Power MOSFET # 40 V, Single N-Channel, 101 A DPAK #### **Features** - Low R_{DS(on)} to Minimize Conduction Losses - Low Capacitance to Minimize Driver Losses - Optimized Gate Charge to Minimize Switching Losses - MSL 1/260°C - 100% Avalanche Tested - NVD Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC-Q101 Qualified and PPAP Capable - These Devices are Pb-Free and are RoHS Compliant #### **Applications** - CPU Power Delivery - DC-DC Converters - Motor Driver #### **MAXIMUM RATINGS** (T_J = 25°C unless otherwise noted) | Parame | Symbol | Value | Unit | | | |---|--|-----------------------|-----------------|-------|----| | Drain-to-Source Voltage | V _{DSS} | 40 | V | | | | Gate-to-Source Voltage | Gate-to-Source Voltage | | | | V | | Continuous Drain Cur- | | T _C = 25°C | I _D | 101 | Α | | rent (R _{θJC}) (Note 1) | | $T_C = 85^{\circ}C$ | | 78 | | | Power Dissipation (R _{θJC}) (Note 1) | Steady | T _C = 25°C | P _D | 93.75 | W | | Continuous Drain Cur- | State | T _A = 25°C | I _D | 16.4 | Α | | rent (R _{θJA}) (Note 1) | | T _A = 85°C | | 12.7 | | | Power Dissipation (R ₀ JA) (Note 1) | | T _A = 25°C | P _D | 2.5 | W | | Pulsed Drain Current | $t_p = 10 \mu s$ $T_A = 25 ^{\circ} C$ | | I _{DM} | 300 | Α | | Current Limited by Packa | I _{DmaxPkg} | 45 | Α | | | | Operating Junction and S | T _J , T _{stg} | -55 to
175 | °C | | | | Source Current (Body Di | I _S | 50 | Α | | | | Drain to Source dV/dt | dV/dt | 6.0 | V/ns | | | | Single Pulse Drain-to-S
ergy (V_{DD} = 32 V, V_{GS} =
L = 0.3 mH, $I_{L(pk)}$ = 40 A | E _{AS} | 240 | mJ | | | | Lead Temperature for Soldering Purposes (1/8" from case for 10 s) | | | T _L | 260 | °C | Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected. #### ON Semiconductor® #### http://onsemi.com | V _{(BR)DSS} | R _{DS(on)} | I _D | |----------------------|---------------------------------------|----------------| | 40 V | 4.4 mΩ @ 10 V | 101 A | | | $7.8~\text{m}\Omega$ @ $5.0~\text{V}$ | 50 A | DPAK (Bent Lead) STYLE 2 # MARKING DIAGRAMS & PIN ASSIGNMENT A = Assembly Location* Y = Year WW = Work Week 5802N = Device Code G = Pb-Free Package * The Assembly Location code (A) is front side optional. In cases where the Assembly Location is stamped in the package, the front side assembly code may be blank. #### **ORDERING INFORMATION** See detailed ordering and shipping information in the package dimensions section on page 6 of this data sheet. #### THERMAL RESISTANCE MAXIMUM RATINGS | Parameter | Symbol | Value | Unit | |---|----------------|-------|------| | Junction-to-Case (Drain) | $R_{ heta JC}$ | 1.6 | °C/W | | Junction-to-Ambient - Steady State (Note 1) | $R_{ heta JA}$ | 60 | | | Junction-to-Ambient - Steady State (Note 2) | $R_{ hetaJA}$ | 105 | | - 1. Surface-mounted on FR4 board using 1 in sq pad size, 1 oz Cu. - 2. Surface-mounted on FR4 board using the minimum recommended pad size. ## **ELECTRICAL CHARACTERISTICS** (T₁ = 25°C unless otherwise noted) | Parameter | Symbol | Test Condition | | Min | Тур | Max | Unit | |--|--------------------------------------|--|------------------------|-----|------|------|-------| | OFF CHARACTERISTICS | • | | | | • | • | • | | Drain-to-Source Breakdown Voltage | V _{(BR)DSS} | $V_{GS} = 0 \text{ V}, I_D = 10 \mu\text{A}$ | | 40 | | | V | | Drain-to-Source Breakdown Voltage
Temperature Coefficient | V _{(BR)DSS} /T _J | | | | 40 | | mV/°C | | Zero Gate Voltage Drain Current | I _{DSS} | V _{GS} = 0 V,
V _{DS} = 40 V | | | | 1.0 | μΑ | | | | $V_{DS} = 40 \text{ V}$ | T _J = 150°C | | | 50 | 7 | | Gate-to-Source Leakage Current | I _{GSS} | $V_{DS} = 0 V, V_{G}$ | _S = ±20 V | | | ±100 | nA | | ON CHARACTERISTICS (Note 3) | | | | | | | | | Gate Threshold Voltage | V _{GS(TH)} | $V_{GS} = V_{DS}, I_{D}$ | = 250 μΑ | 1.5 | | 3.5 | ٧ | | Negative Threshold Temperature
Coefficient | V _{GS(TH)} /T _J | | | | -7.4 | | mV/°C | | Drain-to-Source On Resistance | R _{DS(on)} | V _{GS} = 10 V, I | _D = 50 A | | 3.6 | 4.4 | mΩ | | | | $V_{GS} = 5.0 \text{ V}, I_D = 50 \text{ A}$ | | | 6.5 | 7.8 | | | Forward Transconductance | gFS | V _{DS} = 15 V, I _D = 15 A | | | 16.8 | | S | | CHARGES AND CAPACITANCES | | | | | | | | | Input Capacitance | C _{iss} | $V_{GS} = 0 \text{ V, f} = 1.0 \text{ MHz,}$
$V_{DS} = 12 \text{ V}$ | | | 5300 | | pF | | Output Capacitance | C _{oss} | | | | 850 | | | | Reverse Transfer Capacitance | C _{rss} | | | | 550 | | | | Input Capacitance | C _{iss} | $V_{GS} = 0 \text{ V, f} = 1.0 \text{ MHz,}$
$V_{DS} = 25 \text{ V}$ | | | 5025 | | pF | | Output Capacitance | C _{oss} | $V_{DS} = 2$ | 5 V | | 580 | | 7 | | Reverse Transfer Capacitance | C _{rss} | | | | 400 | | 1 | | Total Gate Charge | Q _{G(TOT)} | | | | 75 | 100 | nC | | Threshold Gate Charge | Q _{G(TH)} | V _{GS} = 10 V. V ₁ | ne = 15 V. | | 6.0 | | 1 | | Gate-to-Source Charge | Q _{GS} | $V_{GS} = 10 \text{ V}, V_{I}$ $I_{D} = 50$ | Ä | | 18 | | | | Gate-to-Drain Charge | Q_{GD} | | | | 15 | | 1 | | SWITCHING CHARACTERISTICS (Note | e 4) | | | | • | • | | | Turn-On Delay Time | t _{d(on)} | $V_{GS} = 10 \text{ V}, V_{DS} = 20 \text{ V},$ $I_D = 50 \text{ A}, R_G = 2.0 \Omega$ | | | 14 | | ns | | Rise Time | t _r | | | | 52 | | 1 | | Turn-Off Delay Time | t _{d(off)} | | | | 39 | | 1 | | Fall Time | t _f | | | | 8.5 | | 1 | Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions. 3. Pulse Test: Pulse Width ≤ 300 μs, Duty Cycle ≤ 2%. 4. Switching characteristics are independent of operating junction temperatures. ## **ELECTRICAL CHARACTERISTICS** ($T_J = 25^{\circ}C$ unless otherwise noted) (continued) | | | , | ` , | | | | | |------------------------------------|-----------------|--|-----------------------|-----|-----|-----|------| | Parameter | Symbol | Test Condition | | Min | Тур | Max | Unit | | DRAIN-SOURCE DIODE CHARACTERISTICS | | | | | | | | | Forward Diode Voltage | V _{SD} | $V_{GS} = 0 \text{ V},$ $I_{S} = 50 \text{ A}$ | T _J = 25°C | | 0.9 | 1.2 | V | | | | V _{GS} = 0 V,
I _S = 20 A | T _J = 25°C | | 0.8 | 1.0 | | | Reverse Recovery Time | t _{RR} | $V_{GS} = 0 \text{ V, dls/dt} = 100 \text{ A/}\mu\text{s,}$ $I_{S} = 50 \text{ A}$ | | | 25 | | ns | | Charge Time | ta | | | | 15 | | 1 | | Discharge Time | tb | | | | 10 | | 1 | | Reverse Recovery Charge | Q_{RR} | | | | 15 | | nC | Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions. 3. Pulse Test: Pulse Width ≤ 300 μs, Duty Cycle ≤ 2%. 4. Switching characteristics are independent of operating junction temperatures. #### TYPICAL PERFORMANCE CHARACTERISTICS Figure 1. On-Region Characteristics Figure 2. Transfer Characteristics Figure 3. On-Resistance vs. Drain Current Figure 4. On-Resistance vs. Drain Current and Gate Voltage Figure 5. On–Resistance Variation with Temperature Figure 6. Drain-to-Source Leakage Current vs. Voltage #### TYPICAL PERFORMANCE CHARACTERISTICS Figure 7. Capacitance Variation Drain-to-Source Voltage vs. Total Charge Figure 9. Resistive Switching Time Variation vs. Gate Resistance Figure 10. Diode Forward Voltage vs. Current Figure 11. Maximum Rated Forward Biased Safe Operating Area ## **TYPICAL PERFORMANCE CHARACTERISTICS** Figure 12. Thermal Response #### **ORDERING INFORMATION** | Order Number | Package | Shipping [†] | |--------------|-------------------|-----------------------| | NTD5802NT4G | DPAK
(Pb-Free) | 2500 / Tape & Reel | | NVD5802NT4G* | DPAK
(Pb-Free) | 2500 / Tape & Reel | [†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D. ^{*}NVD Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC-Q101 Qualified and PPAP Capable. #### PACKAGE DIMENSIONS ## **DPAK (SINGLE GAUGE)** CASE 369C ISSUE E #### NOTES: - 1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994 - 2. CONTROLLING DIMENSION: INCHES. 3. THERMAL PAD CONTOUR OPTIONAL WITHIN DI- - MENSIONS b3, L3 and Z. 4. DIMENSIONS D AND E DO NOT INCLUDE MOLD FLASH, PROTRUSIONS, OR BURRS. MOLD FLASH, PROTRUSIONS, OR GATE BURRS SHALL NOT EXCEED 0.006 INCHES PER SIDE. - 5 DIMENSIONS D AND E ARE DETERMINED AT THE OUTERMOST EXTREMES OF THE PLASTIC BODY. - 6. DATUMS A AND B ARE DETERMINED AT DATUM - 7. OPTIONAL MOLD FEATURE. | | INCHES | | MILLIN | IETERS | | |-----|--------|-------|----------|--------|--| | DIM | MIN | MAX | MIN | MAX | | | Α | 0.086 | 0.094 | 2.18 | 2.38 | | | A1 | 0.000 | 0.005 | 0.00 | 0.13 | | | b | 0.025 | 0.035 | 0.63 | 0.89 | | | b2 | 0.028 | 0.045 | 0.72 | 1.14 | | | b3 | 0.180 | 0.215 | 4.57 | 5.46 | | | С | 0.018 | 0.024 | 0.46 | 0.61 | | | c2 | 0.018 | 0.024 | 0.46 | 0.61 | | | D | 0.235 | 0.245 | 5.97 | 6.22 | | | E | 0.250 | 0.265 | 6.35 | 6.73 | | | е | 0.090 | BSC | 2.29 | BSC | | | Н | 0.370 | 0.410 | 9.40 | 10.41 | | | L | 0.055 | 0.070 | 1.40 | 1.78 | | | L1 | 0.114 | REF | 2.90 REF | | | | L2 | 0.020 | BSC | 0.51 BSC | | | | L3 | 0.035 | 0.050 | 0.89 | 1.27 | | | L4 | | 0.040 | | 1.01 | | | Z | 0.155 | | 3.93 | | | #### STYLE 2: - PIN 1. GATE 2. DRAIN 3. SOURC - SOURCE 4. DRAIN #### SOLDERING FOOTPRINT* SCALE 3:1 *For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D. ON Semiconductor and the 👊 are registered trademarks of Semiconductor Components Industries, LLC (SCILLC) or its subsidiaries in the United States and/or other countries. SCILLC owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of SCILLC's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner. #### **PUBLICATION ORDERING INFORMATION** #### LITERATURE FULFILLMENT: Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA **Phone**: 303–675–2175 or 800–344–3860 Toll Free USA/Canada **Fax**: 303–675–2176 or 800–344–3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800-282-9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910 Japan Customer Focus Center Phone: 81–3–5817–1050 ON Semiconductor Website: www.onsemi.com Order Literature: http://www.onsemi.com/orderlit For additional information, please contact your local Sales Representative