Octal 3-State Noninverting Transparent Latch ## **High-Performance Silicon-Gate CMOS** The MC74HC573A is identical in pinout to the LS573. The devices are compatible with standard CMOS outputs; with pullup resistors, they are compatible with LSTTL outputs. These latches appear transparent to data (i.e., the outputs change asynchronously) when Latch Enable is high. When Latch Enable goes low, data meeting the setup and hold time becomes latched. The HC573A is identical in function to the HC373A but has the data inputs on the opposite side of the package from the outputs to facilitate PC board layout. #### **Features** - Output Drive Capability: 15 LSTTL Loads - Outputs Directly Interface to CMOS, NMOS and TTL - Operating Voltage Range: 2.0 to 6.0 V - Low Input Current: 1.0 μA - In Compliance with the JEDEC Standard No. 7.0 A Requirements - Chip Complexity: 218 FETs or 54.5 Equivalent Gates - NLV Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC–Q100 Qualified and PPAP Capable - These Devices are Pb-Free and are RoHS Compliant ## **LOGIC DIAGRAM** | Design Criteria | Value | Units | |---------------------------------|--------|-------| | Internal Gate Count* | 54.5 | ea. | | Internal Gate Progation Delay | 1.5 | ns | | Internal Gate Power Dissipation | 5.0 | μW | | Speed Power Product | 0.0075 | рЈ | ^{*}Equivalent to a two-input NAND gate. ## ON Semiconductor® ## http://onsemi.com SOIC-20 DW SUFFIX CASE 751D TSSOP-20 DT SUFFIX CASE 948E #### **PIN ASSIGNMENT** ## **MARKING DIAGRAMS** SOIC-20 13306 A = Assembly Location WL, L = Wafer Lot YY, Y = Year WW, W = Work Week G or ■ = Pb-Free Package (Note: Microdot may be in either location) ## **FUNCTION TABLE** | Inputs | | | Output | |------------------|-----------------|---|-----------| | Output
Enable | Latch
Enable | D | Q | | L | Н | Н | Н | | L | Н | L | L | | L | L | Х | No Change | | Н | X | X | 7 | X = Don't CareZ = High Impedance ## ORDERING INFORMATION See detailed ordering and shipping information in the package dimensions section on page 5 of this data sheet. #### **MAXIMUM RATINGS** | Symbol | Parameter | Value | Unit | |------------------|--|--------------------------|------| | V _{CC} | DC Supply Voltage (Referenced to GND) | -0.5 to +7.0 | V | | V _{in} | DC Input Voltage (Referenced to GND) | -0.5 to $V_{CC} + 0.5$ | V | | V _{out} | DC Output Voltage (Referenced to GND) | -0.5 to $V_{CC} + 0.5$ | V | | l _{in} | DC Input Current, per Pin | ±20 | mA | | l _{out} | DC Output Current, per Pin | ±35 | mA | | Icc | DC Supply Current, V _{CC} and GND Pins | ±75 | mA | | P _D | Power Dissipation in Still Air, SOIC Package† TSSOP Package† | 500
450 | mW | | T _{stg} | Storage Temperature | -65 to +150 | °C | | TL | Lead Temperature, 1 mm from Case for 10 Seconds
(TSSOP or SOIC Package) | 260 | °C | This device contains protection circuitry to guard against damage due to high static voltages or electric fields. However, precautions must be taken to avoid applications of any voltage higher than maximum rated voltages to this high–impedance circuit. For proper operation, V_{in} and V_{out} should be constrained to the range GND \leq (V_{in} or V_{out}) \leq V_{CC} . Unused inputs must always be tied to an appropriate logic voltage level (e.g., either GND or V_{CC}). Unused outputs must be left open. Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected. †Derating: SOIC Package: -7 mW/°C from 65° to 125°C TSSOP Package: -6.1 mW/°C from 65° to 125°C ## **RECOMMENDED OPERATING CONDITIONS** | Symbol | Parameter | Min | Max | Unit | |------------------------------------|--|-----|-----------------|------| | V _{CC} | DC Supply Voltage (Referenced to GND) | 2.0 | 6.0 | V | | V _{in} , V _{out} | DC Input Voltage, Output Voltage (Referenced to GND) | 0 | V _{CC} | V | | T _A | Operating Temperature, All Package Types | -55 | +125 | °C | | t _r , t _f | Input Rise and Fall Time V _{CC} = 2.0 V | 0 | 1000 | ns | | | (Figure 1) $V_{CC} = 4.5 \text{ V}$ | 0 | 500 | | | | $V_{CC} = 6.0 \text{ V}$ | 0 | 400 | | Functional operation above the stresses listed in the Recommended Operating Ranges is not implied. Extended exposure to stresses beyond the Recommended Operating Ranges limits may affect device reliability. ## DC ELECTRICAL CHARACTERISTICS (Voltages Referenced to GND) | | | | | Gu | aranteed Li | mit | | |-----------------|---|---|--------------------------|---------------------------|---------------------------|---------------------------|------| | Symbol | Parameter | Test Conditions | V _{CC}
V | –55 to
25°C | ≤85°C | ≤125°C | Unit | | V _{IH} | Minimum High-Level Input Voltage | $V_{out} = 0.1 \text{ V or } V_{CC} - 0.1 \text{ V}$
$ I_{out} \le 20 \mu\text{A}$ | 2.0
3.0
4.5
6.0 | 1.5
2.1
3.15
4.2 | 1.5
2.1
3.15
4.2 | 1.5
2.1
3.15
4.2 | V | | V _{IL} | Maximum Low-Level Input Voltage | $V_{out} = 0.1 \text{ V or } V_{CC} - 0.1 \text{ V}$
$ I_{out} \le 20 \mu\text{A}$ | 2.0
3.0
4.5
6.0 | 0.5
0.9
1.35
1.8 | 0.5
0.9
1.35
1 8 | 0.5
0.9
1.35
1.8 | V | | V _{OH} | Minimum High–Level Output
Voltage | $V_{in} = V_{IH} \text{ or } V_{IL}$
$ I_{out} \le 20 \ \mu\text{A}$ | 2.0
4.5
6.0 | 1.9
4.4
5.9 | 1.9
4.4
5.9 | 1.9
4.4
5.9 | V | | | | $\begin{array}{ c c c } \hline V_{in} = V_{IH} \text{ or } V_{IL} & I_{out} \leq 2.4 \text{mA} \\ I_{out} \leq 6.0 \text{ mA} \\ I_{out} \leq 7.8 \text{ mA} \end{array}$ | 3.0
4.5
6.0 | 2.48
3.98
5.48 | 2.34
3.84
5.34 | 2.2
3.7
5.2 | | | V _{OL} | Maximum Low–Level Output
Voltage | $V_{out} = 0.1 \text{ V or } V_{CC} - 0.1 \text{ V}$
$ I_{out} \le 20 \mu\text{A}$ | 2.0
4.5
6.0 | 0.1
0.1
0.1 | 0.1
0.1
0.1 | 0.1
0.1
0.1 | V | | | | $ \begin{aligned} V_{in} = V_{IH} \text{ or } V_{IL} & & I_{out} \leq 2.4 \text{mA} \\ & I_{out} \leq 6.0 \text{ mA} \\ & I_{out} \leq 7.8 \text{ mA} \end{aligned} $ | 3.0
4.5
6.0 | 0.26
0.26
0.26 | 0.33
0.33
0.33 | 0.4
0.4
0.4 | | | l _{in} | Maximum Input Leakage Current | V _{in} = V _{CC} or GND | 6.0 | ±0.1 | ±1.0 | ± .0 | μΑ | | l _{OZ} | Maximum Three–State Leakage
Current | | 6.0 | -0.5 | -5.0 | -10 | μΑ | | I _{CC} | Maximum Quiescent Supply
Current (per Package) | $V_{in} = V_{CC}$ or GND $II_{out}I = 0 \mu A$ | 6.0 | 4.0 | 40 | 160 | μΑ | ## AC ELECTRICAL CHARACTERISTICS ($C_L = 50 \text{ pF}$, Input $t_r = t_f = 6.0 \text{ ns}$) | | Vcc | | Guar | anteed Lim | it | | |--------------------|--|--------------|-------------|-----------------------|---------|------| | Symbol | Parameter | v | –55 to 25°C | ≤85°C | ≤125°C | Unit | | t _{PLH} , | Maximum Propagation Delay, Input D to Q | 2.0 | 150 | 190 | 225 | ns | | t _{PHL} | (Figures 1 and 5) | 3.0 | 100 | 140 | 180 | | | | | 4.5 | 30 | 38 | 45 | | | | | 6.0 | 26 | 33 | 38 | | | t _{PLH} , | Maximum Propagation Delay, Latch Enable to Q | 2.0 | 160 | 200 | 240 | ns | | t _{PHL} | (Figures 2 and 5) | 3.0 | 105 | 145 | 190 | | | | | 4.5 | 32 | 40 | 48 | | | | | 6.0 | 27 | 34 | 41 | | | t _{PLZ} , | Maximum Propagation Delay, Output Enable to Q | 2.0 | 150 | 190 | 225 | ns | | t _{PHZ} | (Figures 3 and 6) | 3.0 | 100 | 125 | 150 | | | | | 4.5 | 30 | 38 | 45 | | | | | 6.0 | 26 | 33 | 38 | | | t _{PZL} , | Maximum Propagation Delay, Output Enable to Q | 2.0 | 150 | 190 | 225 | ns | | t _{PZH} | (Figures 3 and 6) | 3.0 | 100 | 125 | 150 | | | | | 4.5 | 30 | 38 | 45 | | | | | 6.0 | 26 | 33 | 38 | | | t _{TLH} , | Maximum Output Transition Time, Any Output | 2.0 | 60 | 75 | 90 | ns | | t_{THL} | (Figures 1 and 5) | 3.0 | 27 | 32 | 36 | | | | | 4.5 | 12 | 15 | 18 | | | | | 6.0 | 10 | 13 | 15 | | | C _{in} | Maximum Input Capacitance | | 10 | 10 | 10 | pF | | C _{out} | Maximum 3-State Output Capacitance (Output in High-Imped | lance State) | 15 | 15 | 15 | pF | | | | | Typical @ | 25°C, V _{CC} | = 5.0 V | | C_{PD} Power Dissipation Capacitance (Per Enabled Output)* * Used to determine the no–load dynamic power consumption: $P_D = C_{PD} \ V_{CC}^2 f + I_{CC} \ V_{CC}$. ## **TIMING REQUIREMENTS** ($C_L = 50 \text{ pF}$, Input $t_r = t_f = 6.0 \text{ ns}$) | | | | | Guaranteed Limit | | | | | | | |---------------------------------|---|--------|-----------------|------------------|------|-----|------|-----|------|------| | | | | v _{cc} | -55 to | 25°C | ≤8 | 5°C | ≤12 | :5°C | | | Symbol | Parameter | Figure | V | Min | Max | Min | Max | Min | Max | Unit | | t _{su} | Minimum Setup Time, Input D to Latch Enable | 4 | 2.0 | 50 | | 65 | | 75 | | ns | | | | | 3.0 | 40 | | 50 | | 60 | | | | | | | 4.5 | 10 | | 13 | | 15 | | | | | | | 6.0 | 9.0 | | 11 | | 13 | | | | t _h | Minimum Hold Time, Latch Enable to Input D | 4 | 2.0 | 5.0 | | 5.0 | | 5.0 | | ns | | | | | 3.0 | 5.0 | | 5.0 | | 5.0 | | | | | | | 4.5 | 5.0 | | 5.0 | | 5.0 | | | | | | | 6.0 | 5.0 | | 5.0 | | 5.0 | | | | t _w | Minimum Pulse Width, Latch Enable | 2 | 2.0 | 75 | | 95 | | 110 | | ns | | | | | 3.0 | 60 | | 80 | | 90 | | | | | | | 4.5 | 15 | | 19 | | 22 | | | | | | | 6.0 | 13 | | 16 | | 19 | | | | t _r , t _f | Maximum Input Rise and Fall Times | 1 | 2.0 | | 1000 | | 1000 | | 1000 | ns | | | | | 3.0 | | 800 | | 800 | | 800 | | | | | | 4.5 | | 500 | | 500 | | 500 | | | | | | 6.0 | | 400 | | 400 | | 400 | | ## **SWITCHING WAVEFORMS** Figure 1. Figure 3. *Includes all probe and jig capacitance Figure 5. Test Circuit *Includes all probe and jig capacitance Figure 6. Test Circuit Figure 2. Figure 4. Figure 7. EXPANDED LOGIC DIAGRAM ## **ORDERING INFORMATION** | Device | Package | Shipping [†] | |-------------------|---------------------------|-----------------------| | MC74HC573ADWG | SOIC-20 WIDE
(Pb-Free) | 38 Units / Rail | | MC74HC573ADWR2G | SOIC-20 WIDE
(Pb-Free) | 1000 Tape & Reel | | MC74HC573ADTG | TSSOP-20
(Pb-Free) | 75 Units / Rail | | MC74HC573ADTR2G | TSSOP-20
(Pb-Free) | 2500 Tape & Reel | | NLV74HC573ADTR2G* | TSSOP-20
(Pb-Free) | 2500 Tape & Reel | [†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D. *NLV Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC–Q100 Qualified and PPAP Capable. ## PACKAGE DIMENSIONS ## TSSOP-20 **DT SUFFIX** CASE 948E-02 **ISSUE C** - NOTES: 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. 2. CONTROLLING DIMENSION: MILLIMETER. 3. DIMENSION A DOES NOT INCLUDE MOLD FLASH, PROTRUSIONS OR GATE BURRS. MOLD FLASH OR GATE BURRS SHALL NOT EXCEED 0.15 (0.006) PER SIDE. 4. DIMENSION B DOES NOT INCLUDE INTERLEAD FLASH OR PROTRUSION. INTERLEAD FLASH OR PROTRUSION. - INTERLEAD FLASH OR PROTRUSION. INTERLEAD FLASH OR PROTRUSION. SHALL NOT EXCEED 0.25 (0.010) PER SIDE. 5. DIMENSION K DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.08 (0.003) TOTAL IN EXCESS OF THE K DIMENSION AT MAXIMUM MATERIAL CONDITION. - CONDITION. 6. TERMINAL NUMBERS ARE SHOWN FOR REFERENCE ONLY. 7. DIMENSION A AND B ARE TO BE DETERMINED AT DATUM PLANE -W-. | | MILLIN | IETERS | INC | HES | | |-----|--------|--------|-----------|-------|--| | DIM | MIN | MAX | MIN | MAX | | | Α | 6.40 | 6.60 | 0.252 | 0.260 | | | В | 4.30 | 4.50 | 0.169 | 0.177 | | | С | | 1.20 | | 0.047 | | | D | 0.05 | 0.15 | 0.002 | 0.006 | | | F | 0.50 | 0.75 | 0.020 | 0.030 | | | G | 0.65 | BSC | 0.026 | BSC | | | Н | 0.27 | 0.37 | 0.011 | 0.015 | | | J | 0.09 | 0.20 | 0.004 | 0.008 | | | J1 | 0.09 | 0.16 | 0.004 | 0.006 | | | K | 0.19 | 0.30 | 0.007 | 0.012 | | | K1 | 0.19 | 0.25 | 0.007 | 0.010 | | | L | 6.40 | | 0.252 BSC | | | | M | 0° | 8° | 0° | 8° | | ## **SOLDERING FOOTPRINT*** *For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D. ## PACKAGE DIMENSIONS SOIC-20 DW SUFFIX CASE 751D-05 ISSUE G #### NOTES: - DIMENSIONS ARE IN MILLIMETERS. - 2. INTERPRET DIMENSIONS AND TOLERANCES PER ASME Y14.5M. 1994. - DIMENSIONS D AND E DO NOT INCLUDE MOLD PROTRUSION. - 4. MAXIMUM MOLD PROTRUSION 0.15 PER SIDE. - MAXIMUM MOLD PROTROSION 1.15 FEA 318 DIMENSION B DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE PROTRUSION SHALL BE 0.13 TOTAL IN EXCESS OF B DIMENSION AT MAXIMUM MATERIAL CONDITION. | | MILLIMETERS | | | | | |-----|-------------|-------|--|--|--| | DIM | MIN | MAX | | | | | Α | 2.35 | 2.65 | | | | | A1 | 0.10 | 0.25 | | | | | В | 0.35 | 0.49 | | | | | С | 0.23 | 0.32 | | | | | D | 12.65 | 12.95 | | | | | Е | 7.40 | 7.60 | | | | | е | 1.27 | BSC | | | | | Н | 10.05 | 10.55 | | | | | h | 0.25 | 0.75 | | | | | L | 0.50 | 0.90 | | | | | θ | 0° | 7 ° | | | | ON Semiconductor and the unare registered trademarks of Semiconductor Components Industries, LLC (SCILLC) or its subsidiaries in the United States and/or other countries. SCILLC owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of SCILLC's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent–Marking.pdf. SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal inju ## **PUBLICATION ORDERING INFORMATION** #### LITERATURE FULFILLMENT: Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800–282–9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910 Japan Customer Focus Center Phone: 81–3–5817–1050 ON Semiconductor Website: www.onsemi.com Order Literature: http://www.onsemi.com/orderlit For additional information, please contact your local Sales Representative