

MP45DT02-M

MEMS audio sensor omnidirectional digital microphone

Datasheet - production data

HLGA (4.72 x 3.76 mm) 6LD

Features

- Single supply voltage
- Low power consumption
- 120 dBSPL acoustic overload point
- Omnidirectional sensitivity
- PDM single-bit output with option for stereo configuration
- HLGA metal package (SMD-compliant)
- ECOPACK[®], RoHS, and "Green" compliant

Applications

- Mobile terminals
- Laptop and notebook computers
- Portable media players
- VolP
- Speech recognition
- A/V eLearning devices
- Gaming and virtual reality input devices
- Digital still and video cameras
- Antitheft systems

Description

The MP45DT02-M is a compact, low-power, topport, omnidirectional, digital MEMS microphone. The MP45DT02-M is built with a sensing element and an IC interface with stereo capability.

The sensing element, capable of detecting acoustic waves, is manufactured using a specialized silicon micromachining process to produce audio sensors.

The IC interface is manufactured using a CMOS process that allows designing a dedicated circuit able to provide a digital signal externally in PDM format.

The MP45DT02-M has an acoustic overload point of 120 dBSPL with a best on the market 61 dB signal-to-noise ratio and -26 dB sensitivity.

The MP45DT02-M is available in an SMDcompliant metal package and is guaranteed to operate over an extended temperature range from -30 °C to +85 °C.

The MP45DT02-M's digital output and package size (1.25 mm thick) make this device the best solution for laptop and portable computing applications.

Table 1: Device summary

Order code	Temp. range [°C]	Package	Packing
MP45DT02TR-M	-30 to +85	HLGA 4.72 x 3.76 6LD	Tape and reel

June 2016

DocID029435 Rev 1

This is information on a product in full production.

Contents

Cor	ntents		
1	Pin des	cription	5
2	Acousti	c and electrical specifications	6
	2.1	Acoustic and electrical characteristics	6
	2.2	Timing characteristics	7
	2.3	Frequency response	8
3	Sensing	g element	9
4	Absolut	e maximum ratings	10
5	Functio	nality	11
	5.1	L/R channel selection	11
6	Applica	tion recommendations	12
7	Package	e information	13
	7.1	Soldering information	13
	7.2	HLGA (4.72 x 3.76 mm) 6L (metal) package information	14
8	Revisio	n history	15

List of tables

Table 1: Device summary	1
Table 2: Pin description	
Table 3: Acoustic and electrical characteristics	6
Table 4: Distortion specifications	6
Table 5: Timing characteristics	
Table 6: Absolute maximum ratings	10
Table 7: L/R channel selection	11
Table 8: Recommended soldering profile limits	13
Table 9: Document revision history	15

List of figures

Figure 1: Pin connections	5
Figure 2: Timing waveforms	
Figure 3: Typical frequency response normalized at 1 kHz	
Figure 4: MP45DT02-M electrical connections	12
Figure 5: MP45DT02-M electrical connections for stereo configuration	12
Figure 6: Recommended soldering profile limits	13
Figure 7: HLGA (4.72 x 3.76 mm) 6-lead package outline and mechanical data	14

1 Pin description

Table 2: Pin description

Pin n°	Pin name	Function	
1	GND	0 V supply	
2	LR	eft/right channel selection; IIC1 LR is connected to GND or Vdd and MIC2 LR is connected to Vdd or GND see <i>Figure 5: "MP45DT02-M electrical connections for stereo configuration"</i>	
3	GND	0 V supply	
4	CLK	Synchronization input clock	
5	DOUT	Left/right PDM data output	
6	Vdd	Power supply	

2 Acoustic and electrical specifications

2.1 Acoustic and electrical characteristics

The values listed in the table below are specified for Vdd = 1.8 V, Clock = 2.4 MHz, T = 25 °C, unless otherwise noted.

Symbol	Parameter	Test condition	Min.	Typ. ⁽¹⁾	Max.	Unit
Vdd	Supply voltage		1.64	1.8	3.6	V
ldd	Current consumption in normal mode	No load on data line		0.65		mA
lddPdn	Current consumption in power-down mode ⁽²⁾			20		μA
Scc	Short-circuit current		1		10	mA
AOP	Acoustic overload point			120		dBSPL
So	Sensitivity		-29	-26	-23	dBFS
SNR	Signal-to-noise ratio	A-weighted @1 kHz, 1 Pa		61		dB
PSR	Power supply rejection	Guaranteed by design ⁽³⁾		-70		dBFS
Clock	Input clock frequency (4)		1	2.4	3.25	MHz
тwк	Wake-up time ⁽⁵⁾	Guaranteed by design			10	ms
Тор	Operating temperature range		-30		+85	°C
V _{IOL}	Low level logic input/output voltage	I _{out} = 1 mA	-0.3		0.35xVdd	V
VIOH	High level logic input/output voltage	l _{out} = 1 mA	0.65xVdd		Vdd+0.3	V

Table 3: Acoustic and electrical characteristics

Notes:

⁽¹⁾Typical specifications are not guaranteed.

⁽²⁾Input clock in static mode.

 $^{(3)}\mbox{Test}$ signal: 217 Hz square wave, 100 mVpp on Vdd pin.

⁽⁴⁾Duty cycle: min = 40% max = 60%.

⁽⁵⁾Time from the first clock edge to valid output data.

Table 4: Distortion specifications

Parameter	Test condition	Value
Distortion	100 dBSPL (50 Hz - 4 kHz)	< 1% THD + N
Distortion	115 dBSPL (1 kHz)	< 5% THD + N

2.2 Timing characteristics

Table 5: Timing characteristics

Parameter	Description	Min	Max	Unit
f _{CLK}	Clock frequency for normal mode	1	3.25	MHz
f _{PD}	Clock frequency for power-down mode		0.23	MHz
T _{CLK}	Clock period for normal mode	308	1000	ns
T _{R,EN}	Data enabled on DATA line, L/R pin = 1	30 ⁽¹⁾		ns
T _{R,DIS}	Data disabled on DATA line, L/R pin = 1		16 ⁽¹⁾⁽²⁾	ns
T _{L,EN}	Data enabled on DATA line, L/R pin = 0	30 ⁽¹⁾		ns
T _{L,DIS}	Data disabled on DATA line, L/R pin = 0		16 ⁽¹⁾⁽²⁾	ns

Notes:

⁽¹⁾From design simulations

 $^{(2)}\mbox{In order}$ to measure the disable time, a 1 k Ω pull-down resistor must be added to the DOUT pin.

Figure 2: Timing waveforms

2.3 Frequency response

DocID029435 Rev 1

3 Sensing element

The sensing element shall mean the acoustic sensor consisting of a conductive movable plate and a fixed plate placed in a tiny silicon chip. This sensor transduces the sound pressure into the changes of coupled capacity between those two plates.

Omron Corporation supplies this element for STMicroelectronics.

4 Absolute maximum ratings

Stresses above those listed as "absolute maximum ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device under these conditions is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability.

Symbol	Ratings	Maximum value	Unit
Vdd	Supply voltage	-0.3 to 6	V
Vin	Input voltage on any control pin	-0.3 to Vdd +0.3	V
T _{STG}	Storage temperature range	-40 to +125	°C
ESD	Electrostatic discharge protection	2 (HBM)	kV

Table 6:	Absolute	maximum	ratings
14010 01	/	maximani	- a lingo

This device is sensitive to mechanical shock, improper handling can cause permanent damage to the part.

This device is sensitive to electrostatic discharge (ESD), improper handling can cause permanent damage to the part.

5 Functionality

5.1 L/R channel selection

The L/R digital pad lets the user select the DOUT signal pattern as explained in *Table 7: "L/R channel selection"*. The L/R pin must be connected to Vdd or GND.

Table	7:	I /R	channel	selection
I UDIC	•••	L/I	channel	3010011011

L/R	CLK low	CLK high
GND	Data valid	High impedence
Vdd	High impedence	Data valid

6 Application recommendations

Figure 5: MP45DT02-M electrical connections for stereo configuration

Power supply decoupling capacitors (100 nF ceramic, 10 μF ceramic) should be placed as near as possible to pin 6 of the device (common design practice).

The L/R pin must be connected to Vdd or GND (refer to Table 7: "L/R channel selection").

DocID029435 Rev 1

7 Package information

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK[®] packages, depending on their level of environmental compliance. ECOPACK[®] specifications, grade definitions and product status are available at: *www.st.com*. ECOPACK[®] is an ST trademark.

7.1 Soldering information

The HLGA (4.72 x 3.76 x 1.25) mm package is also compliant with the RoHS and "Green" standards and is qualified for soldering heat resistance according to JEDEC J-STD-020.

Landing pattern and soldering recommendations are available at www.st.com.

Table 8: Recommended soldering profile limits			
Description	Parameter	Pb free	
Average ramp rate	T_L to T_P	3 °C/sec max	
Preheat			
Minimum temperature	T _{SMIN}	150 °C	
Maximum temperature	T _{SMAX}	200 °C	
Time (T _{SMIN} to T _{SMAX})	t _S	60 sec to 120 sec	
Ramp-up rate	T_{SMAX} to T_{L}		
Time maintained above liquidus temperature	tL	60 sec to 150 sec	
Liquidus temperature	TL	217 °C	
Peak temperature	Τ _Ρ	260 °C max	
Time within 5 °C of actual peak temperature		20 sec to 40 sec	
Ramp-down rate		6 °C/sec max	
Time 25 °C (t25 °C) to peak temperature		8 minutes max	

Note: The MEMS microphone metal cap can exhibit some level of variation in color when the device is subjected to a thermal process.

DocID029435 Rev 1

8 Revision history

Table 9: Document revision histor

Date	Revision	Changes
13-Jun-2016	1	Initial release

IMPORTANT NOTICE – PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST's terms and conditions of sale in place at the time of order acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers' products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2016 STMicroelectronics - All rights reserved

