Video Amplifier

The NE592 is a monolithic, two-stage, differential output, wideband video amplifier. It offers fixed gains of 100 and 400 without external components and adjustable gains from 400 to 0 with one external resistor. The input stage has been designed so that with the addition of a few external reactive elements between the gain select terminals, the circuit can function as a high-pass, low-pass, or band-pass filter. This feature makes the circuit ideal for use as a video or pulse amplifier in communications, magnetic memories, display, video recorder systems, and floppy disk head amplifiers. Now available in an 8-pin version with fixed gain of 400 without external components and adjustable gain from 400 to 0 with one external resistor.

Features

- 120 MHz Unity Gain Bandwidth
- Adjustable Gains from 0 to 400
- Adjustable Pass Band
- No Frequency Compensation Required
- Wave Shaping with Minimal External Components
- MIL-STD Processing Available
- These Devices are Pb-Free and are RoHS Compliant

Applications

- Floppy Disk Head Amplifier
- Video Amplifier

www.onsemi.com

ORDERING INFORMATION

See detailed ordering and shipping information in the package dimensions section on page 8 of this data sheet.

PIN CONNECTIONS

MAXIMUM RATINGS ($T_A = +25^{\circ}C$, unless otherwise noted.)

Rating	Symbol	Value	Unit	
Supply Voltage	V _{CC}	±8.0	V	
Differential Input Voltage	ential Input Voltage		±5.0	V
Common-Mode Input Voltage	V _{CM}	±6.0	V	
Output Current	I _{OUT}	10	mA	
Operating Ambient Temperature Range		T _A	0 to +70	°C
Operating Junction Temperature		TJ	150	°C
Storage Temperature Range		T _{STG}	65 to +150	°C
Maximum Power Dissipation, $T_A = 25^{\circ}C$ (Still Air) (Note 1)	SOIC-14 Package SOIC-8 Package	P _{D MAX}	0.98 0.79	W
Thermal Resistance, Junction-to-Ambient	SOIC-14 Package SOIC-8 Package	$R_{ extsf{ heta}JA}$	145 182	°C/W

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

 Derate above 25°C at the following rates: SOIC-14 package at 6.9 mW/°C SOIC-8 package at 5.5 mW/°C

Characteristic	Test Conditions	A _{VOL}		Тур	Max	Unit
Differential Voltage Gain Gain 1 (Note 2) Gain 2 (Notes 3 and 4)	R_L = 2.0 kΩ, V _{OUT} = 3.0 V _{P-P}			400 100	600 120	V/V
Input Resistance Gain 1 (Note 2) Gain 2 (Notes 3 and 4)	$T_{A} = 25^{\circ}C$ $0^{\circ}C \le T_{A} \le 70^{\circ}C$	R _{IN}	- 10 8.0	4.0 30 -		kΩ
Input Capacitance	Gain 2 (Note 4)	C _{IN}	-	2.0	-	pF
Input Offset Current	$\begin{array}{l} T_{A}=25^{\circ}C\\ 0^{\circ}C\ \leq\ T_{A}\ \leq\ 70^{\circ}C \end{array}$	los		0.4 _	5.0 6.0	μΑ
Input Bias Current	$\begin{array}{c} T_{A} = 25^{\circ}C\\ 0^{\circ}C \ \leq \ T_{A} \ \leq \ 70^{\circ}C \end{array}$	I _{BIAS}	_ _	9.0 _	30 40	μΑ
Input Noise Voltage	BW 1.0 kHz to 10 MHz	V _{NOISE}	-	12	-	μV_{RMS}
Input Voltage Range	_	V _{IN}	±1.0	-	-	V
Common-Mode Rejection Ratio Gain 2 (Note 4)	$\begin{array}{l} V_{CM} \pm 1.0 \text{ V, } f < 100 \text{ kHz, } T_{A} = 25^{\circ}\text{C} \\ V_{CM} \pm 1.0 \text{ V, } f < 100 \text{ kHz,} \\ 0^{\circ}\text{C} \leq T_{A} \leq 70^{\circ}\text{C} \end{array}$	CMRR	60 50	86 -		dB
	$V_{CM} \pm 1.0 \text{ V}, \text{ f} < 5.0 \text{ MHz}$		-	60	-	
Supply Voltage Rejection Ratio $\Delta V_S = \pm 0.5 V$ Gain 2 (Note 4)		PSRR	50	70	-	dB
$ \begin{array}{c c} \mbox{Output Offset Voltage} & & & \\ \mbox{Gain 1} & & & R_L = \infty \\ \mbox{Gain 2 (Note 4)} & & & R_L = \infty \\ \mbox{Gain 3 (Note 5)} & & & R_L = \infty, T_A = 25^\circ C \\ \mbox{Gain 3 (Note 5)} & & & R_L = \infty, 0^\circ C \leq T_A \leq 70^\circ C \\ \end{array} $		V _{os}	_ _ _ _	- - 0.35 -	1.5 1.5 0.75 1.0	V
Output Common-Mode Voltage	$R_L = \infty, T_A = 25^{\circ}C$	V _{CM}	2.4	2.9	3.4	V
Output Voltage Swing Differential	$ \begin{array}{l} \mbox{ferential} & \mbox{R}_L = 2.0 \ \mbox{k}\Omega, \ \mbox{T}_A = 25^\circ\mbox{C} \\ \mbox{R}_L = 2.0 \ \mbox{k}\Omega, \ 0^\circ\mbox{C} \leq \ \mbox{T}_A \leq \ 70^\circ\mbox{C} \\ \end{array} $		3.0 2.8	4.0 -	-	V
Output Resistance	_	R _{OUT}	-	20	-	Ω
Power Supply Current	$ \begin{array}{l} R_{L} = \infty, T_{A} = 25^{\circ}C \\ R_{L} = \infty, 0^{\circ}C \leq T_{A} \leq 70^{\circ}C \end{array} $	Icc		18 -	24 27	mA

DC ELECTRICAL CHARACTERISTICS (V _{SS} = ± 6.0 V, V _{CM} = 0, typicals at T _A = +25°C, min and max at 0°C $\leq T_A \leq 70°C$, unless
otherwise noted. Recommended operating supply voltages $V_{S} = \pm 6.0$ V.)

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

AC ELECTRICAL CHARACTERISTICS (T_A = +25°C V_{SS} = \pm 6.0 V, V_{CM} = 0, unless otherwise noted. Recommended operating

supply voltages V_S = ± 6.0 V.)

Characteristic	Test Conditions	Symbol	Min	Тур	Max	Unit
Bandwidth Gain 1 (Note 2) Gain 2 (Notes 3 and 4)	-	BW		40 90		MHz
Rise Time Gain 1 (Note 2) Gain 2 (Notes 3 and 4)	V _{OUT} = 1.0 V _{P–P}	t _R		10.5 4.5	12 -	ns
Propagation Delay Gain 1 (Note 2) Gain 2 (Notes 3 and 4)	$V_{OUT} = 1.0 V_{P-P}$	t _{PD}		7.5 6.0	10 -	ns

Gain select Pins G_{1A} and G_{1B} connected together.
 Gain select Pins G_{2A} and G_{2B} connected together.
 Applies to 14-pin version only.
 All gain select pins open.

TYPICAL PERFORMANCE CHARACTERISTICS

TYPICAL PERFORMANCE CHARACTERISTICS

Figure 11. Gain vs. Frequency as a Function of Supply Voltage

Figure 12. Voltage Gain Adjust Circuit

Figure 13. Voltage Gain as a Function of RADJ (Figure 2)

Figure 14. Supply Current as a Function of Temperature

Figure 15. Differential Overdrive Recovery Time

Figure 16. Output Voltage and Current Swing as a Function of Supply Voltage

Figure 17. Output Voltage Swing as a Function of Load Resistance

Figure 18. Input Resistance as a Function of Temperature

Figure 19. Input Noise Voltage as a Function of Source Resistance

TYPICAL PERFORMANCE CHARACTERISTICS

Function of Frequency

TEST CIRCUITS ($T_A = 25^{\circ}C$, unless otherwise noted.)

Figure 24. Test Circuits

Disc/Tape Phase-Modulated Readback Systems

NOTES:

In the networks above, the R value used is assumed to include $2r_{e},$ or approximately 320. S = $j\Omega$ Ω = $2\pi f$

Figure 26. Filter Networks

ORDERING INFORMATION

Device	Temperature Range	Package	Shipping [†]	
NE592D8G		SOIC–8 (Pb–Free)	SOIC-8	98 Units/Rail
NE592D8R2G	0.to . 7000		2500 / Tape & Reel	
NE592D14G	0 to +70°C	SOIC-14	55 Units/Rail	
NE592D14R2G		(Pb-Free)	2500 / Tape & Reel	

+For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specification Brochure, BRD8011/D.

PACKAGE DIMENSIONS

SOIC-8 NB CASE 751-07 **ISSUE AK**

NOTES:

- NOTES:
 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
 2. CONTROLLING DIMENSION: MILLIMETER.
 3. DIMENSION A AND B DO NOT INCLUDE MOLD PROTRUSION.
 4. MAXIMUM MOLD PROTRUSION 0.15 (0.006) PER SIDE.
 5. DIMENSION DOES NOT INCLUDE DAMBAR PROTRUSION ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.127 (0.005) TOTAL IN EXCESS OF THE D DIMENSION AT MAXIMUM MATERIAL CONDITION.
 6. 751-01 THRU 751-06 ARE OBSOLETE. NEW STANDARD IS 751-07.

	MILLIMETERS		INCHES		
DIM	MIN	MAX	MIN	MAX	
Α	4.80	5.00	0.189	0.197	
в	3.80	4.00	0.150	0.157	
С	1.35	1.75	0.053	0.069	
D	0.33	0.51	0.013	0.020	
G	1.27 BSC		0.050 BSC		
Н	0.10	0.25	0.004	0.010	
L	0.19	0.25	0.007	0.010	
Κ	0.40	1.27	0.016	0.050	
Μ	0 °	8 °	0 °	8 °	
Ν	0.25	0.50	0.010	0.020	
s	5.80	6.20	0.228	0.244	

SOLDERING FOOTPRINT*

*For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

PACKAGE DIMENSIONS

*For additional information on our Pb–Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

ON Semiconductor and the 🛄 are registered trademarks of Semiconductor Components Industries, LLC (SCILLC) or its subsidiaries in the United States and/or other countries. SCILLC owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of SCILLC's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent–Marking.pdf. SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights or other. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products hards and to expert personal injury or death applications, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indir

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303–675–2175 or 800–344–3860 Toll Free USA/Canada Fax: 303–675–2176 or 800–344–3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800–282–9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2010

Phone: 421 33 790 2910 Japan Customer Focus Center Phone: 81–3–5817–1050 ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your loca Sales Representative