Secondary Side CV/CC Controller

The NCP4328 is a secondary side SMPS controller designed for use in applications which requires constant current and/or constant current regulation.

The NCP4328x consists of two OTA amplifiers for voltage and current loop regulation with precise internal voltage references. Outputs of OTAs are open drain type (OTAs sink current only).

The NCP4328B includes a LED driver pin implemented with an open drain MOSFET driven by a 1 kHz square wave with a 12.5% duty cycle working when VCC is above UVLO for indication purpose.

The NCP4328A is available in TSOP-5 package while the NCP4328B is available in TSOP-6 package.

Features

- Operating Input Voltage Range: 2.5 V to 36.0 V
- Supply current < $100 \,\mu A$
- $\pm 0.5\%$ Reference Voltage Accuracy (T_J = 25° C)
- Constant Voltage and Constant Current (A versions) Control Loop
- Indication LED PWM Modulated Driver (NCP4328B)
- These Devices are Pb–Free, Halogen Free/BFR Free and are RoHS Compliant

Typical Applications

- Offline Adapters for Notebooks, Game Stations and Printers
- LED Lightening
- High Power AC-DC Converters for TVs, Set-Top Boxes, Monitors etc.

ON Semiconductor®

http://onsemi.com

(Note: Microdot may be in either location)

ORDERING INFORMATION

See detailed ordering, marking and shipping information on page 8 of this data sheet.

1

Figure 1. Simplified Block Diagrams NCP4328A and NCP4328B

PIN FUNCTION DESCRIPTION

NCP4328A TSOP-5	NCP4328B TSOP-6	Pin Name	Description
1	1	VCC	Supply voltage pin
2	2	GND	Ground
5	6	VSNS	Output voltage sensing pin, connected to output voltage divider
4	4	ISNS	Current sensing input for output current regulation, connect it to shunt resistor in ground branch.
-	5	LED	PWM LED driver output. Connected to LED cathode with current define by external serial resistance
3	3	FBC	Output of current sinking OTA amplifiers driving feedback optocoupler's LED. Connect here compensation networks as well.

ABSOLUTE MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Input Voltage	V _{CC}	-0.3 to 40.0	V
FBC, LED Voltage	V _{FBC} , V _{LED}	-0.3 to V _{CC} + 0.3	V
VSNS, ISNS Voltage	V _{SNS} ,V _{ISNS}	-0.3 to 10.0	V
LED Current	I _{LED}	10	mA
Thermal Resistance – Junction-to-Air (Note 1)	$R_{ hetaJA}$	315	°C/W
Junction Temperature	TJ	-40 to 150	°C
Storage Temperature	T _{STG}	-55 to 125	°C
ESD Capability, Human Body Model (Note 2)	ESD _{HBM}	2000	V
ESD Capability, Machine Model (Note 2)	ESD _{MM}	250	V

Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.
1. 50 mm², 1.0 oz. Copper spreader.
2. This device series incorporates ESD protection and is tested by the following methods:

ESD Human Body Model tested per JESD22–A114F ESD Machine Model tested per JESD22–A115C Latchup Current Maximum Rating tested per JEDEC standard: JESD78D.

ELECTRICAL CHARACTERISTICS

 $-40^\circ C \leq T_J \leq 125^\circ C;~V_{CC}$ = 15 V; unless otherwise noted. Typical values are at T_J = +25°C.

Parameter	Test Conditions	Symbol	Min	Тур	Max	Unit
Maximum Operating Input Voltage		Vcc			36.0	V
V0010/10	V _{CC} rising		3.3	3.5	3.7	v
VCC UVLO	V _{CC} falling	V _{CCUVLO}	2.3	2.5	2.7	
VCC UVLO Hysteresis		V _{CCUVLOHYS}	0.8	1.0		V
	NCP4328A			105	130	μΑ
Quiescent Current	NCP4328B	Icc		115	140	
VOLTAGE CONTROL LOOP OTA	-					
Transconductance	Sink current only	gm _V		1		S
	$2.8~V \leq V_{CC} \leq 36.0~V,~T_J = 25^\circ C$		1.244	1.250	1.256	v
Reference Voltage	$2.8~V \le V_{CC} \le 36.0~V,~T_J = 0 - 85^{\circ}C$	V _{REF}	1.240	1.250	1.264	
	$\begin{array}{l} 2.8 \ V \leq V_{CC} \leq 36.0 \ V, \\ T_{J} = -40 - 125^{\circ}C \end{array}$	- • ner	1.230	1.250	1.270	
Sink Current Capability	V _{FBC} > 1.5 V	I _{SINKV}	2.5			mA
Inverting Input Bias Current	V _{SNS} = V _{REF}	I _{BIASV}	-100		100	nA

CURRENT CONTROL LOOP OTA

Transconductance	Sink current only	gm _C		3		S
	$T_{J} = 25^{\circ}C$		61.2	62.5	63.8	
Reference Voltage	$T_J = -20 - 85^{\circ}C$	V _{REFC}	60.5	62.5	64.5	mV
	$T_J = -40 - 125^\circ C$		60.0	62.5	65.0	
Sink Current Capability	V _{FBC} > 1.5 V	I _{SINKC}	2.5			mA
Inverting Input Bias Current	I _{SNS} = V _{REFC}	IBIASC	-100		100	nA

LED DRIVER (NCP4328B Only)

Switching Frequency		f _{SWLED}		1		kHz
Duty Cycle	(Note 3)	D _{LED}	10.0	12.5	15.0	%
Switch Resistance	I _{LED} = 5 mA	R _{SW}		50		Ω

3. Guaranteed by design.

TYPICAL CHARACTERISTICS

TYPICAL CHARACTERISTICS

TYPICAL CHARACTERISTICS

APPLICATION INFORMATION

Typical application circuit for NCP4328A is shown in Figures 15 and 16 shows typical application circuit for NCP4328B that includes internal LED driver for indication purpose.

Power Supply

The NCP4328 is designed to operate from a single supply up to 36 V. It starts to operate when VCC voltage reaches 3.5 V and stops when VCC voltage drops below 2.5 V. VCC can be supplied by direct connection to the VOUT voltage of the power supply. It is highly recommended to add a RC filter (R1 and C2) in series from VOUT to VCC pin to reduce voltage spikes and drops that are produced at the converter's output capacitors. Recommended values for this filter are 220 Ω and 1 μ F.

Voltage Regulation Path

The output voltage is detected on the VSNS pin by the R3 and R4 voltage divider. This voltage is compared with the internal precise voltage reference. The voltage difference is amplified by gm_V of the transconductance amplifier. The amplifier output current is connected to the FBC pin. The compensation network is also connected to this pin to provide frequency compensation for the voltage regulation path. This FBC pin drives regulation optocoupler that provides regulation of primary side. The optocoupler is supplied via direct connection to VOUT line through resistor R2.

Regulation information is transferred through the optocoupler to the primary side controller where its FB pin is usually pulled down to reduce energy transferred to secondary output.

The output voltage can be computed by Equation 1.

$$V_{OUT} = V_{REF} \frac{R3 + R4}{R4}$$
 (eq. 1)

Current Regulation

The output current is sensed by the shunt resistor R5 in series with the load. Voltage drop on R5 is compared with internal precise voltage reference V_{REFC} at I_{SNS} transconductance amplifier input.

Voltage difference is amplified by gm_C to output current of amplifier, connected to FBC pin. Compensation network is connected between this pin and ISNS input to provide frequency compensation for current regulation path. Resistor R6 separates compensation network from sense resistor. Compensation network works into low impedance without this resistor that significantly decreases compensation network impact.

Current regulation point is set to current given by Equation 2.

$$I_{OUTLIM} = \frac{V_{REFC}}{R5}$$
 (eq. 2)

LED Driver (NCP4328B only)

I

LED driver is active when VCC is higher than V_{CCMIN} . LED driver consists of an internal power switch controlled by a PWM modulated logic signal and an external current limiting resistor R9. LED current can be computed by Equation 3

$$_{\text{LED}} = \frac{V_{\text{OUT}} - V_{\text{F}_\text{LED}}}{\text{R9}}$$
(eq. 3)

PWM modulation is used to increase efficiency of LED.

Figure 15. Typical Application Schematic for NCP4328A

Figure 16. Typical Application Schematic for NCP4328B

ORDERING INFORMATION

Device	Marking	LED Driver	Package	Shipping [†]
NCP4328ASNT1G	A32	No	TSOP-5 (Pb-Free)	3000 / Tape & Reel
NCP4328BSNT1G	U32	Yes	TSOP-6 (Pb-Free)	3000 / Tape & Reel

†For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

PACKAGE DIMENSIONS

*For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

- 1. DIMENSIONING AND TOLERANCING PER ASME

nem beb n				
	MILLIMETERS			
DIM	MIN	MAX		
Α	3.00	BSC		
В	1.50	BSC		
С	0.90	1.10		
D	0.25	0.50		
G	0.95 BSC			
Н	0.01	0.10		
J	0.10	0.26		
К	0.20	0.60		
М	0° 10°			
6	2.50	3.00		

PACKAGE DIMENSIONS

TSOP-6 CASE 318G-02 ISSUE V

- NOTES 1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994.
- 3
- DIMENSIONING AND TOLEHANCING PER ASME 114-5M, 1994. CONTROLLING DIMENSION: MILLIMETERS. MAXIMUM LEAD THICKNESS INCLUDES LEAD FINISH. MINIMUM LEAD THICKNESS IS THE MINIMUM THICKNESS OF BASE MATERIAL. DIMENSIONS D AND E1 DO NOT INCLUDE MOLD FLASH, PROTRUSIONS, OR GATE BURRS. MOLD FLASH, PROTRUSIONS, OR CATE RUPOD SI JUN HOT EYECTED A 5E DE DIOL FOR DIMENSIONS D 4. GATE BURRS SHALL NOT EXCEED 0.15 PER SIDE. DIMENSIONS D AND E1 ARE DETERMINED AT DATUM H.
- 5. PIN ONE INDICATOR MUST BE LOCATED IN THE INDICATED ZONE.

	MILLIMETERS			
DIM	MIN	NOM	MAX	
Α	0.90	1.00	1.10	
A1	0.01	0.06	0.10	
b	0.25	0.38	0.50	
с	0.10	0.18	0.26	
D	2.90	3.00	3.10	
Е	2.50	2.75	3.00	
E1	1.30	1.50	1.70	
е	0.85	0.95	1.05	
L	0.20	0.40	0.60	
L2	0.25 BSC			
М	0°	-	10°	

RECOMMENDED **SOLDERING FOOTPRINT***

DIMENSIONS: MILLIMETERS

*For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

ON Semiconductor and 💷 are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC owns the rights to a number of patents, trademarks, Un semiconductor and we are registered trademarks of Semiconductor Components industries, LLC (SCILLC). SCILLC which the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. Al listing of SCILLC's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters, hickluing "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any locense under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the pody or roted to surge to sustain life or results in the raplication in which the SCILL C explored to surge the surgical more the raplication is proteinted to surge to sustain life or for any other application is proteinted to surge to sustain life or for any other application is proteinted to result and the raplications intended to surge to sustain life or for any other application is proteinted to surge to sustain life or for any other application is proteinted where applications intended to surge to sustain life or for any other application is proteinted to surge to sustain life or ther application is proteinted to surge to sustain life or for any other application is proteinted where the surge and surge to subte the application is the registration. surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com

N. American Technical Support: 800-282-9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support:

Phone: 421 33 790 2910 Japan Customer Focus Center Phone: 81-3-5817-1050

ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative