Power MOSFET # -60 V, -12 A, Single P-Channel, TO-220 #### **Features** - Low R_{DS(on)} - Rugged Performance - Fast Switching - These are Pb-Free Devices* #### **Applications** - Industrial - Automotive - Power Supplies #### MAXIMUM RATINGS (T_J = 25°C unless otherwise noted) | Parameter | | | Symbol | Value | Unit | |---|------------------|-----------------------|--------------------------------------|---------------|------| | Drain-to-Source Voltage | | | V_{DSS} | -60 | V | | Gate-to-Source Voltage | | | V_{GS} | ±20 | V | | Continuous Drain | Steady | T _C = 25°C | I _D | -12 | Α | | Current (Note 1) | State | T _C = 85°C | | -9.0 | | | Power Dissipation (Note 1) | | T _C = 25°C | P _D | 62.5 | W | | Continuous Drain | Steady | T _A = 25°C | I _D | -2.4 | Α | | Current (Note 1) | State | T _A = 85°C | | -1.8 | | | Power Dissipation (Note 1) | | T _A = 25°C | P _D | 2.4 | W | | Pulsed Drain Current | t _p = | = 10 μs | I _{DM} | -42 | Α | | Operating Junction and Storage Temperature | | | T _J ,
T _{STG} | –55 to
175 | °C | | Source Current (Body Diode) | | | I _S | -12 | Α | | Single Pulse Drain–to–Source Avalanche Energy (V_{DD} = -30 V, V_{G} = -10 V, I_{PK} = -12 A, L = 3.0 mH, R_{G} = 3.0 Ω) | | | EAS | 216 | mJ | | Lead Temperature for Soldering Purposes (1/8" from case for 10 s) | | | TL | 260 | °C | ### THERMAL RESISTANCE RATINGS | Parameter | Symbol | Max | Unit | |---|-----------------|------|------| | Junction-to-Case | $R_{\theta JC}$ | 2.4 | °C/W | | Junction-to-Ambient - Steady State (Note 1) | $R_{\theta JA}$ | 62.5 | | Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected. 1. When surface mounted to an FR4 board using 1 in pad size (Cu. area = 1.127 in sq [1 oz] including traces). *For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D. ### ON Semiconductor® #### www.onsemi.com | V _{(BR)DSS} | R _{DS(on)} Typ | I _D MAX | | | |----------------------|-------------------------|--------------------|--|--| | -60 V | 156 mΩ @ –10 V | –12 A | | | #### P-Channel #### **MARKING DIAGRAM & PIN ASSIGNMENT** TO-220 CASE 221A STYLE 5 = Assembly Location = Year WW = Work Week = Pb-Free Package #### **ORDERING INFORMATION** | Device | Package | Shipping | | | |----------|---------------------|-----------------|--|--| | NTP2955G | TO-220
(Pb-Free) | 50 Units / Rail | | | ## **ELECTRICAL CHARACTERISTICS** (T_J=25°C unless otherwise stated) | Parameter | Symbol | Test Condition | | Min | Тур | Max | Unit | |--|--------------------------------------|---|--|------|-------|------|-------| | OFF CHARACTERISTICS | | | <u>.</u> | | • | | L | | Drain-to-Source Breakdown Voltage | V _{(BR)DSS} | $V_{GS} = 0 \text{ V}, I_D = -250 \mu\text{A}$ | | -60 | | | V | | Drain-to-Source Breakdown Voltage
Temperature Coefficient | V _{(BR)DSS} /T _J | | | | 67 | | mV/°C | | Zero Gate Voltage Drain Current | I _{DSS} | $V_{GS} = 0 \text{ V},$
$V_{DS} = -48 \text{ V}$ | T _J = 25°C | | | -1.0 | μΑ | | | | | T _J = 125°C | | | -10 | | | Gate-to-Source Leakage Current | I _{GSS} | $V_{DS} = 0 \text{ V}, V_{GS} = \pm 20 \text{ V}$ | | | | ±100 | nA | | ON CHARACTERISTICS (Note 2) | | | | | | | | | Gate Threshold Voltage | V _{GS(TH)} | $V_{GS} = V_{DS}, I_{D}$ | = -250 μA | -2.0 | | -4.0 | V | | Negative Threshold Temperature
Coefficient | V _{GS(TH)} /T _J | | | | 56 | | mV/°C | | Drain-to-Source On Resistance | R _{DS(on)} | $V_{GS} = -10 \text{ V},$ | I _D = -12 A | | 156 | 196 | mΩ | | Forward Transconductance | 9FS | $V_{DS} = -60 \text{ V},$ | I _D = -12 A | | 6.0 | | S | | CHARGES AND CAPACITANCES | | | | | 1 | | II. | | Input Capacitance | C _{ISS} | | | | 507 | 700 | pF | | Output Capacitance | C _{OSS} | | $V_{GS} = 0 \text{ V, f} = 1.0 \text{ MHz,}$
$V_{DS} = -25 \text{ V}$ | | 150 | 250 | 7 | | Reverse Transfer Capacitance | C _{RSS} | • 55 – | | | 48 | 98 | 1 | | Total Gate Charge | Q _{G(TOT)} | | | | 14 | | nC | | Threshold Gate Charge | Q _{G(TH)} | $V_{GS} = -10 \text{ V}, V_{DS} = -48 \text{ V},$ $I_{D} = -12 \text{ A}$ | | | 1.6 | 2.5 | | | Gate-to-Source Charge | Q _{GS} | | | | 3.4 | | | | Gate-to-Drain Charge | Q_{GD} | | | | 6.2 | | 7 | | SWITCHING CHARACTERISTICS (No | ote 3) | | <u>.</u> | | | | • | | Turn-On Delay Time | t _{d(on)} | | | | 10 | 20 | ns | | Rise Time | t _r | V _{GS} = -10 V, V | _{DD} = -30 V, | | 41 | 80 | | | Turn-Off Delay Time | t _{d(off)} | $I_D = -12 \text{ A}, R_G = 9.1 \Omega$ | | | 27 | 47 | | | Fall Time | t _f | | | | 45 | 85 | | | DRAIN-SOURCE DIODE CHARACTE | RISTICS | | <u>.</u> | | | | • | | Forward Diode Voltage | V_{SD} | V _{GS} = 0 V, | T _J = 25°C | | -1.6 | -2.0 | V | | | | $I_{S} = -12 \text{ A}$ | T _J = 125°C | | -1.36 | | | | Reverse Recovery Time | t _{RR} | $V_{GS} = 0 \text{ V, } dI_{S}/dt = 100 \text{ A/}\mu\text{s,}$ $I_{S} = -12 \text{ A}$ | | | 53 | | | | Charge Time | ta | | | | 42 | | ns | | Discharge Time | t _b | | | | 12 | | | | Reverse Recovery Charge | Q_{RR} | | | | 126 | | nC | Pulse Test: pulse width ≤ 300 μs, duty cycle ≤ 2%. Switching characteristics are independent of operating junction temperatures. Figure 1. On-Region Characteristics **Figure 2. Transfer Characteristics** Figure 3. On-Resistance versus Drain Current and Temperature Figure 4. On-Resistance versus Drain Current and Gate Voltage Figure 5. On–Resistance Variation with Temperature Figure 6. Drain-to-Source Leakage versus Voltage GATE-TO-SOURCE OR DRAIN-TO-SOURCE VOLTAGE (V) Figure 7. Capacitance Variation Figure 8. Gate-to-Source and Drain-to-Source Voltage versus Total Charge Figure 9. Resistive Switching Time Variation versus Gate Resistance Figure 10. Diode Forward Voltage versus Current Figure 11. Maximum Rated Forward Biased Safe Operating Area Figure 12. Maximum Avalanche Energy versus Starting Junction Temperature #### PACKAGE DIMENSIONS TO-220 CASE 221A-09 **ISSUE AH** #### NOTES - DIMENSIONING AND TOLERANCING PER ANSI - Y14.5M, 1982. CONTROLLING DIMENSION: INCH. - DIMENSION Z DEFINES A ZONE WHERE ALL BODY AND LEAD IRREGULARITIES ARE ALLOWED. | | INCHES | | MILLIM | MILLIMETERS | | | |-----|--------|-------|--------|-------------|--|--| | DIM | MIN | MAX | MIN | MAX | | | | Α | 0.570 | 0.620 | 14.48 | 15.75 | | | | В | 0.380 | 0.415 | 9.66 | 10.53 | | | | С | 0.160 | 0.190 | 4.07 | 4.83 | | | | D | 0.025 | 0.038 | 0.64 | 0.96 | | | | F | 0.142 | 0.161 | 3.61 | 4.09 | | | | G | 0.095 | 0.105 | 2.42 | 2.66 | | | | Н | 0.110 | 0.161 | 2.80 | 4.10 | | | | J | 0.014 | 0.024 | 0.36 | 0.61 | | | | K | 0.500 | 0.562 | 12.70 | 14.27 | | | | L | 0.045 | 0.060 | 1.15 | 1.52 | | | | N | 0.190 | 0.210 | 4.83 | 5.33 | | | | Q | 0.100 | 0.120 | 2.54 | 3.04 | | | | R | 0.080 | 0.110 | 2.04 | 2.79 | | | | S | 0.045 | 0.055 | 1.15 | 1.39 | | | | T | 0.235 | 0.255 | 5.97 | 6.47 | | | | U | 0.000 | 0.050 | 0.00 | 1.27 | | | | ٧ | 0.045 | | 1.15 | | | | | Z | | 0.080 | | 2.04 | | | STYLE 5: PIN 1. GATE DRAIN 3. SOURCE DRAIN ON Semiconductor and the 👊 are registered trademarks of Semiconductor Components Industries, LLC (SCILLC) or its subsidiaries in the United States and/or other countries. SCILLC owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of SCILLC's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner. #### **PUBLICATION ORDERING INFORMATION** #### LITERATURE FULFILLMENT: Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800-282-9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910 Japan Customer Focus Center Phone: 81-3-5817-1050 ON Semiconductor Website: www.onsemi.com Order Literature: http://www.onsemi.com/orderlit For additional information, please contact your local Sales Representative