3.3 V Xtal or LVTTL/LVCMOS Input 2:1 MUX to 1:4 LVPECL Fanout Buffer ### **Description** The NB3N853531E is a low skew 3.3 V supply 1:4 clock distribution fanout buffer. An input MUX selects either a Fundamental Parallel Mode Crystal or a LVCMOS/LVTTL Clock by using the CLK_SEL pin (HIGH for Crystal, LOW for Clock) with LVCMOS / LVTTL levels. The single ended CLK input is translated to four LVPECL Outputs. Using the crystal input, the NB3N853531E can be a Clock Generator. A CLK_EN pin can enable or disable the outputs synchronously to eliminate runt pulses using LVCMOS/LVTTL levels (HIGH to enable outputs, LOW to disable outputs). ### **Features** - Four Differential 3.3 V LVPECL Outputs - Selectable Crystal or LVCMOS/LVTTL CLOCK Inputs - Up to 266 MHz Clock Operation - Output to Output Skew: 30 ps (Max) - Device to Device Skew 200 ps (Max) - Propagation Delay 1.8 ns (Max) - Operating Range: $V_{CC} = 3.3 \pm 5\% \text{ V}(3.135 \text{ to } 3.465 \text{ V})$ - Additive Phase Jitter, RMS: 0.053 ps (Typ) - Synchronous Clock Enable Control - Industrial Temp. Range (-40°C to 85°C) - Pb-Free TSSOP-20 Package - Ambient Operating Temperature Range –40°C to +85°C - These are Pb-Free Devices ### ON Semiconductor® http://onsemi.com ### MARKING DIAGRAM TSSOP-20 DT SUFFIX CASE 948E A = Assembly Location L = Wafer Lot Y = Year W = Work Week = Pb-Free Package (Note: Microdot may be in either location) ### **ORDERING INFORMATION** See detailed ordering and shipping information in the package dimensions section on page 7 of this data sheet. Figure 1. Simplified Logic Diagram Figure 2. Pinout Diagram (Top View) **Table 1. PIN DESCRIPTION** | Pin | Name | I/O | Open De-
fault | Description | |-------------------|-----------------|-------------------|-------------------|--| | 1 | V _{EE} | | | Negative (Ground) Power Supply pin must be externally connected to power supply to guarantee proper operation. | | 2 | CLK_EN | LVCMOS /
LVTTL | Pullup | Synchronized Clock Enable when HIGH. When LOW, outputs are disabled (Qx HIGH, $\overline{\text{Qx}}$ LOW) | | 3 | CLK_SEL | LVCMOS /
LVTTL | Pulldown | Clock Input Select (HIGH selects crystal, LOW selects CLK input) | | 4 | CLK | LVCMOS /
LVTTL | Pulldown | Clock Input. Float open when unused. | | 5, 8, 9 | nc | | | No Connect | | 6 | XTAL_IN | Crystal | | Crystal Oscillator Input (used with pin 7). Float open when unused. | | 7 | XTAL_OUT | Crystal | | Crystal Oscillator Output (used with pin 6). Float open when unused. | | 10, 13, 18 | V _{CC} | | | Positive Power Supply pins must be externally connected to power supply to guarantee proper operation. | | 11, 14, 16,
19 | Q[3:0] | LVPECL | | Complement Differential Outputs (See AND8020 for termination) | | 12, 15, 17,
20 | Q[3:0] | LVPECL | | True Differential Outputs (See AND8020 for termination) | Table 2. FUNCTIONS | | Inj | puts | Outputs | | | |--------|---------|-------------------------|-----------------|------|-------------------| | CLK_EN | CLK_SEL | Input Function | Output Function | Qx | Qx | | 0 | 0 | CLK input selected | Disabled | LOW | HIGH | | 0 | 1 | Crystal Inputs Selected | Disabled | LOW | HIGH | | 1 | 0 | CLK input selected | Enabled | CLK0 | Invert of
CLK1 | | 1 | 1 | Crystal Inputs Selected | Enabled | CLK1 | Invert of
CLK1 | ^{1.} After CLK_EN switches, the clock outputs are disabled or enabled following a rising and falling input clock edge as show in Figure 3. Figure 3. CLK_EN Timing Diagram Table 3. ATTRIBUTES (Note 2) | Characteristics | Value | |---|----------------------------------| | Internal Input Pullup Resistor | 50 kΩ | | Internal Input Pulldown Resistor | 50 kΩ | | C _{in} Input Capacitance | 4 pF | | ESD Protection Human Body Model Machine Model | > 2 kV
> 200 V | | Moisture Sensitivity, Indefinite Time Out of Drypack (Note 2) | Level 1 | | Flammability Rating
Oxygen Index | UL 94 V-0 @ 0.125 in
28 to 34 | | Transistor Count | 333 Devices | | Meets or exceeds JEDEC Spec EIA/JESD78 IC Latchup Test | | ^{2.} For additional information, see Application Note AND8003/D. Table 4. MAXIMUM RATINGS (Note 3) | Symbol | Parameter | Condition 1 | Condition 2 | Rating | Unit | |------------------|--|---------------------|---|--|------| | V _{CC} | Supply Voltage | | | 4.6 | V | | V _{in} | Input Voltage | | | $-0.5 \le V_{\parallel} \le VCC + 0.5$ | V | | l _{out} | Output Current | Continuous
Surge | | 50
100 | mA | | T _A | Operating Temperature Range, Industrial | | | -40 to ≤ +85 | °C | | T _{stg} | Storage Temperature Range | | | -65 to +150 | °C | | θ_{JA} | Thermal Resistance (Junction-to-Ambient) | 0 lfpm | Single-Layer
PCB (700 mm ² ,
2 oz) | 128 | °C/W | | | | 200 lfpm | Multi-Layer
PCB (700 mm ² ,
2 oz) | 94 | | | θJC | Thermal Resistance (Junction-to-Case) | (Note 4) | TSSOP-20 | 23 to 41 | °C/W | | T _{sol} | Wave Solder | | | 265 | °C | Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability. Maximum ratings applied to the device are individual stress limit values (not normal operating conditions) and not valid simultaneously. If stress limits are exceeded device functional operation is not implied, damage may occur and reliability may be affected. ^{4.} JEDEC standard multilayer board - 2S2P (2 signal, 2 power). **Table 5. CRYSTAL CHARACTERISTICS AND CONNECTIONS** | Parameter | Min | Тур | Max | Unit | |------------------------------------|-----|----------------------|-----|------| | Mode of Oscillation | | Fundamental Parallel | | | | Frequency | 12 | | 40 | MHz | | Equivalent Series Resistance (ESR) | | | 50 | Ω | | Shunt Capacitance | | | 7 | pF | | Drive Level | | | 1 | mW | **Table 6. DC CHARACTERISTICS** $V_{CC} = 3.3 \pm 5\% \text{ V}$ (3.135 to 3.465 V), $V_{EE} = 0 \text{ V}$, $T_{A} = -40^{\circ}\text{C}$ to $+85^{\circ}\text{C}$ (Note 5) | Symbol | Characteristic | Min | Тур | Max | Unit | |-----------------------|---|-----------------------|-----|-----------------------|------| | I _{EE} | Power Supply Current | | | 60 | mA | | V _{IH} | Input HIGH Voltage | 2 | | V _{CC} + 0.3 | V | | V _{IL} | Input LOW Voltage | -0.3 | | 0.8 | V | | I _{IH} | Input High Current (V _{CC} = 3.456 V) CLK, CLK_SEL = 3.456 V
CLK_EN = 3.456 V | | | 150
5 | μА | | I _{IL} | Input LOW Current (V _{CC} = 3.456 V) | | | | μА | | V _{OH} | Output HIGH Voltage | V _{CC} - 1.4 | | V _{CC} - 0.9 | V | | V _{OL} | Output LOW Voltage | V _{CC} – 2.0 | | V _{CC} – 1.7 | V | | VOUT _{SWING} | Output Voltage Swing (peak-to-peak) | 0.6 | | 1.0 | V | NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit board with maintained transverse airflow greater than 500 lfpm. Electrical parameters are guaranteed only over the declared operating temperature range. Functional operation of the device exceeding these conditions is not implied. Device specification limit values are applied individually under normal operating conditions and not valid simultaneously. 5. Outputs terminated 50 Ω to V_{CC} – 2.0 V, see Figure 4. $\textbf{Table 7. AC CHARACTERISTICS} \ V_{CC} = 3.3 \pm 5\% \ V \ (3.135 \ to \ 3.465 \ V), \ V_{EE} = 0 \ V, \ TA = -40 ^{\circ}C \ to \ +85 ^{\circ}C \ (Note \ 6) 6$ | Symbol | Characteristic | | Тур | Max | Unit | |--------------------------------|--|-----|-------|-----|------| | F _{MAX} | Maximum Operating Frequency | 0 | | 266 | MHz | | t _{PD} | Propagation Delay (Notes 7 and 9) | 1.1 | | 1.8 | ns | | tSKEW _{DC} | Duty Cycle Skew same path similar conditions at 50 MHz (Notes 7, 8 and 9) | 46 | | 54 | % | | tSKEW _{O-O} | Output to Output Skew Within A Device (Notes 7, 8 and 9) | | | 30 | ps | | tSKEW _{D-D} | Device to Device Skew similar path and conditions (Notes 7, 8 and 9) | | | 200 | ps | | ŲІТ | Additive Phase Noise Jitter (RMS) @ 155.52 MHz (Integrated from 12 kHz to 20 MHz) See Figure 6. (Note 9) | | 0.053 | | ps | | t _r /t _f | Output rise and fall times (20% and 80% points) (Note 9) | 225 | | 600 | ps | NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit board with maintained transverse airflow greater than 500 lfpm. Electrical parameters are guaranteed only over the declared operating temperature range. Functional operation of the device exceeding these conditions is not implied. Device specification limit values are applied individually under normal operating conditions and not valid simultaneously. - 6. Outputs terminated 50 Ω to V $_{CC}$ 2.0 V, see Figure 4. - 7. Measured under the same supply voltage, output loading, and input conditions. - 8. Similar conditions. - 9. Limits do not apply to overdriving XTAL_IN. Figure 4. Typical Test Setup and Termination for Evaluation. A split supply of V_{CC} = 2.0 V and V_{EE} = -1.3 ±0.165 V allows a convenient direct connection termination into typical oscilloscope 50 Ω to GND impedance modules. For Application termination schemes see AND8020. Figure 5. AC Measurement Reference Figure 6. For 155.52 MHz Carrier, the NB3N853531E Additive Phase Noise (dBc/Hz) verses SSB Offset Frequency (Hz) Integrated Jitter from 12 kHz to 20 MHz (Upper Heavy Line) is 88.1 fs RMS. The E8663B Source Generator Additive Phase Noise (Lower Light Line) is 70.1 fs RMS. Where $t_{JIT} = \sqrt{(t_{JIToutput})^2 - (t_{JITinput})^2} = 53$ fs ### Application - Crystal Input Interface Figure 7 shows the NB3N853531E device crystal oscillator interface using a typical parallel resonant crystal. A parallel crystal with loading capacitance C_L = 18 pF could use Series Load Caps C1 = 32 pF and C2 = 32 pF as nominal values, after subtracting a typical 4 pF of stray cap per line. The frequency accuracy and duty cycle skew can be fine tuned by adjusting the C1 and C2 values. For example, increasing the C1 and C2 values will reduce the operational frequency. Note R1 is optional and may be 0 Ω . Figure 7. NB3N853531E Crystal Oscillator Interface *R1 is optional. Assuming 4 pF stray cap per pin. Figure 8. NB3N853531E Phase Noise with 25 MHz Crystal ### **ORDERING INFORMATION** | Device | Package | Shipping [†] | |------------------|-----------------------|-----------------------| | NB3N853531EDTG | TSSOP-20
(Pb-Free) | 75 Units / Rail | | NB3N853531EDTR2G | TSSOP-20
(Pb-Free) | 2500 / Tape & Reel | [†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D. ### PACKAGE DIMENSIONS ### TSSOP-20 CASE 948E-02 **ISSUE C** - NOTES: 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. 2. CONTROLLING DIMENSION: MILLIMETER. - 2. CONTROLLING DIMENSION: MILLIME TEH. 3. DIMENSION A DOES NOT INCLUDE MOLD FLASH, PROTRUSIONS OR GATE BURRS. MOLD FLASH OR GATE BURRS SHALL NOT EXCEED 0.15 (0.006) PER SIDE. 4. DIMENSION B DOES NOT INCLUDE INTERIED FOR EACH OR PROTRUSION ON THE STATE OF STA - INTERLEAD FLASH OR PROTRUSION. INTERLEAD FLASH OR PROTRUSION - SHALL NOT EXCEED 0.25 (0.010) PER SIDE. DIMENSION K DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.08 (0.003) TOTAL IN EXCESS OF THE K DIMENSION AT MAXIMUM MATERIAL - CONDITION. TERMINAL NUMBERS ARE SHOWN FOR REFERENCE ONLY. DIMENSION A AND B ARE TO BE - DETERMINED AT DATUM PLANE -W-. | | MILLIN | IETERS | INCHES | | | |-----|----------|--------|-----------|-------|--| | DIM | MIN | MAX | MIN | MAX | | | Α | 6.40 | 6.60 | 0.252 | 0.260 | | | В | 4.30 | 4.50 | 0.169 | 0.177 | | | С | | 1.20 | | 0.047 | | | D | 0.05 | 0.15 | 0.002 | 0.006 | | | F | 0.50 | 0.75 | 0.020 | 0.030 | | | G | 0.65 | BSC | 0.026 BSC | | | | Н | 0.27 | 0.37 | 0.011 | 0.015 | | | J | 0.09 | 0.20 | 0.004 | 0.008 | | | J1 | 0.09 | 0.16 | 0.004 | 0.006 | | | Κ | 0.19 | 0.30 | 0.007 | 0.012 | | | K1 | 0.19 | 0.25 | 0.007 | 0.010 | | | Г | 6.40 BSC | | 0.252 | BSC | | | М | 0° | 8° | 0° | 8° | | | | | | | | | *For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D. ON Semiconductor and was registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability, arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner. ### **PUBLICATION ORDERING INFORMATION** ### LITERATURE FULFILLMENT: Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800–282–9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910 Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910 Japan Customer Focus Center Phone: 81-3-5817-1050 ON Semiconductor Website: www.onsemi.com Order Literature: http://www.onsemi.com/orderlit For additional information, please contact your local Sales Representative