow the OP90 to be used in applications requiring low power operation together with precision performance. #### **Applications** Precision Micropower Amplifiers Micropower Signal Processing Battery Powered Analog Circuits ### **Typical Operating Circuit** #### Features - ♦ Single/Dual Supply Operation: +1.6V to +36V, ±0.8V to ±18V - ♦ True Single-Supply Operation: Input and Output Voltage Ranges Include Ground - Low Supply Current: 20μA Max - ♦ High Output Drive: 5mA Min - ♦ Low Input Offset Voltage: 150µV Max - ♦ High Open Loop Gain: 700V/mV Min - High PSRR: 5.6μV/V Max - ♦ Standard 741 Pin Out With Nulling to V⁻ ### **Ordering Information** | PART | TEMP. RANGE | PACKAGE | |----------|-----------------|--------------------| | OP90AZ | -55°C to +125°C | 8 Lead CERDIP | | OP90EZ | -25°C to +85°C | 8 Lead CERDIP | | OP90FZ | -25°C to +85°C | 8 Lead CERDIP | | OP90GP | 0°C to +70°C | 8 Lead Plastic DIP | | OP90GS | 0°C to +70°C | 8 Lead SO | | OP90GC/D | 0°C to +70°C | Dice | #### Pin Configuration /VI/IXI/VI **Maxim Integrated Products 3-69** For pricing, delivery, and ordering information, please contact Maxim/Dallas Direct! at 1-888-629-4642, or visit Maxim's website at www.maxim-ic.com. # 0640 ### Precision Low Voltage Micropower Operational Amplifier ### **ABSOLUTE MAXIMUM RATINGS (Note 1)** | Supply Voltage (V ⁺ to V ⁻) ±18V | Storage Temperature Range65°C to +150°C | |---|--| | Internal Power Dissipation 500mW | Operating Temperature Range | | Hermetic DIP (Z) — derate at 7.1mW/°C above +80°C | OP90A55°C to +125°C | | Plastic DIP (P) — derate at 5.6mW/°C above +36°C | OP90E, OP90F25°C to +85°C | | Small Outline (S) — derate at 5mW/°C above +55°C | OP90G 0°C to +70°C | | Differential Input Voltage [(V-)-20V] to [(V+)+20V] | Junction Temperature (T _J)65°C to +160°C | | Common Mode Input Voltage [(V-)-20V] to [(V+)+20V] | Lead Temperature (Soldering, 10 sec) +300°C | | Output Short Circuit Duration Indefinite | | Note 1: Absolute maximum ratings apply to both packaged parts and Dice, unless otherwise noted. Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions above those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. ### **ELECTRICAL CHARACTERISTICS** (V_S = ± 1.5 V to ± 15 V, T_A = +25°C, unless otherwise noted.) | PARAMETER | SYMBOL | CONDITIONS | OP90A/E | | | OP90F | | | OP90G | | | UNITS | |---------------------------------|-----------------|---|------------------|--------------------|----------|------------------|--------------------|----------|--------------------------------|-------------------|----------|--------| | PANAME I EN | SIMBOL | CONDITIONS | MIN | TYP | MAX | MIN | TYP | MAX | MIN | TYP | MAX | | | Input Offset
Voltage | Vos | | | 50 | 150 | | 75 | 250 | | 125 | 450 | μ۷ | | Input Offset
Current | los | V _{CM} = 0V | | 0.4 | 5 | | 0.4 | 7 | | 0.4 | 8 | nA | | Input Bias
Current | lΒ | V _{CM} = 0V | | 4.0 | 15 | | 4.0 | 20 | | 4.0 | 25 | nA | | Large Signal | Avo | $\begin{aligned} &V_S = \pm 15 \text{V, } V_O = \pm 10 \text{V} \\ &R_L = 100 \text{k} \Omega \\ &R_L = 10 \text{k} \Omega \\ &R_L = 2 \text{k} \Omega \end{aligned}$ | 700
350
75 | 1200
600
250 | | 500
250
75 | 1000
500
200 | | 400
200
75 | 800
400
200 | | V/mV | | Voltage Gain | 7.40 | $V^{+} = 5V, V^{-} = 0V,$ $1V < V_{O} < 4V$ $R_{L} = 100k\Omega$ $R_{L} = 10k\Omega$ | 200
100 | 400
180 | | 125
75 | 300
140 | | 100
70 | 250
140 | | V/IIIV | | Input Voltage
Range | IVR | V ⁺ = 5V, V ⁻ = 0V
V _S = ±15V (Note 2) | 0/4
-15/13.5 | | | 0/4
-15/13.5 | | | 0/4
-15/13.5 | | | v | | | Vo | $V_S = \pm 15V$ $R_L = 10k\Omega$ $R_L = 2k\Omega$ | ±14
±10 | ±14.2
±12 | | ±14
±10 | ±14.2
±12 | | ± 14
±10 | ±14.2
±12 | | V | | Output Voltage
Swing | V _{OH} | $V^+ = 5V$, $V^- = 0V$
$R_L = 2k\Omega$ | 4.0 | 4.2 | | 4.0 | 4.2 | | 4.0 | 4.2 | | V | | | V _{OL} | $V^+ = 5V$, $V^- = 0V$
$R_L = 10k\Omega$ | | 100 | 500 | | 100 | 500 | | 100 | 500 | μ۷ | | Common Mode
Rejection Ratio | CMRR | $V^{+} = 5V, V^{-} = 0V,$
$0V < V_{CM} < 4V$
$V_{S} = \pm 15V,$
$-15V < V_{CM} < 13.5V$ | 90
100 | 110
130 | | 80
90 | 100
120 | | 80
90 | 100
120 | | dB | | Power Supply
Rejection Ratio | PSRR | | - | 1.0 | 5.6 | | 1.0 | 5.6 | | 3.2 | 10 | μ\/\ | | Slew Rate | SR | V _S = ±15V | | 12 | | | 12 | | | 12 | | V/ms | | Supply Current | Isy | V _S = ±1.5V
V _S = ±15V | | 9
14 | 15
20 | | 9
14 | 15
20 | | 9
14 | 15
20 | μΑ | | Capacitive Load
Stability | | A _V = +1
No Oscillations
(Note 3) | | 650 | | | 650 | | | 650 | | pF | # Precision Low Voltage Micropower Operational Amplifier # **ELECTRICAL CHARACTERISTICS (continued)** $(V_S = \pm 1.5V \text{ to } \pm 15V, T_A = +25^{\circ}\text{C}, \text{ unless otherwise noted.})$ | PARAMETER SYMBOL | CVMPOI | CONDITIONS | OP90A/E | | | OP90F | | | OP90G | | | UNITS | |---------------------------------------|-------------------|---------------------------------------|---------|-----|-----|-------|-----|-----|-------|-----|-----|---------------------------| | | STRIBUL | CONDITIONS | MIN | TYP | MAX | MIN | TYP | MAX | MIN | TYP | MAX | | | Input Noise
Voltage | e _{np-p} | f_O = 0.1Hz to 10Hz
V_S = ±15V | | 3 | | | 3 | | | 3 | | <i>μ</i> V _{p-p} | | Input Resistance
Differential Mode | R _{IN} | V _S = ±15V | | 30 | | | 30 | | | 30 | | МΩ | | Input Resistance
Common Mode | | V _S = ±15V | | 20 | | | 20 | | | 20 | | GΩ | Note 2: Guaranteed by CMRR test. Note 3: Guaranteed by design. ### **ELECTRICAL CHARACTERISTICS** (V_S = ± 1.5 V to ± 15 V, -55° C \leq T_A $\leq 125^{\circ}$ C, unless otherwise noted.) | PARAMETER | SYMBOL | CONDITIONS | | OP90A | | | | | |---------------------------------------|-----------------|---|-------------------|-------------------|----------|---------------------|--|--| | PARAMETER | STIMBOL | CONDITIONS | MIN | TYP | MAX | UNITS | | | | Input Offset Voltage | Vos | | | 80 | 400 | μ٧ | | | | Average Input Offset
Voltage Drift | TCVos | | | 0.3 | 2.5 | μV/°C | | | | Input Offset Current | los | V _{CM} = 0V | | 1.5 | 10 | nA | | | | Input Bias Current | I _B | V _{CM} = 0V | | 4.0 | 30 | nA | | | | Large Signal | Avo | $\label{eq:vs} \begin{array}{l} V_S = \pm 15 V, V_O = \pm 10 V \\ R_L = 100 k \Omega \\ R_L = 10 k \Omega \\ R_L = 2 k \Omega \end{array}$ | 225
125
50 | 400
240
110 | | V/mV | | | | Voltage Gain | | $V^{+} = 5V, V^{-} = 0V,$ $1V < V_{O} < 4V$ $R_{L} = 100k\Omega$ $R_{L} = 10k\Omega$ | 100
50 | 200
110 | _ | V / V | | | | Input Voltage Range | IVR | V ⁺ = 5V, V ⁻ = 0V
V _S = ±15V (Note 4) | 0/3.5
-15/13.5 | _ | | v | | | | | Vo | $\begin{aligned} V_S &= \pm 15V \\ R_L &= 10k\Omega \\ R_L &= 2k\Omega \end{aligned}$ | ±13.5
±9,5 | ±13.7
±11.5 | _ | v | | | | Output Voltage Swing | Vон | $V^+ = 5V$, $V^- = 0V$
$R_L = 2k\Omega$ | 3.9 | 4.1 | - | v | | | | | V _{OL} | $V^{+} = 5V, V^{-} = 0V$
R _L = $10k\Omega$ | | 100 | 500 | μ٧ | | | | Common Mode
Rejection Ratio | CMRR | $V^+ = 5V$, $V^- = 0V$, $0V < V_{CM} < 3.5V$
$V_S = \pm 15V$, $-15V < V_{CM} < 13.5V$ | 85
95 | 105
115 | | dB | | | | Power Supply
Rejection Ratio | PSRR | | | 3.2 | 10 | μV/V | | | | Supply Current | I _{SY} | V _S = ±1.5V
V _S = ±15V | | 15
19 | 25
30 | μΑ | | | Note 4: Guaranteed by CMRR test. # Precision Low Voltage Micropower Operational Amplifier **ELECTRICAL CHARACTERISTICS** ($V_S = \pm 1.5 V$ to $\pm 15 V$, $-25 ^{\circ} C \le T_A \le 85 ^{\circ} C$ for OP90E/F, $0 ^{\circ} C \le T_A \le 70 ^{\circ} C$ for OP90G, unless otherwise noted.) | PARAMETER | SYMBOL | CONDITIONS | OP90E | | | | OP90F | | | OP90G | | UNITS | |--|-----------------|--|-------------------|-------------------|----------|-------------------|-------------------|----------|-------------------|-------------------|----------|--------| | PARAMETER | SIMBUL | CONDITIONS | MIN | TYP | MAX | MIN | TYP | MAX | MIN | TYP | MAX | ONI | | Input Offset
Voltage | Vos | | | 70 | 270 | | 110 | 550 | | 180 | 675 | μ٧ | | Average Input
Offset Voltage
Drift | TCVos | | | 0.3 | 2 | | 0.6 | 5 | | 1.2 | 5 | μV/°C | | Input Offset
Current | los | V _{CM} = 0V | | 8.0 | 10 | | 1.0 | 10 | | 1.3 | 10 | nA | | Input Bias
Current | I _B | V _{CM} = 0V | | 4.0 | 25 | | 4.0 | 30 | | 4.0 | 30 | nA | | Large Signal | Avo | $V_S = \pm 15V, V_O = \pm 10V$ $R_L = 100k\Omega$ $R_L = 10k\Omega$ $R_L = 2k\Omega$ | 500
250
55 | 800
400
200 | | 350
175
55 | 700
350
150 | | 300
150
55 | 600
250
125 | | V/mV | | Voltage Ğain | AVO | $V^{+} = 5V, V^{-} = 0V,$ $1V < V_{O} < 4V$ $R_{L} = 100k\Omega$ $R_{L} = 10k\Omega$ | 150
75 | 280
140 | | 100
50 | 220
110 | | 80
40 | 160
90 | | V/IIIV | | Input Voltage
Range | IVR | $V^{+} = 5V, V^{-} = 0V$
$V_{S} = \pm 15V \text{ (Note 5)}$ | 0/3.5
-15/13.5 | | | 0/3.5
-15/13.5 | | | 0/3.5
-15/13.5 | | | ٧ | | | v _o | $V_S = \pm 15V$ $R_L = 10k\Omega$ $R_L = 2k\Omega$ | ±13.5
±9.5 | ±14
±11.8 | | ±13.5
±9.5 | ±14
±11.8 | | ±13.5
±9.5 | ±14
±11.8 | | V | | Output Voltage Swing | V _{OH} | $V^+ = 5V, V^- = 0V$
$R_L = 2k\Omega$ | 3.9 | 4.1 | | 3.9 | 4.1 | | 3.9 | 4.1 | | V | | | V _{OL} | $V^+ = 5V$, $V^- = 0V$
$R_L = 10k\Omega$ | | 100 | 500 | | 100 | 500 | | 100 | 500 | μ۷ | | Common Mode
Rejection Ratio | CMRR | $V^{+} = 5V, V^{-} = 0V,$
$0V < V_{CM} < 3.5V$
$V_{S} = \pm 15V,$
$-15V < V_{CM} < 13.5V$ | 90
100 | 110
120 | | 80
90 | 100
110 | | 80
90 | 100
110 | | dB | | Power Supply
Rejection Ratio | PSRR | -124 ACW 19:24 | | 1.0 | 5.6 | | 3.2 | 10 | | 5.6 | 17.8 | μ\/\ | | Supply Current | I _{SY} | V _S = ±1.5V
V _S = ±15V | | 13
17 | 25
30 | | 13
17 | 25
30 | | 12
16 | 25
30 | μΑ | Note 5: Guaranteed by CMRR test. | _ /V / X /V | |-------------| |-------------| # Precision Low Voltage Micropower Operational Amplifier **WAFER TEST LIMITS** ($V_S = \pm 1.5V$ to $\pm 15V$, $T_A = 25^{\circ}C$, unless otherwise noted.) | PARAMETER | SYMBOL CONDITIONS | | | UNITS | | | |---------------------------------|-------------------|---|-----------------|-------|-----|----------| | TANAME I EN | O' MIDOL | CONDITIONS | MIN | TYP | MAX | 7 014113 | | Input Offset Voltage | Vos | | | | 250 | μV | | Input Offset Current | Ios | V _{CM} = 0V | | | 10 | nA | | Input Bias Current | I _B | V _{CM} = 0V | | | 30 | nA | | Large Signal | _ | $V_S = \pm 15V$, $V_O = \pm 10V$
$R_L = 100k\Omega$
$R_L = 10k\Omega$ | 500
250 | | | | | Voltage Ğain | Avo | $V^{+} = 5V, V^{-} = 0V,$
$1V < V_{0} < 4V$
$R_{L} = 100k\Omega$ | 125 | | | V/mV | | Input Voltage Range | IVR | V ⁺ = 5V, V ⁻ = 0V
V _S = ±15V (Note 6) | 0/4
-15/13.5 | | | V | | | Vo | $\begin{aligned} &V_S = \pm 15V \\ &R_L = 10k\Omega \\ &R_L = 2k\Omega \end{aligned}$ | ±14
±10 | | | v | | Output Voltage Swing | V _{OH} | $V^+ = 5V$, $V^- = 0V$
$R_L = 2k\Omega$ | 4.0 | | | v | | | V _{OL} | $V^+ = 5V$, $V^- = 0V$
$R_L = 10k\Omega$ | | | 500 | μ٧ | | Common Mode
Rejection Ratio | CMRR | $V^+ = 5V$, $V^- = 0V$, $0V < V_{CM} < 4V$
$V_S = \pm 15V$, $-15V < V_{CM} < 13.5V$ | 80
90 | | | dB | | Power Supply
Rejection Ratio | PSRR | | | | 10 | μV/V | | Supply Current | I _{SY} | V _S = ±15V | | | 20 | μΑ | Note 6: Guaranteed by CMRR test. Electrical tests are performed at wafer probe to the limits shown. Due to variations in assembly methods and normal yield loss, yield after packaging is guaranteed for standard product dice. Consult factory to negotiate specifications based on dice lot qualification through sample lot assembly and testing. # Precision Low Voltage Micropower Operational Amplifier ### **Typical Operating Characteristics** ### Precision Low Voltage Micropower Operational Amplifier Typical Operating Characteristics (continued) ## Precision Low Voltage Micropower Operational Amplifier Figure 1. Offset Nulling Circuit Figure 2. Burn-In Circuit ### __Chip Topography Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.