Power MOSFET -10 Amps, -20 Volts #### P-Channel SOT-223 #### **Features** - Low R_{DS(on)} - Logic Level Gate Drive - Diode Exhibits High Speed, Soft Recovery - Avalanche Energy Specified - Pb-Free Package is Available #### **Typical Applications** • Power Management in Portables and Battery-Powered Products, i.e.: Cellular and Cordless Telephones and PCMCIA Cards #### MAXIMUM RATINGS (T_J = 25°C unless otherwise noted) | Rating | Symbol | Value | Unit | |---|---|--------------------|------------| | Drain-to-Source Voltage | V _{DSS} | -20 | Vdc | | Gate-to-Source Voltage | V _{GS} | ±8.0 | Vdc | | | I _D
I _D | -10
-8.4
-35 | Adc
Apk | | Total Power Dissipation @ T _A = 25°C | P _D | 8.3 | W | | Operating and Storage Temperature Range | T _J , T _{stg} | -55 to
+150 | °C | | | E _{AS} | 150 | mJ | | Thermal Resistance - Junction to Lead (Note 1) - Junction to Ambient (Note 2) - Junction to Ambient (Note 3) | $egin{array}{c} R_{ heta JL} \ R_{ heta JA} \ R_{ heta JA} \end{array}$ | 15
71.4
160 | °C/W | | Maximum Lead Temperature for Soldering Purposes, 1/8" from case for 10 seconds | TL | 260 | °C | Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability. - 1. Steady State. - When surface mounted to an FR4 board using 1" pad size, (Cu. Area 1.127 sq in), Steady State. - 3. When surface mounted to an FR4 board using minimum recommended pad size, (Cu. Area 0.412 sq in), Steady State. #### ON Semiconductor® http://onsemi.com -10 AMPERES -20 VOLTS $R_{DS(on)} = 44 \text{ m}\Omega \text{ (Typ.)}$ P-Channel MOSFET ## MARKING DIAGRAM & PIN ASSIGNMENT SOT-223 CASE 318E STYLE 3 A = Assembly Location Y = Year W = Work Week 6P02 = Specific Device Code ■ Pb–Free Package (Note: Microdot may be in either location) #### ORDERING INFORMATION | Device | Package | Shipping [†] | |------------|----------------------|-----------------------| | NTF6P02T3 | SOT-223 | 4000/Tape & Reel | | NTF6P02T3G | SOT-223
(Pb-Free) | 4000/Tape & Reel | [†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D. | ELECTRICAL CHARACTERISTI | | | | | I | | |---|---|---------------------|-------------|-------------------------|----------------|--------| | Cha | Symbol | Min | Тур | Max | Unit | | | OFF CHARACTERISTICS | | | | | | | | $\begin{aligned} & \text{Drain-to-Source Breakdown Voltage} \\ & (\text{V}_{GS} = 0 \text{ Vdc, I}_D = -250 \mu\text{Adc}) \\ & \text{Temperature Coefficient (Positive)} \end{aligned}$ | V _{(BR)DSS} | -20
- | -25
-11 | -
- | Vdc
mV/°C | | | Zero Gate Voltage Drain Current (V _{DS} = -20 Vdc, V _{GS} = 0 Vdc) (V _{DS} = -20 Vdc, V _{GS} = 0 Vdc, T _J = 125°C) | | | _
_ | _
_ | -1.0
-10 | μAdc | | Gate-Body Leakage Current ($V_{GS} = \pm 8.0 \text{ Vdc}$, $V_{DS} = 0 \text{ Vdc}$) | | | - | - | ± 100 | nAdc | | ON CHARACTERISTICS (Note 4) | | | | | I. | I. | | Gate Threshold Voltage (Note 4) $(V_{DS} = V_{GS}, I_D = -250 \mu Adc)$ Threshold Temperature Coefficient (N | V _{GS(th)} | -0.4
- | -0.7
2.6 | -1.0
- | Vdc
mV/°C | | | Static Drain-to-Source On-Resistance (Note 4) | | | -
-
- | 44
57
57 | 50
70
- | mΩ | | Forward Transconductance (Note 4) $(V_{DS} = -10 \text{ Vdc}, I_D = -6.0 \text{ Adc})$ | 9fs | - | 12 | - | Mhos | | | DYNAMIC CHARACTERISTICS | | | | | | | | Input Capacitance | $(V_{DS} = -16 \text{ Vdc}, V_{GS} = 0 \text{ V},$ | C _{iss} | - | 900 | 1200 | pF | | Output Capacitance | f = 1.0 MHz) | C _{oss} | _ | 350 | 500 | | | Transfer Capacitance | | C _{rss} | _ | 90 | 150 | | | Input Capacitance | $(V_{DS} = -10 \text{ Vdc}, V_{GS} = 0 \text{ V},$ | C _{iss} | - | 940 | - | pF | | Output Capacitance | f = 1.0 MHz) | C _{oss} | - | 410 | - | | | Transfer Capacitance | | C _{rss} | _ | 110 | - | | | SWITCHING CHARACTERISTIC | S (Note 5) | | | | | | | Turn-On Delay Time | $(V_{DD} = -5.0 \text{ Vdc}, I_D = -1.0 \text{ Adc},$ | t _{d(on)} | - | 7.0 | 12 | ns | | Rise Time | $V_{GS} = -4.5 \text{ Vdc},$ $R_G = 6.0 \Omega)$ | t _r | - | 25 | 45 | | | Turn-Off Delay Time | ,
 | t _{d(off)} | - | 75 | 125 | | | Fall Time | | t _f | _ | 50 | 85 | | | Turn-On Delay Time | $(V_{DD} = -16 \text{ Vdc}, I_D = -6.0 \text{ Adc},$ | t _{d(on)} | - | 8.0 | - | ns | | Rise Time | $V_{GS} = -4.5 \text{ Vdc},$
$R_G = 2.5 \Omega)$ | t _r | - | 30 | - | -
- | | Turn-Off Delay Time | | t _{d(off)} | - | 60 | - | | | Fall Time | | t _f | _ | 60 | _ | | | Gate Charge | $(V_{DS} = -16 \text{ Vdc}, I_D = -6.0 \text{ Adc}, V_{GS} = -4.5 \text{ Vdc}) \text{ (Note 4)}$ | Q _T | - | 15 | 20 | nC | | | VGS = -4.5 Vdc) (Note 4) | Q _{gs} | - | 1.7 | _ | | | | | Q_{gd} | - | 6.0 | _ | | | SOURCE-DRAIN DIODE CHARA | ACTERISTICS | | | | | | | Forward On-Voltage | $ \begin{array}{c} (I_S = -3.0 \; \text{Adc, V}_{GS} = 0 \; \text{Vdc}) \; (\text{Note 4}) \\ (I_S = -2.1 \; \text{Adc, V}_{GS} = 0 \; \text{Vdc}) \\ (I_S = -3.0 \; \text{Adc, V}_{GS} = 0 \; \text{Vdc, T}_J = 125^{\circ}\text{C}) \end{array} $ | V _{SD} | -
-
- | -0.82
-0.74
-0.68 | -1.2
-
- | Vdc | | Reverse Recovery Time | $(I_S = -3.0 \text{ Adc}, V_{GS} = 0 \text{ Vdc},$
$dI_S/dt = 100 \text{ A/μs}) \text{ (Note 4)}$ | t _{rr} | - | 42 | _ | ns | | | | t _a | - | 17 | - | 1 | | | | t _b | - | 25 | - | | | Reverse Recovery Stored Charge | Q _{RR} | - | 0.036 | - | μC | | - Pulse Test: Pulse Width ≤ 300 μs, Duty Cycle ≤ 2.0%. Switching characteristics are independent of operating junction temperatures. #### TYPICAL ELECTRICAL CHARACTERISTICS versus Voltage **Temperature** #### TYPICAL ELECTRICAL CHARACTERISTICS Figure 7. Capacitance Variation Figure 8. Gate-to-Source and Drain-to-Source Voltage versus Total Charge Figure 9. Resistive Switching Time Variation versus Gate Resistance Figure 10. Diode Forward Voltage versus Current #### TYPICAL ELECTRICAL CHARACTERISTICS Figure 11. FET Thermal Response #### PACKAGE DIMENSIONS #### SOT-223 (TO-261) CASE 318E-04 ISSUE N #### NOTES: - DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994 - CONTROLLING DIMENSION: INCH. | | MILLIMETERS | | | INCHES | | | |-----|-------------|------|------|--------|-------|-------| | DIM | MIN | NOM | MAX | MIN | NOM | MAX | | Α | 1.50 | 1.63 | 1.75 | 0.060 | 0.064 | 0.068 | | A1 | 0.02 | 0.06 | 0.10 | 0.001 | 0.002 | 0.004 | | b | 0.60 | 0.75 | 0.89 | 0.024 | 0.030 | 0.035 | | b1 | 2.90 | 3.06 | 3.20 | 0.115 | 0.121 | 0.126 | | c | 0.24 | 0.29 | 0.35 | 0.009 | 0.012 | 0.014 | | D | 6.30 | 6.50 | 6.70 | 0.249 | 0.256 | 0.263 | | E | 3.30 | 3.50 | 3.70 | 0.130 | 0.138 | 0.145 | | е | 2.20 | 2.30 | 2.40 | 0.087 | 0.091 | 0.094 | | e1 | 0.85 | 0.94 | 1.05 | 0.033 | 0.037 | 0.041 | | L | 0.20 | | | 0.008 | | | | L1 | 1.50 | 1.75 | 2.00 | 0.060 | 0.069 | 0.078 | | HE | 6.70 | 7.00 | 7.30 | 0.264 | 0.276 | 0.287 | | θ | 0° | _ | 10° | 0° | _ | 10° | STYLE 3: PIN 1. GATE 2. DRAIN 3. SOURCE SOURCE 4. DRAIN #### **SOLDERING FOOTPRINT*** *For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D. ON Semiconductor and un are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice on semiconductor and ware registered traderlanks of semiconduction. Components industries, EC (SCILLC) solicit eservices the right to finate changes without further holice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specificalized so vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner. #### **PUBLICATION ORDERING INFORMATION** #### LITERATURE FULFILLMENT: Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800-282-9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910 Japan Customer Focus Center Phone: 81-3-5773-3850 ON Semiconductor Website: www.onsemi.com Order Literature: http://www.onsemi.com/orderlit For additional information, please contact your local Sales Representative