3.3 V LVTTL/LVCMOS 2:1 MUX to 4 LVPECL Differential Clock Fanout Buffer Outputs with Clock Enable and Clock Select

Description

The NB3N853501E is a pure 3.3 V supply 2:1:4 clock distribution fanout buffer. Input MUX selects one of two LVCMOS/LVTTL CLK lines by the CLK_SEL pin (HIGH for CLK1, LOW for CLK0) using LVCMOS/LVTTL levels. Outputs are LVPECL levels and are synchronously enabled by CLK_EN using LVCMOS/LVTTL levels (HIGH to enable outputs, LOW to disable output).

Features

- Four differential LVPECL Outputs
- Two Selectable LVCMOS/LVTTL CLOCK Inputs
- Up to 266 MHz Clock Operation
- Output to Output Skew: 30 ps (Max.)
- Device to Device Skew 250 ps (Max.)
- Propagation Delay 2.0 ns (Max.)
- Operating range: $V_{CC} = 3.3 \pm 5\%$ V(3.135 to 3.465 V)
- Additive Phase Jitter, RMS: 62 fs (Typ)
- Synchronous Clock Enable Control
- Industrial Temp. Range (-40°C to 85°C)
- Pb-Free TSSOP20 Package
- These are Pb-Free Devices

Figure 1. Simplified Logic Diagram

ON Semiconductor®

http://onsemi.com

(Note: Microdot may be in either location)

ORDERING INFORMATION

See detailed ordering and shipping information in the package dimensions section on page 7 of this data sheet.

Figure 2. Pinout Diagram (Top View)

Table 1. PIN DESCRIPTION

Number	Name	I/O	Open Default	Description	
1	V_{EE}			Negative (Ground) Power Supply pin must be externally connected to power supply to guarantee proper operation.	
2	CLK_EN	LVCMOS / LVTTL	Pullup	Synchronized Clock Enable when HIGH. When LOW, outputs are disabled (Qx HIGH, Qx LOW)	
3	CLK_SEL	LVCMOS / LVTTL	Pulldown	Clock Input Select (HIGH selects CLK1, LOW selects CLK0 input)	
4	CLK0	LVCMOS / LVTTL	Pulldown	Clock 0 Input. Float open when unused.	
5, 6, 8, 9	nc			No Connect	
6	CLK1	LVCMOS / LVTTL	Pulldown	Clock 1 Input. Float open when unused.	
10, 13, 18	V _{CC}			Positive Power Supply pins must be externally connected to power supply to guarantee proper operation.	
11, 14, 16, 19	<u>Q[3:0]</u>	LVPECL		Invert Differential Outputs	
12, 15, 16, 20	Q[3:0]	LVPECL		True Differential Outputs	

Table 2. FUNCTIONS

Inputs			Outputs			
CLK_EN	CLK_EN CLK_SEL Input Function		Output Function	Qx	Qx	
0	0	CLK0 input selected	Disabled	LOW	HIGH	
0	1	CLK1 Input Selected	Disabled	LOW	HIGH	
1	0	CLK0 input selected	Enabled	CLK0	Invert of CLK1	
1	1	CLK1 Input Selected	Enabled	CLK1	Invert of CLK1	

1. After CLK_EN switches, the clock outputs are disabled or enabled following a rising and falling input clock edge as show in Figure 3.

Table 3. ATTRIBUTES (Note 2)

Characteristics		Value	
Internal Input Pullup Resistor		50 kΩ	
Internal Input Pulldown Resistor		50 kΩ	
ESD Protection	Human Body Model Machine Model	> 2 kV > 200 V	
Moisture Sensitivity, Indefinite Time	Out of Drypack (Note 2)	Level 1	
Flammability Rating Oxygen Index		UL 94 V–0 @ 0.125 in 28 to 34	
Transistor Count		317 Devices	
Meets or exceeds JEDEC Spec EIA	JJESD78 IC Latchup Test		

2. For additional information, see Application Note AND8003/D.

Table 4. MAXIMUM RATINGS (Note 3)

Symbol	Parameter	Condition 1	Condition 2	Rating	Unit
V _{CC}	Supply Voltage			4.6	V
V _{in}	Input Voltage			$-0.5\leqV_{I}\leqV_{CC}+0.5$	V
C _{in}	Input Capacitance			4	pF
l _{out}	Output Current	Continuous Surge		50 100	mA
T _A	Operating Temperature Range, Industrial			$-40 \text{ to} \leq +85$	°C
T _{stg}	Storage Temperature Range			-65 to +150	°C
θ_{JA}	Thermal Resistance (Junction-to-Ambient)	0 lfpm 500 lfpm	TSSOP-20	140 50	°C/W
θ_{JA}	Thermal Resistance (Junction-to-Ambient)	0 lfpm	Single-Layer PCB (700 mm ² , 2 oz)	128	°C/W
		200 lfpm	Multi-Layer PCB (700 mm ² , 2 oz)	94	
θ_{JC}	Thermal Resistance (Junction-to-Case)	(Note 4)	TSSOP-20	23 to 41	°C/W
T _{sol}	Wave Solder			265	°C

Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.

3. Maximum ratings applied to the device are individual stress limit values (not normal operating conditions) and not valid simultaneously. If stress limits are exceeded device functional operation is not implied, damage may occur and reliability may be affected.

4. JEDEC standard multilayer board – 2S2P (2 signal, 2 power).

Symbol	Characteristic			Тур	Max	Unit
I _{EE}	Power Supply Current				50	mA
V _{IH}	Input HIGH Voltage		2		V _{CC} + 0.3	V
V _{IL}	Input LOW Voltage	CLK0 CLK1 CLK_EN CLK_SEL	-0.3 -0.3		1.3 0.8	V
I _{IH}	Input High Current (V _{CC} = V _{in} = 3.456 V)	CLKx, CLK_SEL CLK_EN			150 5	μΑ
Ι _{ΙL}	Input LOW Current (V _{CC} = 3.456 V; V _{in} = GND)	CLKx, CLK_SEL CLK_EN	-5 -150			μΑ
V _{OH}	Output HIGH Voltage		V _{CC} - 1.4		V _{CC} – 0.9	V
V _{OL}	Output LOW Voltage		V _{CC} - 2.0		V _{CC} - 1.7	V
VOUT _{SWING}	Output Voltage Swing (peak-to-peak)		0.6		1.0	V

ble 5. DC CHARACTERISTICS V_{CC} = 3.3 ±5% V (3.135 to 3.465 V), GND = 0 V, T _A = -40°C to +85°C (Note 5)

NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit board with maintained transverse airflow greater than 500 lfpm. Electrical parameters are guaranteed only over the declared operating temperature range. Functional operation of the device exceeding these conditions is not implied. Device specification limit values are applied individually under normal operating conditions and not valid simultaneously.

5. Outputs terminated 50 Ω to V_{CC} – 2.0 V, see Figure 4. Input levels of 0.8 V and 2.4 V unless stated otherwise.

Symbol	Characteristic	Min	Тур	Max	Unit
F _{MAX}	Maximum Operating Frequency	0		266	MHz
t _{PD}	Propagation Delay	0.9		2.0	ns
tSKEW _{DC}	Duty Cycle Skew same path similar conditions at 50 MHz	48	50	52	%
tSKEW _{O-O}	Output to Output Skew Within A Device			30	ps
tSKEW _{D-D}	Device-to-Device Skew similar path and conditions			250	ps
ţιτ	Additive Phase Noise Jitter (RMS) @ 155.52 MHz (Integrated from 12 kHz to 20 MHz) See Figure 6.		0.062		ps
t _r /t _f	Output rise and fall times @ 266 MHz (20% and 80% points)	240		700	ps

Table 6. AC CHARACTERISTICS V _{CC}	c = 3.3 ±5% V (3.135 to 3.465)	V), GND = 0 V, T _A = -	40°C to +85°C (Note 6)
---	---------------------------------	-----------------------------------	------------------------

NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit board with maintained transverse airflow greater than 500 lfpm. Electrical parameters are guaranteed only over the declared operating temperature range. Functional operation of the device exceeding these conditions is not implied. Device specification limit values are applied individually under normal operating conditions and not valid simultaneously.

6. Outputs terminated 50 Ω to V_{CC} – 2.0 V, see Figure 4. Input levels of 0.8 V and 2.4 V unless stated otherwise. Measured from Input Midpoint (V_{DD}/2) to differential Output crosspoints, see Figure 5.

3.3 V core, 3.3 V Output

Figure 4. Typical Test Setup and Termination for Evaluation. The V_{CC} of 2.0 V and V_{EE} of –1.3 \pm 0.165 V Split supply allows a direct connection to an oscilloscope 50 Ω impedance input module. Also reference AND8020.

Propagation Delay

Output to Output Skew

ORDERING INFORMATION

Device	Package	Shipping [†]
NB3N853501EDTG	TSSOP-20 (Pb-Free)	75 Units / Rail
NB3N853501EDTR2G	TSSOP-20 (Pb-Free)	2500 / Tape & Reel

+For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

PACKAGE DIMENSIONS

TSSOP-20

*For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

- NOTES: 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. 2. CONTROLLING DIMENSION: MILLIMETER.
- DIMENSION A DOES NOT INCLUDE MOLD FLASH, PROTRUSIONS OR GATE BURRS.
- FLASH, PHOI HUSIONS OH GATE BURRS. MOLD FLASH OR GATE BURRS SHALL NOT EXCEED 0.15 (0.006) PER SIDE. DIMENSION B DOES NOT INCLUDE INTERLEAD FLASH OR PROTRUSION. INTERLEAD FLASH OR PROTRUSION.
- SHALL NOT EXCEED 0.25 (0.010) PER SIDE. DIMENSION K DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.08 (0.003) TOTAL IN EXCESS OF THE K DIMENSION AT MAXIMUM MATERIAL
- CONDITION. TERMINAL NUMBERS ARE SHOWN FOR
- REFERENCE ONLY. DIMENSION A AND B ARE TO BE DETERMINED AT DATUM PLANE -W-.

	MILLIN	IETERS	INCHES		
DIM	MIN	MAX	MIN	MAX	
Α	6.40	6.60	0.252	0.260	
В	4.30	4.50	0.169	0.177	
С		1.20		0.047	
D	0.05	0.15	0.002	0.006	
F	0.50	0.75	0.020	0.030	
G	0.65	BSC	0.026 BSC		
Н	0.27	0.37	0.011	0.015	
J	0.09	0.20	0.004	0.008	
J1	0.09	0.16	0.004	0.006	
Κ	0.19	0.30	0.007	0.012	
K1	0.19	0.25	0.007	0.010	
L	6.40	BSC	0.252	BSC	
М	0°	8°	0°	8°	

ON Semiconductor and a registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other application in which the failure of the SCILLC product cand its officers, employees, subsidiaries, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use patent SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunit//Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800–282–9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support:

Phone: 421 33 790 2910 Japan Customer Focus Center Phone: 81–3–5817–1050 ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative

NB3N853501E/D