10 μV Offset, 0.07 μV/°C, Zero-Drift Operational Amplifier

The NCS333/2333/4333 family of zero-drift op amps feature offset voltage as low as 10 μ V over the 1.8 V to 5.5 V supply voltage range. The zero-drift architecture reduces the offset drift to as low as 0.07 μ V/°C and enables high precision measurements over both time and temperature. This family has low power consumption over a wide dynamic range and is available in space saving packages. These features make it well suited for signal conditioning circuits in portable, industrial, automotive, medical and consumer markets.

Features

- Gain-Bandwidth Product:
 - 270 kHz (NCx2333)
 - 350 kHz (NCx333, NCx333A, NCx4333)
- Low Supply Current: 17 μA (typ at 3.3 V)
- Low Offset Voltage:
 - 10 μV max for NCS333, NCS333A
 - + 30 μV max for NCV333A, NCx2333 and NCx4333
- Low Offset Drift: 0.07 $\mu V/^{\circ}C$ max for NCS333/A
- Wide Supply Range: 1.8 V to 5.5 V
- Wide Temperature Range: -40°C to +125°C
- Rail-to-Rail Input and Output
- Available in Single, Dual and Quad Packages
- NCV Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC-Q100 Qualified and PPAP Capable

Applications

- Automotive
- Battery Powered/ Portable Application
- Sensor Signal Conditioning
- Low Voltage Current Sensing
- Filter Circuits
- Bridge Circuits
- Medical Instrumentation

ON Semiconductor®

www.onsemi.com

DEVICE MARKING INFORMATION

See general marking information in the device marking section on page 2 of this data sheet.

ORDERING INFORMATION

See detailed ordering and shipping information on page 3 of this data sheet.

DEVICE MARKING INFORMATION

Single Channel Configuration NCS333, NCS333A, NCV333A

TSOP-5/SOT23-5 CASE 483

SC70-5 CASE 419A

Dual Channel Configuration NCS2333, NCV2333

UDFN8, 2x2, 0.5P CASE 517AW

Micro8/MSOP8 CASE 846A-02

Quad Channel Configuration NCS4333, NCV4333

	,
14	AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
L 1	<u> </u>
	SOIC-14 CASE 751A
x	= Specific Device Code E = NCS333 (SOT23-5) H = NCS333 (SC70-5) G = NCS333A (SOT23-5) K = NCS333A (SC70-5) M = NCV333A (SOT23-5) N = NCV333A (SC70-5)
Α	= Assembly Location
Υ	= Year
W	= Work Week
М	= Date Code
Gor	- Ph. Free Package

G or = Pb-Free Package

(Note: Microdot may be in either location)

SOIC-8 CASE 751

1

PIN CONNECTIONS

ORDERING INFORMATION

Configuration	Automotive	Device	Package	Shipping [†]
Single	No	NCS333SN2T1G	SOT23-5 / TSOP-5	3000 / Tape & Reel
		NCS333ASN2T1G		3000 / Tape & Reel
		NCS333SQ3T2G	SC70-5 / SC-88-5 / SOT-353-5	3000 / Tape & Reel
		NCS333ASQ3T2G		3000 / Tape & Reel
	Yes	NCV333ASQ3T2G		3000 / Tape & Reel
		NCV333ASN2T1G	SOT23-5 / TSOP-5	3000 / Tape & Reel
Dual	No	NCS2333MUTBG	UDFN8	3000 / Tape & Reel
		NCS2333DR2G	SOIC-8	3000 / Tape & Reel
		NCS2333DMR2G	MICRO-8	4000 / Tape & Reel
	Yes	NCV2333DR2G	SOIC-8	3000 / Tape & Reel
		NCV2333DMR2G	MICRO-8	4000 / Tape & Reel
Quad	No	NCS4333DR2G	SOIC-14	2500 / Tape & Reel
	Yes	NCV4333DR2G	SOIC-14	2500 / Tape & Reel

+For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

ABSOLUTE MAXIMUM RATINGS

Over operating free-air temperature, unless otherwise stated.

Parameter	Rating	Unit
Supply Voltage	7	V
INPUT AND OUTPUT PINS		
Input Voltage (Note 1)	(VSS) – 0.3 to (VDD) + 0.3	V
Input Current (Note 1)	±10	mA
Output Short Circuit Current (Note 2)	Continuous	
TEMPERATURE		
Operating Temperature Range	-40 to +125	°C
Storage Temperature Range	-65 to +150	°C
Junction Temperature	+150	°C
ESD RATINGS (Note 3)		
Human Body Model (HBM)	±4000	V
Machine Model (MM)	±200	V
Charged Device Model (CDM)	±2000	V
OTHER RATINGS		
Latch-up Current (Note 4)	100	mA

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

Level 1

1. Input terminals are diode-clamped to the power-supply rails. Input signals that can swing more than 0.3 V beyond the supply rails should be current limited to 10 mA or less

2. Short-circuit to ground.

MSL

3. This device series incorporates ESD protection and is tested by the following methods: ESD Human Body Model tested per JEDEC standard JS-001 (AEC-Q100-002) ESD Machine Model tested per JEDEC standard JESD22-A115 (AEC-Q100-003) ESD Charged Device Model tested per JEDEC standard JESD22-C101 (AEC-Q100-011)

4. Latch-up Current tested per JEDEC standard: JESD78.

THERMAL INFORMATION (Note 5)

Parameter	Symbol	Package	Value	Unit
Thermal Resistance,	θ_{JA}	SOT23–5 / TSOP5	290	°C/W
Junction to Ambient		SC70-5 / SC-88-5 / SOT-353-5	425	
		Micro8 / MSOP8	298	
		SOIC-8	250	
		UDFN8	228	
		SOIC-14	216	

5. As mounted on an 80x80x1.5 mm FR4 PCB with 650 mm² and 2 oz (0.07 mm) thick copper heat spreader. Following JEDEC JESD/EIA 51.1, 51.2, 51.3 test guidelines

RECOMMENDED OPERATING CONDITIONS

Parameter	Symbol	Range	Unit	
Supply Voltage (V _{DD} - V _{SS})	V _S	1.8 to 5.5	V	
Specified Operating Temperature Range NCS333		T _A	-40 to 105	°C
	NCx333A, NCx2333, NCx4333		-40 to 125	
Input Common Mode Voltage Range		VICMR	V_{SS} –0.1 to V_{DD} +0.1	V

Functional operation above the stresses listed in the Recommended Operating Ranges is not implied. Extended exposure to stresses beyond the Recommended Operating Ranges limits may affect device reliability.

ELECTRICAL CHARACTERISTICS: $V_S = 1.8 V$ to 5.5 V At $T_A = +25^{\circ}C$, $R_L = 10 k\Omega$ connected to midsupply, $V_{CM} = V_{OUT} =$ midsupply, unless otherwise noted. **Boldface** limits apply over the specified operating temperature range, guaranteed by characterization and/or design.

Parameter	Symbol	Cond	litions	Min	Тур	Max	Unit
INPUT CHARACTERISTICS							
Offset Voltage	V _{OS}	V _S = +5 V	NCS333, NCS333A		3.5	10	μV
			NCV333A, NCx2333, NCx4333		6.0	30	
Offset Voltage Drift vs Temp	$\Delta V_{OS} / \Delta T$	NCS333,	NCS333, NCS333A		0.03	0.07	μV/°C
		NCV333A	A, V _S = 5 V		0.03	0.14	1
		NCx2333	8, V _S = 5 V		0.04	0.07	1
		NCx4333	8, V _S = 5 V		0.095	0.19	1
Offset Voltage Drift vs Supply	$\Delta V_{OS} / \Delta V_{S}$	NCS333, NCS333A	Full temperature range		0.32	5	μV/V
		NCV333A	T _A = +25°C		0.40	5	1
			Full temperature range			8	1
		NCx2333, NCx4333	T _A = +25°C		0.32	5	1
			Full temperature range			12.6	1
Input Bias Current	I _{IB}	$T_A = +25^{\circ}C$	NCS333, NCx333A		±60	±200	pА
(Note 6)			NCx2333, NCx4333		±60	±400	1
		Full temper	rature range		±400		1
Input Offset Current	I _{OS}	$T_A = +25^{\circ}C$	NCS333, NCx333A		±50	±400	pА
(Note 6)			NCx2333, NCx4333		±50	±800	1
Common Mode Rejection Ratio	CMRR	V _S =	1.8 V		111		dB
(Note 7)		V _S =	3.3 V		118		1
		V _S = 5.0 V	NCS333, NCS333A, NCx2333, NCx4333	106	123		
			NCV333A	103	123		1
		V _S =	5.5 V		127		1
Input Resistance	R _{IN}	Diffe	rential		180		GΩ
		Commo	on Mode		90		1
Input Capacitance	C _{IN}	NCS333	Differential		2.3		pF
			Common Mode		4.6		1
		NCx2333, NCx4333,	Differential		4.1		1
		NCx333A	Common Mode		7.9		1

OUTPUT CHARACTERISTICS

Open Loop Voltage Gain (Note 6)	A _{VOL}	V _{SS} + 100 mV < V _O < V _{DD} – 100 mV	106	145		dB
Open Loop Output Impedance	Z _{out-OL}	f = UGBW, I _O = 0 mA		300		Ω
Output Voltage High,	V _{OH}	$T_A = +25^{\circ}C$		10	50	mV
Referenced to V _{DD}		Full temperature range			70	
Output Voltage Low,	V _{OL}	$T_A = +25^{\circ}C$		10	50	mV
Referenced to V _{SS}		Full temperature range			70	

6. Guaranteed by characterization and/or design 7. Specified over the full common mode range: $V_{SS} - 0.1 < V_{CM} < V_{DD} + 0.1$

ELECTRICAL CHARACTERISTICS: $V_S = 1.8 V$ to 5.5 V

At $T_A = +25^{\circ}C$, $R_L = 10 \text{ k}\Omega$ connected to midsupply, $V_{CM} = V_{OUT}$ = midsupply, unless otherwise noted.

Boldface limits apply over the specified operating temperature range, guaranteed by characterization and/or design.

Parameter	Symbol	Cond	litions	Min	Тур	Max	Unit
OUTPUT CHARACTERISTICS							
Output Current Capability	Ι _Ο	Sinking Current	NCS333		25		mA
			NCx333A, NCx2333, NCx4333		11		
		Sourcinę	g Current		5.0		1
Capacitive Load Drive	CL			S	ee Figure	13	
NOISE PERFORMANCE							
Voltage Noise Density	e _N	f _{IN} =	1 kHz		62		nV / \sqrt{Hz}
Voltage Noise	e _{P-P}	f _{IN} = 0.1 ⊢	Iz to 10 Hz		1.1		μV_{PP}
		f _{IN} = 0.01	Hz to 1 Hz		0.5		1
Current Noise Density	i _N	f _{IN} =	10 Hz		350		fA / √Hz
Channel Separation		NCx2333	NCx4333		135		dB
DYNAMIC PERFORMANCE	•						
Gain Bandwidth Product	GBWP	C _L = 100 pF	NCS333, NCx333A, NCx4333		350		kHz
			NCx2333		270		1
Gain Margin	A _M	C _L = 1	100 pF		18		dB
Phase Margin	ϕ_{M}	C _L = 1	100 pF		55		0
Slew Rate	SR	G =	= +1		0.15		V/μs
POWER SUPPLY							•
Power Supply Rejection Ratio	PSRR	NCS333, NCS333A	Full temperature range	106	130		dB
		NCx2333, NCx4333,	T _A = +25°C	106	130		1
		NCV333A	Full temperature range	98			
Turn-on Time	t _{ON}	V _S =	= 5 V		100		μs
Quiescent Current	Ι _Q	NCS333, NCS333A,	$1.8 \text{ V} \le \text{V}_{S} \le 3.3 \text{ V}$		17	25	μΑ
(Note 8)		NCx2333, NCx4333				27	1
			$3.3 \text{ V} < \text{V}_{\text{S}} \le 5.5 \text{ V}$		21	33	1
						35	1
		NCV333A	$1.8~V \leq V_S \leq 3.3~V$		20	30	1
						35	1
			$3.3 \text{ V} < \text{V}_{\text{S}} \le 5.5 \text{ V}$		28	40	1
						45	1

8. No load, per channel

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

TYPICAL CHARACTERISTICS

TYPICAL CHARACTERISTICS

TYPICAL CHARACTERISTICS

APPLICATIONS INFORMATION

OVERVIEW

The NCS333, NCS333A, NCS2333, and NCS4333 precision op amps provide low offset voltage and zero drift over temperature. The input common mode voltage range extends 100 mV beyond the supply rails to allow for sensing near ground or VDD. These features make the NCS333 series well–suited for applications where precision is required, such as current sensing and interfacing with sensors.

NCS333 series of precision op amps uses a chopper-stabilized architecture, which provides the advantage of minimizing offset voltage drift over temperature and time. The simplified block diagram is shown in Figure 17. Unlike the classical chopper architecture, the chopper stabilized architecture has two signal paths.

Figure 17. Simplified NCS333 Block Diagram

In Figure 17, the lower signal path is where the chopper samples the input offset voltage, which is then used to correct the offset at the output. The offset correction occurs at a frequency of 125 kHz. The chopper-stabilized architecture is optimized for best performance at frequencies up to the related Nyquist frequency (1/2 of the)offset correction frequency). As the signal frequency exceeds the Nyquist frequency, 62.5 kHz, aliasing may occur at the output. This is an inherent limitation of all chopper and chopper-stabilized architectures. Nevertheless, the NCS333 op amps have minimal aliasing up to 125 kHz and low aliasing up to 190 kHz when compared to competitor parts from other manufacturers. ON Semiconductor's patented approach utilizes two

cascaded, symmetrical, RC notch filters tuned to the chopper frequency and its fifth harmonic to reduce aliasing effects.

The chopper–stabilized architecture also benefits from the feed–forward path, which is shown as the upper signal path of the block diagram in Figure 17. This is the high speed signal path that extends the gain bandwidth up to 350 kHz. Not only does this help retain high frequency components of the input signal, but it also improves the loop gain at low frequencies. This is especially useful for low–side current sensing and sensor interface applications where the signal is low frequency and the differential voltage is relatively small.

APPLICATION CIRCUITS

Low-Side Current Sensing

Low-side current sensing is used to monitor the current through a load. This method can be used to detect over-current conditions and is often used in feedback control, as shown in Figure 18. A sense resistor is placed in series with the load to ground. Typically, the value of the sense resistor is less than 100 m Ω to reduce power loss across the resistor. The op amp amplifies the voltage drop across the sense resistor with a gain set by external resistors R1, R2, R3, and R4 (where R1 = R2, R3 = R4). Precision resistors are required for high accuracy, and the gain is set to utilize the full scale of the ADC for the highest resolution.

Figure 18. Low-Side Current Sensing

Differential Amplifier for Bridged Circuits

Sensors to measure strain, pressure, and temperature are often configured in a Wheatstone bridge circuit as shown in Figure 19. In the measurement, the voltage change that is produced is relatively small and needs to be amplified before going into an ADC. Precision amplifiers are recommended in these types of applications due to their high gain, low noise, and low offset voltage.

Figure 19. Bridge Circuit Amplification

EMI Susceptibility and Input Filtering

Op amps have varying amounts of EMI susceptibility. Semiconductor junctions can pick up and rectify EMI signals, creating an EMI-induced voltage offset at the output, adding another component to the total error. Input pins are the most sensitive to EMI. The NCS333 op amp family integrates low-pass filters to decrease sensitivity to EMI.

General Layout Guidelines

To ensure optimum device performance, it is important to follow good PCB design practices. Place 0.1 μ F decoupling capacitors as close as possible to the supply pins. Keep traces short, utilize a ground plane, choose surface-mount components, and place components as close as possible to the device pins. These techniques will reduce susceptibility to electromagnetic interference (EMI). Thermoelectric effects can create an additional temperature dependent offset voltage at the input pins. To reduce these effects, use metals with low thermoelectric-coefficients and prevent temperature gradients from heat sources or cooling fans.

UDFN8 Package Guidelines

The UDFN8 package has an exposed leadframe die pad on the underside of the package. This pad should be soldered to the PCB, as shown in the recommended soldering footprint in the Package Dimensions section of this datasheet. The center pad can be electrically connected to VSS or it may be left floating. When connected to VSS, the center pad acts as a heat sink, improving the thermal resistance of the part.

NEW STANDARD: DESCRIPTION:

SC-88A (SC-70-5/SOT-353)

PAGE 1 OF 2

"CONTROLLED COPY" in red.

versions are uncontrolled except when stamped

PAGE 2 OF 2

ISSUE	REVISION	DATE
С	CONVERTED FROM PAPER DOCUMENT TO ELECTRONIC. REQ. BY N LAFEB- RE.	20 JUN 1998
D	CONVERTED FROM MOTOROLA TO ON SEMICONDUCTOR. ADDED STYLE 5. REQ. BY E. KIM.	24 JUL 2000
Е	ADDED STYLES 6 & 7. REQ. BY S. BACHMAN.	03 AUG 2000
F	DELETED DIMENSION V, WAS 0.3-0.44MM/0.012-0.016IN. REQ. BY G. KWONG.	14 JUN 2001
G	ADDED STYLE 8, REQ. BY S. CHANG; ADDED STYLE 9, REQ. BY S. BACHMAN; ADDED NOTE 4, REQ. BY S. RIGGS	25 JUN 2003
Н	CHANGED STYLE 6. REQ. BY C. LIM	28 APR 2005
J	CHANGED TITLE DESCRIPTION. REQ. BY B. LOFTS.	31 AUG 2005
K	CORRECTED TITLE AND DESCRIPTION TO SC-88A (SC-70-5/SOT-353). COR- RECTED MARKING DIAGRAM. REQ. BY D. TRUHITTE.	13 JUL 2010
L	ADDED SOLDER FOOTPRINT. REQ. BY I. MARIANO.	17 JAN 2013

ON Semiconductor and are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

DOCUMENT NUMBER:	98ARB18753C	Electronic versions are uncontrolled except when
STATUS:	ON SEMICONDUCTOR STANDARD	accessed directly from the Document Repository. Printed versions are uncontrolled except when stamped
NEW STANDARD:		"CONTROLLED COPY" in red.
DESCRIPTION:	TSOP-5	PAGE 1 OF 2

DOCUMENT NUMBER: 98ARB18753C

PAGE 2 OF 2

ISSUE	REVISION	DATE
0	INITIATED NEW MECHANICAL OUTLINE #483. REQ BY WL CHIN/L. RENNICK.	28 OCT 1998
A	UPDATE OUTLINE DRAWING TO CORRECT DIN "C" (SHOULD BE FROM TIP OF LID TO TOP OF PKG). DIM IN TABLE INCORRECTLY LISTED TO G, F TO H, H TO J, N TO L & R TO M. REQ BY F. PADILLA	13 NOV 1998
В	CHANGE OF LEGAL ONWERSHIP FROM MOTOROLA TO ON SEMICONDUC- TOR. REQ BY A. GARLINGTON	20 APR 2001
С	ADDED NOTE "4". REQ BY S. RIGGS	27 JUN 2003
D	ADDED FOOTPRINT INFORMATION. UPDATED MARKING. REQ. BY D. JOERSZ	07 APR 2005
Е	CHANGED DEVICE MARKING FROM AWW TO AYW. REQ. BY J. MANES.	14 SEP 2005
F	UPDATED DRAWINGS TO LATEST JEDEC STANDARDS. ADDED NOTE 5. REQ. BY T. GURNETT.	07 JUN 2006
G	ADDED MARKING DIAGRAM FOR IC OPTION. REQ. BY J. MILLER.	21 FEB 2007
Н	CORRECTED MARKING DIAGRAM ERROR BY REVERSING ANALOG AND DISCRETE LABELS. REQ. BY GK SUA.	18 MAY 2007
J	CHANGED NOTE 4. REQ. BY A. GARLINGTON.	13 MAR 2013
К	REMOVED DIMENSION L AND ADDED DATUMS A AND B TO TOP VIEW. REQ. BY A. GARLINGTON.	19 APR 2013
L	REMOVED -02 FROM CASE CODE VARIANT. REQ. BY N. CALZADA.	23 SEP 2015
М	CHANGED DIMENSIONS A & B FROM BASIC TO MIN AND MAX VALUES. REQ. BY A. GARLINGTON.	17 MAY 2016

ON Semiconductor and with a registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other application in which the BSCILLC product call create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use payers that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunit/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

DOCUMENT NUMBER:	98AON34462E	Electronic versions are uncontrolled e	
STATUS:	ON SEMICONDUCTOR STANDARD	accessed directly from the Document Rep versions are uncontrolled except whe	,
REFERENCE:		"CONTROLLED COPY" in red.	-
DESCRIPTION:	UDFN8, 2X2	P	PAGE 1 OF 2

DOCUMENT NUMBER: 98AON34462E

PAGE 2 OF 2

ISSUE REVISION DATE 0 RELEASED FOR PRODUCTION FROM POD #UDFN8-033-01 TO ON SEMICON- DUCTOR. REQ. BY B. BERGMAN. 19 DEC 2008 A REDREW TO JEDEC STANDARDS. REQ. BY I, HYLAND. 13 NOV 2015 - - - - -					
DUCTOR. REQ. BY B. BERGMAN.	ISSUE	REVISION	DATE		
A REDREW TO JEDEC STANDARDS. REQ. BY I. HYLAND. 13 NOV 2015 Image: Standard Street Str	0	RELEASED FOR PRODUCTION FROM POD #UDFN8-033-01 TO ON SEMICON- DUCTOR. REQ. BY B. BERGMAN.	19 DEC 2008		
	А	REDREW TO JEDEC STANDARDS. REQ. BY I. HYLAND.	13 NOV 2015		
Image: Section of the section of th					
Image:					
Image: Sector of the sector					
Image: Sector of the sector					

ON Semiconductor and with a registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other application in which the BSCILLC product call create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use payers that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunit/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

*For additional information on our Pb–Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

STYLES ON PAGE 2

DOCUMENT NUMBER:	98ASB42564B	Electronic versions are uncontrolle		
STATUS:	ON SEMICONDUCTOR STANDARD	accessed directly from the Document versions are uncontrolled except		
NEW STANDARD:		"CONTROLLED COPY" in red.		
DESCRIPTION:	SOIC-8, NB		PAGE 1 OF 3	

SOIC-8 NB CASE 751-07 ISSUE AK

STYLE 1: PIN 1. EMITTER 2. COLLECTOR COLLECTOR З. EMITTER 4. 5 FMITTER BASE 6. 7. BASE 8. EMITTER STYLE 5: PIN 1. DRAIN 2. DRAIN 3. DRAIN 4. DRAIN 5. GATE 6. GATE 7. SOURCE 8. SOURCE STYLE 9: PIN 1. EMITTER, COMMON COLLECTOR, DIE #1 2. 3. COLLECTOR, DIE #2 EMITTER, COMMON 4. 5. EMITTER, COMMON BASE, DIE #2 6. 7. BASE, DIE #1 8. EMITTER, COMMON STYLE 13: PIN 1. N.C. 2 SOURCE SOURCE З. 4. GATE DRAIN DRAIN 5. 6. DRAIN 7. 8. DRAIN STYLE 17: PIN 1. VCC 2. V2OUT 3 V10UT 4. TXE 5. RXE 6. VEE 7. GND ACC 8. STYLE 21: PIN 1. CATHODE 1 2. CATHODE 2 З. CATHODE 3 CATHODE 4 4. 5. CATHODE 5 6. COMMON ANODE COMMON ANODE 7 CATHODE 6 8. STYLE 25: PIN 1. VIN 2. N/C З. REXT GND IOUT 4. 5. 6. IOUT 7 IOUT 8. IOUT STYLE 29: PIN 1. BASE, DIE #1 EMITTER, #1 2. З. BASE #2 EMITTER, #2 4. 5. COLLECTOR, #2 6. COLLECTOR, #2 COLLECTOR, #1 7.

8

COLLECTOR, #1

STYLE 2: PIN 1. COLLECTOR, DIE, #1 2. COLLECTOR, #1 3. COLLECTOR, #2 COLLECTOR, #2 4. 5 BASE #2 EMITTER, #2 6. 7. BASE, #1 8. EMITTER, #1 STYLE 6: PIN 1. SOURCE 2 DRAIN DRAIN З. 4. SOURCE 5. SOURCE GATE 6. 7. GATE 8. SOURCE STYLE 10: PIN 1. GROUND 2. BIAS 1 3. OUTPUT 4. GROUND 5. GROUND BIAS 2 6. 7. INPUT 8. GROUND STYLE 14: PIN 1. N-SOURCE N–GATE
P–SOURCE 4. P-GATE 5. P-DRAIN P-DRAIN 6. 7. N-DRAIN 8. N-DRAIN STYLE 18: PIN 1. ANODE ANODE SOURCE 2. 3 4. GATE 5. DRAIN 6. DRAIN 7. CATHODE 8. CATHODE STYLE 22: PIN 1. I/O LINE 1 COMMON CATHODE/VCC 2. З. COMMON CATHODE/VCC I/O LINE 3 4. COMMON ANODE/GND 5. 6. I/O LINE 4 7 I/O LINE 5 COMMON ANODE/GND 8. STYLE 26: PIN 1. GND 2. dv/dt З. ENABLE 4. 5. II IMIT SOURCE 6. SOURCE 7 SOURCE 8. VCC STYLE 30: PIN 1. DRAIN 1 2. DRAIN 1 GATE 2 З. 4. SOURCE 2 SOURCE 1/DRAIN 2 SOURCE 1/DRAIN 2 5. 6. 7. SOURCE 1/DRAIN 2

8. GATE 1

STYLE 3: PIN 1. DRAIN, DIE #1 2. DRAIN #1 DRAIN, #2 З. DRAIN, #2 4. 5 GATE #2 SOURCE, #2 6. 7. GATE, #1 8. SOURCE, #1 STYLE 7: I. INPUT EXTERNAL BYPASS THIRD STAGE SOURCE З. GROUND 4. 5. DRAIN GATE 3 6. 7. SECOND STAGE Vd 8. FIRST STAGE Vd STYLE 11: PIN 1. SOURCE 1 2. GATE 1 3. SOURCE 2 4. GATE 2 5 DRAIN 2 DRAIN 2 6. 7. DRAIN 1 8. DRAIN 1 STYLE 15: PIN 1. ANODE 1 2. ANODE 1 3. ANODE 1 ANODE 1 4. CATHODE, COMMON CATHODE, COMMON 5. 6. CATHODE, COMMON 7. 8. CATHODE, COMMON STYLE 19: PIN 1. SOURCE 1 GATE 1 SOURCE 2 2. 3 GATE 2 4. 5. DRAIN 2 6. MIRROR 2 7. DRAIN 1 8. **MIRROR 1** STYLE 23: PIN 1. LINE 1 IN COMMON ANODE/GND 2. COMMON ANODE/GND З. LINE 2 IN 4. 5. LINE 2 OUT 6. COMMON ANODE/GND COMMON ANODE/GND 7 8. LINE 1 OUT STYLE 27: PIN 1. ILIMIT 2. OVLO З. UVLO 4. INPUT-SOURCE 5. SOURCE 6. 7 SOURCE DRAIN 8.

DATE 16 FEB 2011

STYLE 4: PIN 1. ANODE 2. ANODE ANODE З. ANODE 4. 5 ANODE ANODE 6. 7. ANODE 8. COMMON CATHODE STYLE 8: PIN 1. COLLECTOR, DIE #1 2 BASE, #1 BASE, #2 З. COLLECTOR, #2 4. COLLECTOR, #2 EMITTER. #2 5. 6. 7. EMITTER, #1 8. COLLECTOR, #1 STYLE 12: PIN 1. SOURCE SOURCE 2. 3. SOURCE 4. GATE 5 DRAIN DRAIN 6. 7. DRAIN 8. DRAIN STYLE 16: PIN 1. EMITTER, DIE #1 2. BASE, DIE #1 3. EMITTER, DIE #2 BASE, DIE #2 4. COLLECTOR, DIE #2 COLLECTOR, DIE #2 5. 6. COLLECTOR, DIE #1 7. 8. COLLECTOR, DIE #1 STYLE 20: PIN 1. SOURCE (N) GATE (N) SOURCE (P) 2. 3 4. GATE (P) 5. DRAIN 6. DRAIN 7. DRAIN 8. DRAIN STYLE 24: PIN 1. BASE EMITTER 2. COLLECTOR/ANODE COLLECTOR/ANODE З. 4. 5. CATHODE 6. CATHODE COLLECTOR/ANODE 7 COLLECTOR/ANODE 8. STYLE 28: PIN 1. SW_TO_GND 2. DASIC_OFF 3. DASIC_SW_DET 4. GND V MON 5. VBULK 6. 7. VBULK 8. VIN

DOCUMENT NUMBER:	98ASB42564B	Electronic versions are uncontrolled except when
STATUS:	ON SEMICONDUCTOR STANDARD	accessed directly from the Document Repository. Printer versions are uncontrolled except when stamped
NEW STANDARD:		"CONTROLLED COPY" in red.
DESCRIPTION:	SOIC-8, NB	PAGE 2 OF 3

PAGE 3 OF 3

	DEVICION	DATE
ISSUE	REVISION	DATE
AB	ADDED STYLE 25. REQ. BY S. CHANG.	15 MAR 2004
AC	ADDED CORRECTED MARKING DIAGRAMS. REQ. BY S. FARRETTA.	13 AUG 2004
AD	CORRECTED MARKING DIAGRAM FOR DISCRETE. REQ. BY S. FARRETTA.	18 NOV 2004
AE	UPDATED SCALE ON FOOTPRINT. REQ. BY S. WEST.	31 JAN 2005
AF	UPDATED MARKING DIAGRAMS. REQ. BY S. WEST. ADDED STYLE 26. REQ. BY S. CHANG.	14 APR 2005
AG	ADDED STYLE 27. REQ. BY S. CHANG.	30 JUN 2005
AH	ADDED STYLE 28. REQ. BY S. CHANG.	09 MAR 2006
AJ	ADDED STYLE 29. REQ. BY D. HELZER.	19 SEP 2007
AK	ADDED STYLE 30. REQ. BY I. CAMBALIZA.	16 FEB 2011

ON Semiconductor and are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

*For additional information on our Pb–Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

STYLES ON PAGE 2

DOCUMENT NUMBER:	98ASB42565B	Electronic versions are uncontrolle	ed except when
STATUS:	ON SEMICONDUCTOR STANDARD	accessed directly from the Document versions are uncontrolled except v	
NEW STANDARD:		"CONTROLLED COPY" in red.	
DESCRIPTION:	SOIC-14 NB		PAGE 1 OF 3

SOIC-14 CASE 751A-03 ISSUE L

DATE 03 FEB 2016

STYLE 1: PIN 1. COMMON CATHODE 2. ANODE/CATHODE 3. ANODE/CATHODE 4. NO CONNECTION 5. ANODE/CATHODE 6. NO CONNECTION 7. ANODE/CATHODE 8. ANODE/CATHODE 9. ANODE/CATHODE 10. NO CONNECTION 11. ANODE/CATHODE 12. ANODE/CATHODE 13. NO CONNECTION 14. COMMON ANODE	STYLE 2: CANCELLED	STYLE 3: PIN 1. NO CONNECTION 2. ANODE 3. ANODE 4. NO CONNECTION 5. ANODE 6. NO CONNECTION 7. ANODE 8. ANODE 9. ANODE 10. NO CONNECTION 11. ANODE 12. ANODE 13. NO CONNECTION 14. COMMON CATHODE	STYLE 4: PIN 1. NO CONNECTION 2. CATHODE 3. CATHODE 4. NO CONNECTION 5. CATHODE 6. NO CONNECTION 7. CATHODE 8. CATHODE 9. CATHODE 10. NO CONNECTION 11. CATHODE 12. CATHODE 13. NO CONNECTION 14. COMMON ANODE
STYLE 5:	STYLE 6:	STYLE 7:	STYLE 8:
PIN 1. COMMON CATHODE	PIN 1. CATHODE	PIN 1. ANODE/CATHODE	PIN 1. COMMON CATHODE
2. ANODE/CATHODE	2. CATHODE	2. COMMON CATHODE	2. ANODE/CATHODE
3. ANODE/CATHODE	3. CATHODE	3. COMMON CATHODE	3. ANODE/CATHODE
4. ANODE/CATHODE	4. CATHODE	4. ANODE/CATHODE	4. NO CONNECTION
5. ANODE/CATHODE	5. CATHODE	5. ANODE/CATHODE	5. ANODE/CATHODE
6. NO CONNECTION	6. CATHODE	6. ANODE/CATHODE	6. ANODE/CATHODE
7. COMMON ANODE	7. CATHODE	7. ANODE/CATHODE	7. COMMON ANODE
8. COMMON CATHODE	8. ANODE	8. ANODE/CATHODE	8. COMMON ANODE
9. ANODE/CATHODE	9. ANODE	10. ANODE/CATHODE	9. ANODE/CATHODE
10. ANODE/CATHODE	10. ANODE	11. COMMON CATHODE	10. ANODE/CATHODE
11. ANODE/CATHODE	11. ANODE	12. COMMON CATHODE	11. NO CONNECTION
12. ANODE/CATHODE	12. ANODE	13. ANODE/CATHODE	12. ANODE/CATHODE
13. NO CONNECTION	13. ANODE	14. ANODE/CATHODE	13. ANODE/CATHODE
14. COMMON ANODE	14. ANODE	14. ANODE/CATHODE	14. COMMON CATHODE

DOCUMENT NUMBER:	98ASB42565B	Electronic versions are uncontrolle		
STATUS:	ON SEMICONDUCTOR STANDARD	accessed directly from the Document versions are uncontrolled except		
NEW STANDARD:		"CONTROLLED COPY" in red.		
DESCRIPTION:	SOIC-14 NB		PAGE 2 OF 3	

ISSUE	REVISION	DATE		
G	ADDED MARKING DIAGRAM. REQ. BY S. FARRETTA	30 APR 2004		
Н	ADDED SOLDERING FOOTPRINT. REQ. BY S. RIGGS.	04 OCT 2006		
J	CORRECTED MARKING DIAGRAM. MOVED PB-FREE INDICATOR "G" TO TOP LINE. REQ. BY C. BIAS.	13 FEB 2008		
K	UPDATED DRAWING TO JEDEC STANDARDS. REQ. BY I. CAMBALIZA.	31 MAY 2011		
L	ADDED COPLANARITY TOLERANCE BOX TO SIDE VIEW. REQ. BY F. ESTRADA.	03 FEB 2016		

ON Semiconductor and with a registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other application in which the BSCILLC product call create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use payers that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunit/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

DATE 02 JUL 2013

SCALE 2:1

RECOMMENDED **SOLDERING FOOTPRINT***

DIMENSION: MILLIMETERS

*For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

NOTES

Micro8[™] CASE 846A-02 **ISSUE J**

1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.

- 2. CONTROLLING DIMENSION: MILLIMETER. 3. DIMENSION A DOES NOT INCLUDE MOLD FLASH, PROTRUSIONS OR GATE BURRS. MOLD FLASH, PROTRUSIONS OR GATE BURRS SHALL NOT EXCEED 0.15 (0.006) PER SIDE
- 0.15 (0.000) FEN SIDE. DIMENSION B DOES NOT INCLUDE INTERLEAD FLASH OR PROTRUSION. INTERLEAD FLASH OR PROTRUSION SHALL NOT EXCEED 0.25 (0.010) PER SIDE. 4.

5. 846A-01 OBSOLETE, NEW STANDARD 846A-02.

	MILLIMETERS			INCHES		
DIM	MIN	NOM	MAX	MIN	NOM	MAX
Α			1.10			0.043
A1	0.05	0.08	0.15	0.002	0.003	0.006
b	0.25	0.33	0.40	0.010	0.013	0.016
c	0.13	0.18	0.23	0.005	0.007	0.009
D	2.90	3.00	3.10	0.114	0.118	0.122
E	2.90	3.00	3.10	0.114	0.118	0.122
е	0.65 BSC				0.026 BSC	;
L	0.40	0.55	0.70	0.016	0.021	0.028
HE	4.75	4.90	5.05	0.187	0.193	0.199

XXXX = Specific Device Code

- = Assembly Location
- = Year

А

Υ

W

- = Work Week
- = Pb-Free Package
- (Note: Microdot may be in either location)

*This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G" or microdot " •", may or may not be present.

STYLE 1:	STYLE 2:	STYLE 3:
PIN 1. SOURCE	PIN 1. SOURCE 1	PIN 1. N-SOURCE
2. SOURCE	2. GATE 1	2. N-GATE
3. SOURCE	SOURCE 2	3. P-SOURCE
4. GATE	4. GATE 2	4. P-GATE
5. DRAIN	5. DRAIN 2	5. P-DRAIN
6. DRAIN	6. DRAIN 2	6. P-DRAIN
7. DRAIN	7. DRAIN 1	7. N-DRAIN
8. DRAIN	8. DRAIN 1	8. N-DRAIN

DOCUMENT NUMBER:	98ASB14087C	Electronic versions are uncontrolle	•	
STATUS:	ON SEMICONDUCTOR STANDARD	R STANDARD accessed directly from the Docume versions are uncontrolled except		
NEW STANDARD:		"CONTROLLED COPY" in red.		
DESCRIPTION:	MICR08		PAGE 1 OF 2	

DOCUMENT NUMBER: 98ASB14087C

PAGE 2 OF 2

ISSUE	REVISION	DATE		
G	ADDED NOMINAL VALUES AND UPDATED GENERIC MARKING DIAGRAM. REQ. BY HONG XIAO	18 JUL 2005		
Н	CORRECTED GENERIC MARKING INFORMATION. REQ. BY T. GURNETT.	12 NOV 2007		
J	CORRECTED SOLDERING FOOTPRINT. REQ. BY J. LIU.	02 JUL 2013		

Micro8 is a trademark of International Rectifier.

ON Semiconductor and with a registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other application in which the failure of the SCILLC product create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use persores that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

ON Semiconductor and 💷 are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typical" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that ON Semiconductor was negligent regarding the design or manufacture of the part. ON Semiconductor is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303–675–2176 or 800–344–3867 Toll Free USA/Canada Email: orderlit@onsemi.com

N. American Technical Support: 800-282-9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support:

ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit Phone: 421 33 790 2910

For additional information, please contact your local

Sales Representative